Exploiting the disjoint cycle decomposition in genome rearrangements

Jean-Paul Doignon Anthony Labarre doignon@ulb.ac.be

Université Libre de Bruxelles

June 7th, 2007

Ordinal and Symbolic Data Analysis 2007

 $^{^1}$ Funded by the "Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture" (F.R.I.A.).

Introduction

Sequence alignment
Genome rearrangements
Permutations
Focus of this talk

Sorting by transpositions

Transpositions
The breakpoint graph
Our results

Hultman numbers

The problem The solution

Sequence alignment

- Comparison at the nucleotide level;
- Example:

► Matches, differences, insertions and deletions;

Genome rearrangements

- Comparison at the gene level;
- ▶ Species differ not only by "content", but also by <u>order</u>:
 - genes spread over different sets of chromosomes;
 - genes ordered differently on the same chromosome;
- Example:
 - many genes in cabbage and turnip are 99% identical;

General statement of the problem

▶ The problem to solve can be summarized as:

Given two (or more) genomes, find a sequence of mutations that transforms one into the other and is of minimal length.

- Different assumptions yield different models:
 - gene order;
 - gene orientation;
 - duplications/deletions in the genome;
 - mutations taken into account;
 - weights given to mutations;
 - miscellaneous restrictions;

The role of permutations

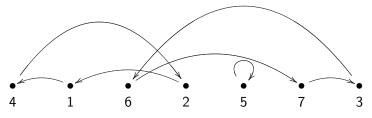
- ▶ Permutations model genomes in the case where:
 - the order of genes is known, but not their orientation;
 - each gene appears exactly once in each genome;
- Therefore:
 - $\{genes\} = \{1, 2, \dots, n\};$
 - genome = permutation of $\{1, 2, \dots, n\}$;
- Permutations are therefore viewed as orderings, not as functions;
- One or several operations;

The disjoint cycle decomposition (DCD)

► As is well-known, permutations decompose into a product of disjoint cycles:

$$\left(\begin{array}{ccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 4 & 1 & 6 & 2 & 5 & 7 & 3 \end{array}\right) = (1,4,2)(3,6,7)(5)$$

We use a particular layout of the associated graph that we call the Γ-graph:



Focus of this talk

- Most results in genome rearrangements are based on a central tool called the "cycle graph" (or "breakpoint graph");
- Though the breakpoint graph is a very powerful tool, more classical notions about permutations could be useful for:
 - comparing metrics on permutations;
 - providing information and insight about a particular problem;
 - characterising tractable instances of a particular problem;
- ▶ We prove our point by using the DCD to:
 - 1. derive upper bounds and exhibit polynomial instances for the problem of sorting by transpositions;
 - 2. solve a counting problem related to the breakpoint graph;

Sorting by transpositions

- Introduced in [Bafna and Pevzner, 1995];
- ▶ Biological transpositions ≠ algebraic transpositions ("2-cycles")!
- A transposition displaces an interval of the permutation or, equivalently, exchanges two contiguous intervals:

Our problem: transform a permutation into the identity permutation using as few transpositions as possible.

Sorting by transpositions: example

Example

 $\pi = (3\ 1\ 4\ 2)$ can be sorted using two transpositions:

$$\pi = (3 \boxed{1} \boxed{4} 2)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\iota = (1234)$$

Since π cannot be sorted using only one transposition, we have $d(\pi) = 2$.

Status of the problem

- ▶ The following problems are open:
 - 1. the complexity of the sorting problem;
 - 2. the complexity of computing the associated distance;
 - 3. determining the maximal value the transposition distance can reach;
- ▶ Best approximation ratio for the sorting problem has long been 3/2;
- ▶ Improving it down to 11/8 required a computer assisted proof checking over 80 000 cases [Elias and Hartman, 2006] (that algorithm has $O(n^2)$ running time);

The breakpoint graph

▶ Given a permutation π , construct the *breakpoint graph* $G(\pi)$ as follows:

1.
$$V(G) = \{\pi_0 = 0, \pi_1, \pi_2, \dots, \pi_n, \pi_{n+1} = n+1\};$$

2.
$$E(G) =$$

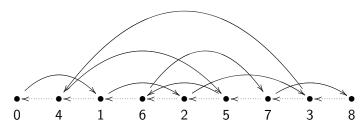
The breakpoint graph

▶ Given a permutation π , construct the *breakpoint graph* $G(\pi)$ as follows:

