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Sequence alignment

I Comparison at the nucleotide level;

I Example:

species 1 : · · · T C C G C C A − − C T A · · ·
| | | | | | |

species 2 : · · · T C G G A C T G G C − A · · ·

I Matches, differences, insertions and deletions;
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Genome rearrangements

I Comparison at the gene level;
I Species differ not only by “content”, but also by order:

I genes spread over different sets of chromosomes;
I genes ordered differently on the same chromosome;

I Example:
I many genes in cabbage and turnip are 99% identical;
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General statement of the problem

I The problem to solve can be summarized as:

Given two (or more) genomes, find a sequence of mutations
that transforms one into the other and is of minimal length.

I Different assumptions yield different models:
I gene order;
I gene orientation;
I duplications/deletions in the genome;
I mutations taken into account;
I weights given to mutations;
I miscellaneous restrictions;
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The role of permutations

I Permutations model genomes in the case where:
I the order of genes is known, but not their orientation;
I each gene appears exactly once in each genome;

I Therefore:
I {genes} = {1, 2, . . . , n};
I genome = permutation of {1, 2, . . . , n};

I Permutations are therefore viewed as orderings, not as
functions;

I One or several operations;
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The disjoint cycle decomposition (DCD)

I As is well-known, permutations decompose into a product of
disjoint cycles:(

1 2 3 4 5 6 7
4 1 6 2 5 7 3

)
= (1, 4, 2)(3, 6, 7)(5)

I We use a particular layout of the associated graph that we call
the Γ-graph:

•
��

•vv • $$•ww • �� • ((•
��

4 1 6 2 5 7 3
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Focus of this talk

I Most results in genome rearrangements are based on a central
tool called the “cycle graph” (or “breakpoint graph”);

I Though the breakpoint graph is a very powerful tool, more
classical notions about permutations could be useful for:

I comparing metrics on permutations;
I providing information and insight about a particular problem;
I characterising tractable instances of a particular problem;

I We prove our point by using the DCD to:

1. derive upper bounds and exhibit polynomial instances for the
problem of sorting by transpositions;

2. solve a counting problem related to the breakpoint graph;
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Sorting by transpositions

I Introduced in [Bafna and Pevzner, 1995];

I Biological transpositions 6= algebraic transpositions
(“2-cycles”)!

I A transposition displaces an interval of the permutation or,
equivalently, exchanges two contiguous intervals:

( 5 4 3 2 1 )

↓

( 5 2 1 4 3 )

I Our problem: transform a permutation into the identity
permutation using as few transpositions as possible.
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Sorting by transpositions: example

Example

π = (3 1 4 2) can be sorted using two transpositions:

π = ( 3 1 4 2 )

↓
( 3 4 1 2 )

↓
ι = ( 1 2 3 4 )

Since π cannot be sorted using only one transposition, we have
d(π) = 2.
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Status of the problem

I The following problems are open:

1. the complexity of the sorting problem;
2. the complexity of computing the associated distance;
3. determining the maximal value the transposition distance can

reach;

I Best approximation ratio for the sorting problem has long
been 3/2;

I Improving it down to 11/8 required a computer assisted proof
checking over 80 000 cases [Elias and Hartman, 2006] (that
algorithm has O(n2) running time);
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The breakpoint graph

I Given a permutation π, construct the breakpoint graph G (π)
as follows:

• • • • • • • • •
0 4 1 6 2 5 7 3 8

1. V (G ) = {π0 = 0, π1, π2, . . . , πn, πn+1 = n + 1};
2. E (G ) =
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The breakpoint graph

I Given a permutation π, construct the breakpoint graph G (π)
as follows:

• •oo •oo •oo •oo •oo •oo •oo •oo

0 4 1 6 2 5 7 3 8

1. V (G ) = {π0 = 0, π1, π2, . . . , πn, πn+1 = n + 1};
2. E (G ) = {dotted edges}
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The breakpoint graph

I Given a permutation π, construct the breakpoint graph G (π)
as follows:

• ��•oo ��•oo $$•oo
��

•oo $$•oozz •oo $$•oo��
•oo

0 4 1 6 2 5 7 3 8

1. V (G ) = {π0 = 0, π1, π2, . . . , πn, πn+1 = n + 1};
2. E (G ) = {dotted edges} ∪ {black edges};
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The alternating cycle decomposition of G (π)

I G (π) decomposes into alternating cycles:

• ��•oo ��•oo • • $$•oo • $$•oo��
•oo

0 4 1 6 2 5 7 3 8

• • • $$•oo
��

•oo •zz •oo • •
0 4 1 6 2 5 7 3 8
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The alternating cycle decomposition of G (π)

I That decomposition yields a graphical framework for sorting
by transpositions:

I The identity ι = (1 2 · · · n) is the only permutation with
c(G (ι)) = n + 1 = codd(G (ι));

