A New Tight Upper Bound on the Transposition Distance

Anthony Labarre^a

Université Libre de Bruxelles alabarre@ulb.ac.be
October 4, 2005

Fifth Workshop on Algorithms in Bioinformatics

^aFunded by the "Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture" (F.R.I.A.).

Context and motivation

- Genome rearrangement: find how (much) several genomes are related;
- Models vary depending on assumptions:
 - gene order known or not;
 - orientation of genes known or not;
 - mutations taken into account;
- In our model:
 - gene order is known, but their orientation is ignored;
 - all genomes share the same set/number of genes;
 - we consider only transpositions (see next slide);

Presentation of the problem

• A transposition exchanges two adjacent blocks in a permutation:

$$(21 \boxed{7356} \boxed{4109} 8)$$

$$\downarrow$$

$$(21 \boxed{4109} \boxed{7356} 8)$$

- The transposition distance $d(\pi, \sigma)$ is the minimal number of transpositions transforming permutation π into permutation σ ;
- Sorting by transpositions is the problem of transforming a permutation into the identity $\iota = (1\ 2\ \cdots\ n)$ using transpositions;

Sorting by transpositions

Example 1 The following permutation can be sorted using two transpositions <u>and no less</u>:

Therefore $d(\pi, \iota) = d(\pi) = 2$.

Status of the problem

- Introduced in [Bafna and Pevzner, 1998];
- Both the complexities of:
 - sorting by transpositions;
 - computing the transposition distance;
 - ... are apparently unknown;
- So is the maximal value $d(\pi)$ can reach (the diameter);
- Best polynomial-time approximation has a ratio of $\frac{11}{8}$ or 1.375 [Elias and Hartman, 2005];

Our results

- 1. Use of another approach than the traditional one (see next slide);
- 2. A nice correspondence between the cycles of our graph and that introduced in [Bafna and Pevzner, 1998] for a certain class of permutations called γ -permutations;
- 3. O(n) time and space computation of the transposition distance of γ -permutations, without the need of any graph structure;
- 4. A new upper bound on the transposition distance, tight for γ -permutations.

The cycle graph [Bafna and Pevzner, 1998]

• Given a permutation π , construct the cycle graph $G(\pi)$ as follows:

1.
$$V(G) = \{\pi_0 = 0, \pi_1, \pi_2, ..., \pi_n, \pi_{n+1} = n+1\};$$

The cycle graph [Bafna and Pevzner, 1998]

• Given a permutation π , construct the cycle graph $G(\pi)$ as follows:

1.
$$V(G) = \{\pi_0 = 0, \pi_1, \pi_2, ..., \pi_n, \pi_{n+1} = n+1\};$$

2.
$$E(G) = \underbrace{\{(\pi_i, \pi_{i-1}) \mid 1 \le i \le n+1\}}_{black \text{ edges}}$$

The cycle graph [Bafna and Pevzner, 1998]

• Given a permutation π , construct the cycle graph $G(\pi)$ as follows:

1.
$$V(G) = \{\pi_0 = 0, \pi_1, \pi_2, ..., \pi_n, \pi_{n+1} = n+1\};$$

2.
$$E(G) = \underbrace{\{(\pi_i, \pi_{i-1}) \mid 1 \le i \le n+1\}}_{black \text{ edges}} \cup \underbrace{\{(\pi_i, \pi_i + 1) \mid 0 \le i \le n\}}_{gray \text{ edges}};$$

Alternate cycles

• The cycle graph decomposes in an unique way into alternate cycles:

• Parity of a cycle = that of the number of black edges it contains; here $c(G(\pi)) = 2 = c_{odd}(G(\pi))$.

Alternate cycles

• The identity $\iota = (1 \ 2 \cdots n)$ is the only permutation with $c(G(\iota)) = n + 1 = c_{odd}(G(\iota));$

- Therefore sorting by transpositions comes down to creating odd alternate cycles "as fast as possible";
- How fast can it be done?

A lower bound on the transposition distance

• Best case: two new cycles in one move:

Theorem 1 [Bafna and Pevzner, 1998] $\forall \pi \in S_n$:

$$d(\pi) \ge \frac{n+1-c_{odd}(G(\pi))}{2} .$$

Reduced permutations

- Breakpoint in a permutation π : ordered pair (π_i, π_{i+1}) such that $\pi_{i+1} \neq \pi_i + 1$;
- $b(\pi)$ denotes the number of breakpoints of π ;
- π is reduced if $b(\pi) = n 1$, $\pi_1 \neq 1$, and $\pi_n \neq n$.