- 1. $V(G) = \{\pi_0 = 0, \pi_1, \pi_2, \dots, \pi_n, \pi_{n+1} = n+1\};$
- 2. $E(G) = \{dotted \text{ edges}\}$

The breakpoint graph

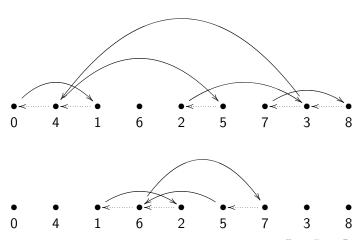
▶ Given a permutation π , construct the *breakpoint graph* $G(\pi)$ as follows:



- 1. $V(G) = \{\pi_0 = 0, \pi_1, \pi_2, \dots, \pi_n, \pi_{n+1} = n+1\};$
- 2. $E(G) = \{dotted \text{ edges}\} \cup \{black \text{ edges}\};$

The alternating cycle decomposition of $G(\pi)$

• $G(\pi)$ decomposes into alternating cycles:



The alternating cycle decomposition of $G(\pi)$

- ► That decomposition yields a graphical framework for sorting by transpositions:
- ▶ The identity $\iota = (1 \ 2 \cdots n)$ is the only permutation with $c(G(\iota)) = n + 1 = c_{odd}(G(\iota))$;

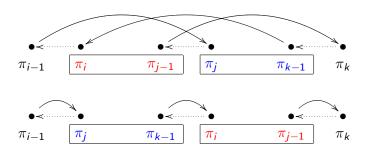
$$G(\iota):$$

$$0 \quad 1 \quad 2 \quad 3 \quad n-1 \quad n \quad n+1$$

► Therefore sorting by transpositions comes down to creating odd alternating cycles "as fast as possible";

A lower bound for sorting by transpositions

▶ Best case: two new odd cycles in one move:



Theorem

[Bafna and Pevzner, 1995] $\forall \ \pi \in S_n : d(\pi) \geq \frac{n+1-c_{odd}(G(\pi))}{2}.$

Our results [Labarre, 2006]

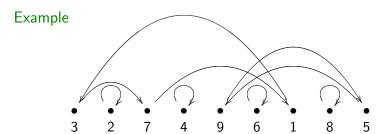
- ightharpoonup A nice correspondence between the Γ-graph and the breakpoint graph for a certain class of permutations called γ -permutations;
- ▶ O(n) time and space computation of the transposition distance of γ -permutations, without the need of any graph structure;
- A new upper bound on the transposition distance, tight for γ-permutations.
- Even tighter bounds for many other cases.

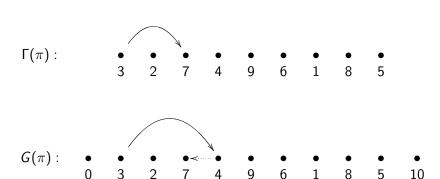
γ -permutations

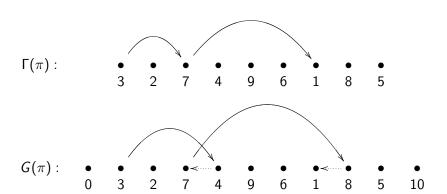
Definition

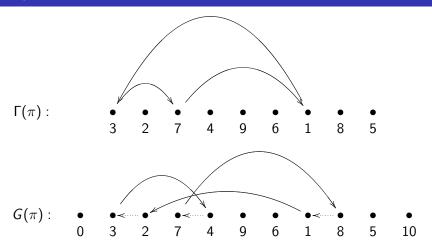
For *n* odd, a permutation π is a γ -permutation if:

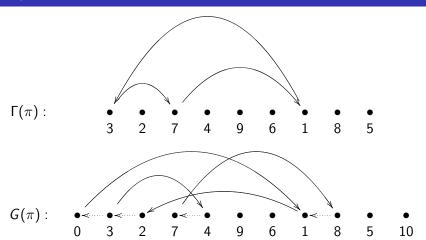
- 1. it fixes all even elements, and
- 2. there is no position i such that $\pi_{i+1} = \pi_i + 1$, for $1 \le i \le n-1$;