G (ι) : •
��
•oo

��
•oo

��
•oo · · · •

��
•oo ��

•oo

0 1 2 3 n − 1 n n + 1

I Therefore sorting by transpositions comes down to creating
odd alternating cycles “as fast as possible”;
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A lower bound for sorting by transpositions

I Best case: two new odd cycles in one move:

• $$•oo • $$•oo •xx •oo

πi−1 πi πj−1 πj πk−1 πk

• ��•oo • ��•oo •   •oo

πi−1 πj πk−1 πi πj−1 πk

Theorem
[Bafna and Pevzner, 1995] ∀ π ∈ Sn : d(π) ≥ n+1−codd (G(π))

2 .
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Our results [Labarre, 2006]

I A nice correspondence between the Γ-graph and the
breakpoint graph for a certain class of permutations called
γ-permutations;

I O(n) time and space computation of the transposition
distance of γ-permutations, without the need of any graph
structure;

I A new upper bound on the transposition distance, tight for
γ-permutations.

I Even tighter bounds for many other cases.
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γ-permutations

Definition
For n odd, a permutation π is a γ-permutation if:

1. it fixes all even elements, and

2. there is no position i such that πi+1 = πi + 1, for
1 ≤ i ≤ n − 1;

Example

•
��

• �� • ��• �� •
��

• �� •
��

• �� •��

3 2 7 4 9 6 1 8 5
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Correspondence between Γ and G for γ-permutations:
example

Γ(π) : • • • • • • • • •
3 2 7 4 9 6 1 8 5

G (π) : • • • • • • • • • • •
0 3 2 7 4 9 6 1 8 5 10
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Correspondence between Γ and G for γ-permutations:
example

Γ(π) : •
��

• • • • • • • •
3 2 7 4 9 6 1 8 5

G (π) : • •
��

• • •oo • • • • • •
0 3 2 7 4 9 6 1 8 5 10
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example
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•
��
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Correspondence between Γ and G for γ-permutations:
example

Γ(π) : •
��

• �� •
��

• �� •
��

• �� •
��

• �� •
��

3 2 7 4 9 6 1 8 5

G (π) : • ��•oo
��

•oozz •
��

oo •oo
��

•oo
��

•ooxx •ooxx •oo}} •oo}} •oo

0 3 2 7 4 9 6 1 8 5 10
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Correspondence between Γ and G for γ-permutations

Proposition

[Labarre, 2006] For every γ−permutation π in Sn:{
ceven(G (π)) = 2 ceven(Γ(π));
codd(G (π)) = 2

(
codd(Γ(π))− n−1

2

)
.
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Lower bound based on the DCD

I Recall that d(π) ≥ n+1−codd (G(π))
2 (Theorem 2);

I This and Proposition 1 yield the following result:

Lemma
[Labarre, 2006] For every γ−permutation π in Sn:

d(π) ≥ n − codd(Γ(π)) .

I This lower bound is actually reached;
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Transposition distance of γ-permutations

I Strategy: sort each cycle in Γ(π) independently;

I The minimal number of transpositions sorting a k-cycle in
Γ(π) is equal to k − (k mod 2);

I The strategy yields an upper bound on d(π), which is∑
C∈Γ(π) |C | − (|C | mod 2) = n − codd(Γ(π));

I ... which equals the lower bound of Lemma 5, and therefore:

Theorem
[Labarre, 2006] For every γ-permutation in Sn, we have

d(π) = n − codd(Γ(π)).
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A new upper bound on the transposition distance

I Every permutation (except ι) can be obtained from a
(permutation equivalent to a) γ-permutation;

•
��
• ��• �� •

��
•

��
•��

2 5 3 6 1 4
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A new upper bound on the transposition distance

I Every permutation (except ι) can be obtained from a
(permutation equivalent to a) γ-permutation;

•
��

• �� • ��• �� •
��

• �� •
��

• �� •��

3 2 7 4 9 6 1 8 5
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A new upper bound on the transposition distance

I Every permutation (except ι) can be obtained from a
(permutation equivalent to a) γ-permutation;

I We can still sort each cycle in Γ independently (but this may
not be an optimal strategy anymore);

I Therefore d(π) ≤ d(σ), where σ is the γ-permutation from
which π is obtained by removing k fixed points;

I Finally: d(σ) = n + k − codd(Γ(σ)) = n − codd(Γ(π));

Theorem
[Labarre, 2006] For every permutation in Sn, we have

d(π) ≤ n − codd(Γ(π)).
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Extensions

I Other results can be obtained by analysing the effect of
removing fixed points on both Γ and G ; we can:

1. either compute the exact distance in polynomial time, for
instance:

1.1 if no two cycles in Γ cross and all cycles are “monotonic”,
1.2 if no two cycles in Γ cross and all cycles are odd;

2. or lower our upper bound;

I For more examples and details, see [Labarre, 2006];
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The problem

I Recall the Stirling number of the first kind, which counts the
number of permutations in Sn with k cycles;