Example 2

```
( 4 2 1 3 ) is reduced
```

$$(1432)$$
 is not reduced

$$(321\underline{4})$$
 is not reduced

$$(4 \underline{2} \underline{3} 1)$$
 is not reduced

Reduced permutations

• Every permutation π is reducible to a permutation $gl(\pi)$.

Example 3

Theorem 2 [Christie, 1998] $\forall \pi \in S_n : d(\pi) = d(gl(\pi))$.

 Γ -graph

- Every permutation is the product of disjoint cycles;
- The Γ -graph is the graph of the permutation with a total order on the vertices.

Example 4 Let $\pi = (4\ 1\ 6\ 2\ 5\ 7\ 3) = (1,\ 4,\ 2)\ (3,\ 6,\ 7)\ (5);$ then $\Gamma(\pi)$ is:

Some definitions on the cycles of the Γ -graph

- A k-cycle of $\Gamma(\pi)$ is a cycle on k vertices;
- Such a cycle is odd (resp. even) if k is odd (resp. even);
- Orientation of a cycle:

An explicit formula for some permutations

Definition 1 A γ -permutation is a reduced permutation that fixes all even elements.

Example 5

Correspondence between G and Γ for γ -permutations

Proposition 1 For every γ -permutation π in S_n :

$$\begin{cases} c_{even}(G(\pi)) &= 2 c_{even}(\Gamma(\pi)); \\ c_{odd}(G(\pi)) &= 2 \left(c_{odd}(\Gamma(\pi)) - \frac{n-1}{2} \right). \end{cases}$$

Correspondence between G and Γ for γ -permutations

- Recall that $d(\pi) \ge \frac{n+1-c_{odd}(G(\pi))}{2}$ (Theorem 1);
- This and Proposition 1 yield the following result:

Lemma 1 For every γ -permutation π in S_n :

$$d(\pi) \ge n - c_{odd}(\Gamma(\pi))$$
.

- This lower bound is actually reached, as will be shown through the separate analysis of:
 - 1. oriented cycles of Γ , and
 - 2. unoriented cycles of Γ .

α -permutations

Definition 2 An α -permutation is a reduced permutation that fixes all even elements and whose odd elements form one oriented cycle in Γ .

Distance of α -permutations

Proposition 2 For every α -permutation π in S_n :

$$d(\pi) = n - c_{odd}(\Gamma(\pi)) = |C| - (|C| \bmod 2) .$$

Example 7

$$(3 25 476981)$$
 1
 (347698125) 2
 (769812345) 3
 (781234569) 4
 (123456789)

$$\Rightarrow d(\pi) = 4 = 5 - (5 \mod 2).$$

β -permutations

Definition 3 A β -permutation is a reduced permutation that fixes all even elements and whose odd elements form one unoriented cycle in Γ .

Distance of β -permutations

General strategy:

- 1. π (β -permutation) $\longrightarrow \pi'$ (no crossing);
- 2. π' reduces to an α -permutation σ whose distance is known (Proposition 2);
- 3. $d(\pi) \le d(\pi, \pi') + d(\pi')$;
- 4. $d(\pi) = d(\pi, \pi') + d(\pi')$ because the lower bound of Lemma 1 is reached.

Proposition 3 For every β -permutation π in S_n :

$$d(\pi) = n - c_{odd}(\Gamma(\pi)) = |C| - (|C| \mod 2)$$
.

Distance of γ -permutations

Every cycle of $\Gamma(\pi)$ is either oriented or unoriented and can be sorted independently – one by one. We have:

$$d(\pi) \leq \sum_{i=1}^{c(\Gamma(\pi))} |C_i| - (|C_i| \mod 2)$$

$$= \sum_{C_{i_1} \in odd(\Gamma(\pi))} (|C_{i_1}| - 1) + \sum_{C_{i_2} \in even(\Gamma(\pi))} |C_{i_2}|$$

$$= \sum_{i=1}^{c(\Gamma(\pi))} |C_i| - c_{odd}(\Gamma(\pi))$$

$$= n - c_{odd}(\Gamma(\pi))$$

which equals the lower bound of Lemma 1.