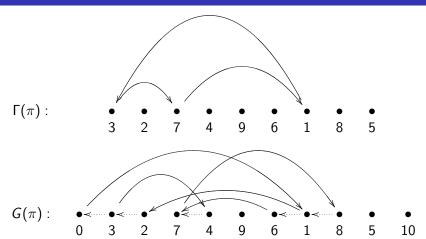


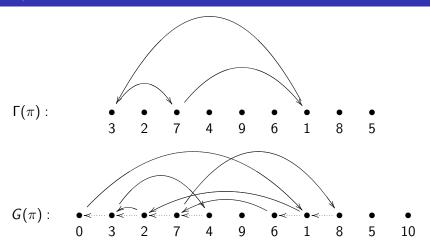




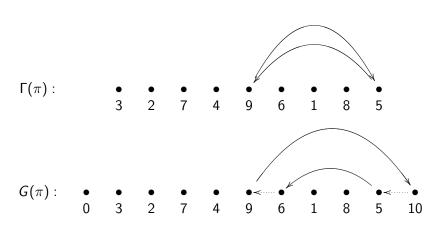


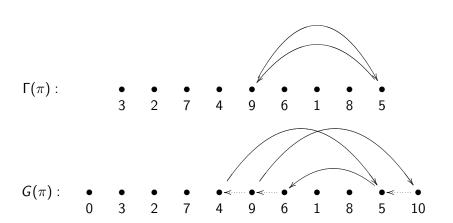


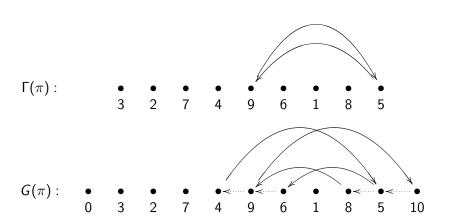


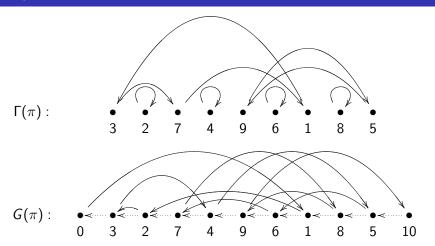












Proposition

[Labarre, 2006] For every $\gamma-$ permutation π in S_n :

$$\begin{cases} c_{even}(G(\pi)) &= 2 c_{even}(\Gamma(\pi)); \\ c_{odd}(G(\pi)) &= 2 \left(c_{odd}(\Gamma(\pi)) - \frac{n-1}{2}\right). \end{cases}$$

Lower bound based on the DCD

- ▶ Recall that $d(\pi) \ge \frac{n+1-c_{odd}(G(\pi))}{2}$ (Theorem 2);
- ▶ This and Proposition 1 yield the following result:

Lemma

[Labarre, 2006] For every γ -permutation π in S_n :

$$d(\pi) \geq n - c_{odd}(\Gamma(\pi))$$
.

This lower bound is actually reached;

Transposition distance of γ -permutations

▶ Strategy: sort each cycle in $\Gamma(\pi)$ independently;

Transposition distance of γ -permutations

- ▶ Strategy: sort each cycle in $\Gamma(\pi)$ independently;
- ▶ The minimal number of transpositions sorting a k-cycle in $\Gamma(\pi)$ is equal to $k (k \mod 2)$;

Transposition distance of γ -permutations

- ▶ Strategy: sort each cycle in $\Gamma(\pi)$ independently;
- ▶ The minimal number of transpositions sorting a k-cycle in $\Gamma(\pi)$ is equal to $k (k \mod 2)$;
- ► The strategy yields an upper bound on $d(\pi)$, which is $\sum_{C \in \Gamma(\pi)} |C| (|C| \mod 2) = n c_{odd}(\Gamma(\pi))$;

Transposition distance of γ -permutations

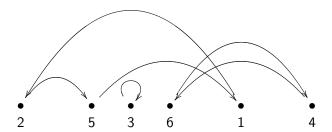
- ▶ Strategy: sort each cycle in $\Gamma(\pi)$ independently;
- ▶ The minimal number of transpositions sorting a k-cycle in $\Gamma(\pi)$ is equal to $k (k \mod 2)$;
- ► The strategy yields an upper bound on $d(\pi)$, which is $\sum_{C \in \Gamma(\pi)} |C| (|C| \mod 2) = n c_{odd}(\Gamma(\pi))$;
- ... which equals the lower bound of Lemma 5, and therefore:

Theorem

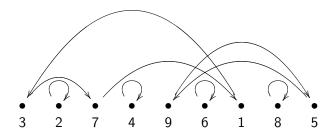
[Labarre, 2006] For every γ -permutation in S_n , we have

$$d(\pi) = n - c_{odd}(\Gamma(\pi)).$$

▶ Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ -permutation;



▶ Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ -permutation;



- Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ-permutation;
- We can still sort each cycle in Γ independently (but this may not be an optimal strategy anymore);