I [Hultman, 1999] asked for a characterisation of an analogue
number, which counts the number of permutations in Sn

whose breakpoint graph has k cycles;

I Using the DCD, we solved Hultman’s problem and a more
general question [Doignon and Labarre, 2007];
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The bijection

I Let π be a permutation in Sn, and G (π) its breakpoint graph;

• ��•oo ��•oo $$•oo
��

•oo $$•oozz •oo $$•oo��
•oo

0 4 1 6 2 5 7 3 8
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The bijection

I Let π be a permutation in Sn, and G (π) its breakpoint graph;

• ��
<<•oo ��•oo $$•oo

��
•oo $$•oozz •ooee •oo��

0 4 1 6 2 5 7 3

I We circularise G (π) by identifying 0 and n + 1, thus obtaining
G ′(π);
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The bijection

I G ′(π) yields two permutations:

• ��• ��• $$•
��

• $$•zz •ee •
��

0 4 1 6 2 5 7 3

1. α = the cycle formed by the black edges;
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The bijection

I G ′(π) yields two permutations:

• ��• ��• $$•
��

• $$•zz •ee •
��

0 4 1 6 2 5 7 3

1. α = (0, 1, 2, 3, 4, 5, 6, 7);
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The bijection

I G ′(π) yields two permutations:

• <<•oo •oo •oo •oo •oo •oo •oo

0 4 1 6 2 5 7 3

1. α = (0, 1, 2, 3, 4, 5, 6, 7);
2. π̇ = the cycle formed by the dotted edges;
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The bijection

I G ′(π) yields two permutations:

• <<•oo •oo •oo •oo •oo •oo •oo

0 4 1 6 2 5 7 3

1. α = (0, 1, 2, 3, 4, 5, 6, 7);
2. π̇ = (0, 3, 7, 5, 2, 6, 1, 4);
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The bijection

I The decomposition of G ′(π) is expressed by those
permutations:

π̇ ◦ α = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)

= (0, 4, 2, 7, 3)(1, 6, 5) = π̊

• 99
��•oo ��•oo • • $$•oo •�� •oo��

0 4 1 6 2 5 7 3
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The bijection

I The decomposition of G ′(π) is expressed by those
permutations:

π̇ ◦ α = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)

= (0, 4, 2, 7, 3)(1, 6, 5) = π̊

• • • $$•oo
��

•oo •zz •oo •
0 4 1 6 2 5 7 3
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The problem
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The bijection

I The decomposition of G ′(π) is expressed by those
permutations:

π̇ ◦ α = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)

= (0, 4, 2, 7, 3)(1, 6, 5) = π̊

I Note that

π̊ = π̇ ◦ α ⇔ α︸︷︷︸
fixed (n+1)−cycle

= π̇−1︸︷︷︸
(n+1)−cycle

◦ π̊︸︷︷︸
k cycles

Theorem
[Doignon and Labarre, 2007] The Hultman number SH(n, k) is the
number of factorisations of a fixed (n + 1)-cycle into the product
of an (n + 1)-cycle and a permutation with k cycles.
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The bijection

I The decomposition of G ′(π) is expressed by those
permutations:

π̇ ◦ α = (0, 3, 7, 5, 2, 6, 1, 4) ◦ (0, 1, 2, 3, 4, 5, 6, 7)

= (0, 4, 2, 7, 3)(1, 6, 5) = π̊

I Note that

π̊ = π̇ ◦ α ⇔ α︸︷︷︸
fixed (n+1)−cycle

= π̇−1︸︷︷︸
(n+1)−cycle

◦ π̊︸︷︷︸
k cycles

Theorem
[Doignon and Labarre, 2007] The Hultman number SH(n, k) is the
number of factorisations of a fixed (n + 1)-cycle into the product
of an (n + 1)-cycle and a permutation with k cycles.
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Formulas for the Hultman number

I A complicated expression gives an exact formula for
SH(n, k) [Goupil and Schaeffer, 1998];

I Simpler formulae can be obtained for particular cases:
I SH(n, 1) = 2 n!

n+2 ;
I the number of permutations whose breakpoint graph has only

2-cycles is
(n + 1)!(

n+1
2 + 1

)
! 2

n+1
2

I the number of permutations whose breakpoint graph has only
3-cycles is

(n + 1)!(
n+1
3

)
! 12

n+1
3

n+1
3∑

i=0

( n+1
3

i

)
3i

2i + 1
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The “complicated formula”

The Hultman number SH(n, k) is equal to

(n + 1)!

2n+1−k

∑
(µ1,...,µk )`(n+1)

1

zµ

n+1−k
2∑

i=0

1

2i + 1

∑
(j1,...,jk )|= n+1−k

2
−i

k∏
h=1

(
µh

2jh + 1

)
,

where zµ =
∏

i αi ! i
αi and αi denotes the number of occurences of

part i in µ.
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