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Context and motivations The strictly subcubic case The cubic case Future work

The graph decomposition problem

Given a set S of graphs, an S-decomposition of a graph
G = (V ,E ) is a partition of E into subgraphs, all of which are
isomorphic to a graph in S .

Example

S = { , } S = connected graphs on 4 edges

S-decomposition
Input: a graph G = (V ,E ), a set S of graphs.
Question: does G admit an S-decomposition?
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Motivations

Edge-partition problems appear in surprisingly diverse areas:

• database anonymisation [1];

• traffic grooming [7];

• graph drawing [4];

• . . .
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What is known?

• Old problem (earliest reference we found is from 1847);

• Our starting point is the following piece of bad news:
S-decomposition is NP-complete, even when S contains a
single connected graph with at least three edges [2].

• Are there easy cases when we restrict ourselves to connected
subgraphs with three edges? (i.e. S = { , , })
• It turns out that the answer is yes if the input graph is

subcubic (all degrees ≤ 3);
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Our contributions

Here is a summary of what is known about decomposing graphs
using subsets of { , , }:

Allowed subgraphs Complexity according to graph class

strictly subcubic cubic arbitrary

X

in P in P

NP-complete [3, Theorem 3.5]
X

in P

O(1) (impossible) NP-complete [5]
X

NP-complete

in P [6] NP-complete [3, Theorem 3.4]

X X

in P in P

NP-complete [3, Theorem 3.5]
X X

NP-complete NP-complete

NP-complete [3, Theorem 3.1]
X X

NP-complete in P

NP-complete [3, Theorem 3.4]

X X X

NP-complete NP-complete

NP-complete [3, Theorem 3.1]

our contributions
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Decomposing strictly subcubic graphs

• G is subcubic if all vertices have degree ≤ 3;

• G is strictly subcubic if it is subcubic and it has a vertex of
degree 1 or 2. In this case, we show that:

• decomposing G using or or both is in P;
• otherwise (i.e. as soon as we allow ’s) it is NP-complete.

• The case is trivial: G admits a -decomposition if and
only if it is a disjoint union of ’s.
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-decomposition, strictly subcubic

• Simple algorithm: extract a at each step as long as
possible;

• Two cases based on the degree of each vertex v :

1 degree 1: then v must be a leaf of a ;
2 degree 2: then v must be the meeting point of two ’s;

• When the algorithm stops, either G has no edge left and we
have a -decomposition, or G does not admit one.
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{ , }-decomposition, strictly subcubic

• Similar approach to the -only case: we have three cases
based on the degree of each vertex v :

1 degree 1: then v must be a leaf of a ;
2 degree 2: then let’s consider v ’s two neighbours (u and w):

• if u and w are adjacent, then we must extract the that u,
v and w induce;

v

u w

• otherwise v is again the meeting point of two ’s;

• When the algorithm stops, either G has no edge left and we
have a { , }-decomposition, or G does not admit one.
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-decomposition, strictly subcubic

• We now show that -decomposition for strictly subcubic graphs
is NP-complete;

• We reduce from the following well-known problem:

exact cover by 3-sets (x3c)
Input: a set W and a set of triplets T ⊆W 3

Question: is there a subset T ′ ⊆ T which contains all
elements of W exactly once?

Example
1 2 3 4 5 6

t1 t2 t3 t4

• x3c remains NP-complete if the bipartite instance graph G is planar and
if deg(w) ∈ {2, 3} ∀ w ∈W ;
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-decomposition, strictly subcubic

The usual steps in a reduction are:

1 transforming instances of hard problem A to target problem B;

2 showing how to convert solutions to A into solutions to B;

3 showing how to convert solutions to B into solutions to A;

We assume the instance to x3c is a planar bipartite graph G = (W ∪ T ,E)
with deg(w) ∈ {2, 3} ∀ w ∈W ; so, we must:

1 transform G into a graph G ′ to decompose;

2 convert triplet selections for G into -decompositions for G ′;

3 convert -decompositions for G ′ into triplet selections for G ;
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Reducing from planar x3c 1/3: transformation

degree-2 elements degree-3 elements triplets

w w

t

r b y

↓ ↓ ↓
v1 v2

`

e1 e2

v1 v2 v3

`1 `2

e1 e2 e3 e4
t

vr vb vy

H(r) H(b) H(y)
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Reducing from planar x3c 2/3: converting selections

We express the (un)selection of a triplet using suitable ’s:

t
vr vb vy

H(r) H(b) H(y)

t
vr vb vy

H(r) H(b) H(y)

selected unselected

Each element is selected by exactly one selected triplet; green
paths uniquely determine the rest of the decomposition:

v1 v2

`

e1 e2

v1 v2 v3

`1 `2

e1 e2 e3 e4

v1 v2 v3

`1 `2

e1 e2 e3 e4
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Reducing from planar x3c 3/3: converting
decompositions

Start from the leaves of element gadgets and propagate implications:
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v1 v2 v3
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Every element gadget ends up with exactly one green path and is therefore
selected. In turn, the green edge coming out of the element forces the selection
of the other two elements in the triplet gadget that ends up selecting it:
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Wrapping up hardness results for strictly subcubic graphs

• In the strictly subcubic case, two reductions prove the
hardness of :

1 -decomposition (just shown);
2 { , }-decomposition (skipped but similar);

• The transformed graphs are planar and bipartite

⇒ no odd
cycles ⇒ no . So we immediately obtain the hardness of:

1 { , }-decomposition;
2 { , , }-decomposition.
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Wrapping up hardness results for strictly subcubic graphs

• In the strictly subcubic case, two reductions prove the
hardness of :

1 -decomposition (just shown);
2 { , }-decomposition (skipped but similar);

• The transformed graphs are planar and bipartite ⇒ no odd
cycles ⇒ no . So we immediately obtain the hardness of:

1 { , }-decomposition;
2 { , , }-decomposition.
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The cubic case

We now move on to the cubic case, i.e. every vertex of G has degree 3.