- ▶ Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ -permutation;
- We can still sort each cycle in Γ independently (but this may not be an optimal strategy anymore);
- ▶ Therefore $d(\pi) \le d(\sigma)$, where σ is the γ -permutation from which π is obtained by removing k fixed points;

- ▶ Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ -permutation;
- We can still sort each cycle in Γ independently (but this may not be an optimal strategy anymore);
- ▶ Therefore $d(\pi) \le d(\sigma)$, where σ is the γ -permutation from which π is obtained by removing k fixed points;
- ▶ Finally: $d(\sigma) = n + k c_{odd}(\Gamma(\sigma)) = n c_{odd}(\Gamma(\pi))$;

- ▶ Every permutation (except ι) can be obtained from a (permutation equivalent to a) γ -permutation;
- We can still sort each cycle in Γ independently (but this may not be an optimal strategy anymore);
- ▶ Therefore $d(\pi) \le d(\sigma)$, where σ is the γ -permutation from which π is obtained by removing k fixed points;
- ▶ Finally: $d(\sigma) = n + k c_{odd}(\Gamma(\sigma)) = n c_{odd}(\Gamma(\pi))$;

Theorem

[Labarre, 2006] For every permutation in S_n , we have

$$d(\pi) \leq n - c_{odd}(\Gamma(\pi)).$$

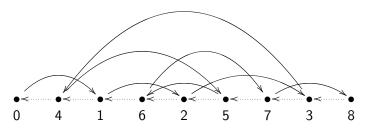
Extensions

- ▶ Other results can be obtained by analysing the effect of removing fixed points on both Γ and G; we can:
 - either compute the exact distance in polynomial time, for instance:
 - 1.1 if no two cycles in Γ cross and all cycles are "monotonic",
 - 1.2 if no two cycles in Γ cross and all cycles are odd;
 - 2. or lower our upper bound;
- For more examples and details, see [Labarre, 2006];

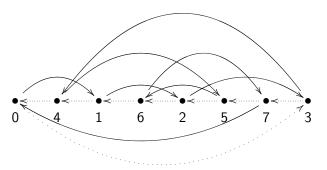
The problem

- ▶ Recall the *Stirling number of the first kind*, which counts the number of permutations in *S_n* with *k* cycles;
- ▶ [Hultman, 1999] asked for a characterisation of an analogue number, which counts the number of permutations in S_n whose breakpoint graph has k cycles;
- Using the DCD, we solved Hultman's problem and a more general question [Doignon and Labarre, 2007];

▶ Let π be a permutation in S_n , and $G(\pi)$ its breakpoint graph;

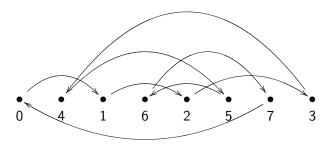


▶ Let π be a permutation in S_n , and $G(\pi)$ its breakpoint graph;



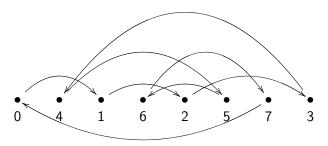
• We circularise $G(\pi)$ by identifying 0 and n+1, thus obtaining $G'(\pi)$;

 $ightharpoonup G'(\pi)$ yields two permutations:



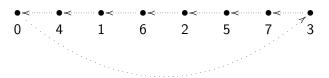
1. $\alpha = \text{the cycle formed by the black edges};$

 $ightharpoonup G'(\pi)$ yields two permutations:



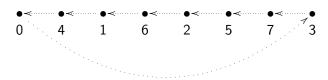
1.
$$\alpha = (0, 1, 2, 3, 4, 5, 6, 7);$$

▶ $G'(\pi)$ yields two permutations:



- 1. $\alpha = (0, 1, 2, 3, 4, 5, 6, 7);$
- 2. $\dot{\pi}=$ the cycle formed by the dotted edges;

▶ $G'(\pi)$ yields two permutations:

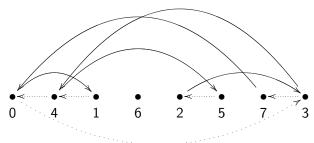


1.
$$\alpha = (0, 1, 2, 3, 4, 5, 6, 7);$$

2.
$$\dot{\pi} = (0, 3, 7, 5, 2, 6, 1, 4);$$

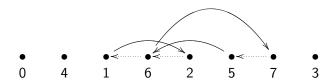
▶ The decomposition of $G'(\pi)$ is expressed by those permutations:

$$\dot{\pi} \circ \alpha = (0,3,7,5,2,6,1,4) \circ (0,1,2,3,4,5,6,7)
= (0,4,2,7,3)(1,6,5) = \mathring{\pi}$$



▶ The decomposition of $G'(\pi)$ is expressed by those permutations:

$$\dot{\pi} \circ \alpha = (0,3,7,5,2,6,1,4) \circ (0,1,2,3,4,5,6,7)
= (0,4,2,7,3)(1,6,5) = \mathring{\pi}$$



▶ The decomposition of $G'(\pi)$ is expressed by those permutations:

$$\dot{\pi} \circ \alpha = (0,3,7,5,2,6,1,4) \circ (0,1,2,3,4,5,6,7)
= (0,4,2,7,3)(1,6,5) = \mathring{\pi}$$

Note that

$$\mathring{\pi} = \dot{\pi} \circ \alpha \Leftrightarrow \underbrace{\alpha}_{\text{fixed (n+1)-cycle}} = \underbrace{\dot{\pi}^{-1}}_{\text{(n+1)-cycle}} \circ \underbrace{\mathring{\pi}}_{\text{k cycles}}$$

▶ The decomposition of $G'(\pi)$ is expressed by those permutations:

$$\dot{\pi} \circ \alpha = (0,3,7,5,2,6,1,4) \circ (0,1,2,3,4,5,6,7)
= (0,4,2,7,3)(1,6,5) = \mathring{\pi}$$

Note that

$$\mathring{\pi} = \dot{\pi} \circ \alpha \Leftrightarrow \underbrace{\alpha}_{\text{fixed (n+1)-cycle}} = \underbrace{\dot{\pi}^{-1}}_{\text{(n+1)-cycle}} \circ \underbrace{\mathring{\pi}}_{\text{k cycles}}$$

Theorem

[Doignon and Labarre, 2007] The Hultman number $S_H(n,k)$ is the number of factorisations of a fixed (n+1)-cycle into the product of an (n+1)-cycle and a permutation with k cycles.

Formulas for the Hultman number

- A complicated expression gives an exact formula for $S_H(n, k)$ [Goupil and Schaeffer, 1998];
- Simpler formulae can be obtained for particular cases:
 - $S_H(n,1) = 2\frac{n!}{n+2}$;
 - the number of permutations whose breakpoint graph has only 2-cycles is

$$\frac{(n+1)!}{\left(\frac{n+1}{2}+1\right)!\,2^{\frac{n+1}{2}}}$$

 the number of permutations whose breakpoint graph has only 3-cycles is

$$\frac{(n+1)!}{\left(\frac{n+1}{3}\right)! \cdot 12^{\frac{n+1}{3}}} \sum_{i=0}^{\frac{n+1}{3}} {n+1 \choose i} \frac{3^i}{2i+1}$$

Bafna, V. and Pevzner, P. A. (1995).
Sorting permutations by transpositions.
In *Proceedings of SODA*, pages 614–623, ACM/SIAM.

Doignon, J.-P. and Labarre, A. (2007).

On Hultman numbers.

Journal of Integer Sequences, 10(6). 13 pages.

Elias, I. and Hartman, T. (2006).

A 1.375-approximation algorithm for sorting by transpositions.

IEEE/ACM Trans. Comput. Biol. Bioinform., 3(4):369–379.

Goupil, A. and Schaeffer, G. (1998).

Factoring *n*-cycles and counting maps of given genus.

European Journal of Combinatorics, 19(7):819–834.

Hultman, A. (1999).

Toric permutations.

Master's thesis, Department of Mathematics, KTH, Stockholm, Sweden.

Labarre, A. (2006).

New bounds and tractable instances for the transposition distance.

IEEE/ACM Trans. Comput. Biol. Bioinform., 3(4):380–394.

The "complicated formula"

The Hultman number $S_H(n, k)$ is equal to

$$\frac{(n+1)!}{2^{n+1-k}} \sum_{(\mu_1,\dots,\mu_k)\vdash(n+1)} \frac{1}{z_{\mu}} \sum_{i=0}^{\frac{n+1-k}{2}} \frac{1}{2i+1} \sum_{(j_1,\dots,j_k)\models\frac{n+1-k}{2}-i} \prod_{h=1}^k \binom{\mu_h}{2j_h+1},$$

where $z_{\mu} = \prod_{i} \alpha_{i}! i^{\alpha_{i}}$ and α_{i} denotes the number of occurrences of part i in μ .