• -decomposition and { , }-decomposition become easy!

• { , }-decomposition and { , , }-decomposition
remain hard, but we need new reductions;

• -decomposition remains trivial (never possible in the cubic case);
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The cubic case

We now move on to the cubic case, i.e. every vertex of G has degree 3.

• -decomposition and { , }-decomposition become easy!

• { , }-decomposition and { , , }-decomposition
remain hard, but we need new reductions;

• -decomposition remains trivial (never possible in the cubic case);
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-decomposition, cubic

We need the following result:

Proposition ([6])

A cubic graph admits a -decomposition if and only if it has a
perfect matching.
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-decomposition, cubic

Proposition

A cubic graph admits a { , }-decomposition if and only if it has a perfect
matching.

Proof.
Each vertex in V is covered by k ’s (k ∈ {1, 2, 3}). Example:

1

1

1

2 2

3

⇒ V = V1 ∪ V2 ∪ V3.

Let’s compute the number p of ’s in a
decomposition; we have (details omitted):

(3|V3|+ |V2|+ |V1|)/2 = p = |V2|/2

So V1 = V3 = ∅; and since V1 is the set of vertices that belong to a , no
decomposition with a exists.
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-decomposition, cubic

We obtain a simple characterisation of -decomposable cubic graphs:

Proposition

A cubic graph admits a -decomposition if and only if it is bipartite.

Proof.
⇒ A center (red) belongs to only one subgraph

⇒ Bipartition: centers – leaves
(each edge connects a center and a leaf)

⇐

Use one part for centers, the other for leaves
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-decomposition, cubic

We obtain a simple characterisation of -decomposable cubic graphs:
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Proof.
⇒ A center (red) belongs to only one subgraph
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{ , }-decomposition, cubic

What if we also allow ’s?

We distinguish between isolated and nonisolated triangles:

Lemma

If a cubic graph G admits a { , }-decomposition D, then every
isolated in G belongs to D.
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{ , }-decomposition, cubic

If G also contains nonisolated ’s, then we only have two choices
to try:
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{ , }-decomposition, cubic

The algorithm proceeds as follows:

1 extract all isolated triangles and add them to the
decomposition;

2 if there’s a diamond, try either option for the decomposition;

3 if the resulting graph is still cubic, find a -decomposition
using the previous algorithm;

4 otherwise, run the { , }-decomposition algorithm for
strictly subcubic graphs;
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{ , }-decomposition, cubic

We now show that { , }-decomposition is NP-complete,
using three reductions (I’ll skip tons of details and just explain the
gist of the first one):

cubic monotone 1-in-3 satisfiability

≤P degree-2,3 { , , }-decomposition with marked edges

≤P { , , }-decomposition with marked edges

≤P { , }-decomposition

A similar approach can be used to show the NP-completeness of
{ , , }-decomposition.
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{ , }-decomposition, cubic

We reduce from the following NP-complete problem:

cubic monotone 1-in-3

sat(isfiability)
Input: a Boolean formula φ = C1∧C2∧· · ·

without negations

;

|Ci | =
3 for each i and each literal appears in exactly three clauses;

Question: is there an assignment f : Σ→ {true, false} such that
each clause Ci contains

exactly

one true literal?
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{ , }-decomposition, cubic

Echoing the steps of the previous reduction, we assume the instance to . . . sat
is a bipartite cubic graph G ; so, we must:

1 transform G into a graph G ′ to decompose;

2 convert truth assignments for G into { , }-decompositions for G ′;

3 convert { , }-decompositions for G ′ into truth assignments for G ;
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The reduction from cubic mono-1-in-3-sat

VariableClause

C = xi ∨ xj ∨ xk

xi

xj xk

1 Map clauses onto C5’s and variables onto “marked” ’s.

2 From assignments to decompositions: variables set to false yield red
’s, those set to true yield green ’s

3 From decompositions to assignments: show that a decomposable graph
must conform to the above configuration

Marked edges are annoying and must undergo further modifications (hence the
other reductions).
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Encores

With (a lot) more work, we can show that

• { , }-decomposition and

• { , , }-decomposition
remain hard if the cubic graph is planar and -free. Ingredients:

• another variant of sat (namely, cubic planar monotone
1-in-3 sat)

• another intermediate problem;

• . . . and a few more pages of reduction;

130



Context and motivations The strictly subcubic case The cubic case Future work

Conclusions

• We now know everything regarding S-decomposition if G is subcubic
and S is any combination of connected graphs on 3 edges.

• Possible future work:

• what G is k-regular and S = all connected subgraphs of size k
for any k > 3?

• do easy problems remain easy under natural generalisations?
i.e.
• Pk+1-decomposition for k-regular graphs;
• K1,k -decomposition for k-regular graphs;
• . . .
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Thank you!
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[7] Xavier Muñoz, Zhentao Li, and Ignasi Sau.
Edge-partitioning regular graphs for ring traffic grooming with a priori placement of the ADMs.
SIAM J. Discrete Math., 25(4):1490–1505, 2011.

133


	Context and motivations
	The strictly subcubic case
	The cubic case
	Future work