A new upper bound

• Every permutation $\pi \neq \iota$ can be obtained by removing k 1-cycles from the Γ -graph of a γ -permutation σ .

A new upper bound

• Every permutation $\pi \neq \iota$ can be obtained by removing k 1-cycles from the Γ -graph of a γ -permutation σ .

A new upper bound

- Every permutation $\pi \neq \iota$ can be obtained by removing k 1-cycles from the Γ -graph of a γ -permutation σ .
- The independent cycle elimination that worked for σ still works for π (but is not necessarily optimal anymore).
- Therefore:

$$d(\pi) \le d(\sigma) = n + k - c_{odd}(\Gamma(\sigma))$$

$$= n + k - c_{odd}(\Gamma(\pi)) - k$$

$$= n - c_{odd}(\Gamma(\pi)).$$

Theorem 3 $\forall \pi \in S_n$:

$$d(\pi) \le n - c_{odd}(\Gamma(\pi)) . \tag{1}$$

Comparison with other bounds

- Other upper bounds have been found by:
 - [Bafna and Pevzner, 1998]:

$$d(\pi) \le \frac{3(n+1-c_{odd}(G(\pi)))}{4} \ . \tag{2}$$

- [Dias et al., 2000]:

$$d(\pi) \le \frac{3}{4} b(\pi) . \tag{3}$$

- [Eriksson et al., 2001]:

$$d(\pi) \le \begin{cases} \left\lceil \frac{2n}{3} \right\rceil & \text{if } n < 9 ;\\ \left\lfloor \frac{2n-2}{3} \right\rfloor & \text{if } n \ge 9 . \end{cases}$$
 (4)

• How does our upper bound compare with earlier results?

Comparison with other bounds

n	Number of permutations	$ (1) \leq (2) $	$ (1) \leq (3) $	$(1) \leq (4)$
3	6	2	1	6
4	24	8	8	15
5	120	45	24	31
6	720	304	[49]	495
7	5040	2055	722	1611
8	40320	17879	3094	4355
9	362880	$[104\overline{3}9\overline{2}]$	60871	$[10\overline{2}4\overline{3}]$
		(28-44%)	(6-33%)	(2-100%)

([x] = best case, [x] = worst case; (1) = the new upper bound, (2)

= Bafna and Pevzner's, (3) = Dias et al.'s, (4) = Eriksson et al.'s)

Future plans

- Further improvement of the upper bound of Equation (1);
 - a good improvement can be achieved partly through torism [Hultman, 1999], but it is heuristic;
- Complexity?
 - Increase the number of polynomial-time solvable instances;
 - Characterize hardest cases;
- Help find diameter;
- Extension of those results to other rearrangement problems?
 - the graph of a permutation has proved useful when additionally dealing with fusions and fissions
 [Dias and Meidanis, 2001].

References

- [Bafna and Pevzner, 1998] Bafna, V. and Pevzner, P. A. (1998). Sorting by transpositions. SIAM J. Discrete Math., 11(2):224–240 (electronic).
- [Christie, 1998] Christie, D. A. (1998). Genome Rearrangement Problems. PhD thesis, University of Glasgow, Scotland.
- [Dias and Meidanis, 2001] Dias, Z. and Meidanis, J. (2001). Genome Rearrangements Distance by Fusion, Fission, and Transposition is Easy. In *Proceedings of SPIRE'2001 String Processing and Information Retrieval*, pages 250–253.
- [Dias et al., 2000] Dias, Z., Meidanis, J., and Walter, M. E. M. T. (2000). A New Approach for Approximating The Transposition Distance. In *Proceedings of SPIRE'2000 String Processing and Information Retrieval*, La Coruna, Espagne.

- [Elias and Hartman, 2005] Elias, I. and Hartman, T. (2005). A 1.375—Approximation Algorithm for Sorting by Transpositions. In Casadio, R. and Myers, G., editors, *Proceedings of the Fifth Workshop on Algorithms in Bioinformatics*, volume 3692 of Lecture Notes in Computer Science, pages 204–215, Mallorca, Spain. Springer-Verlag.
- [Eriksson et al., 2001] Eriksson, H., Eriksson, K., Karlander, J., Svensson, L., and Wästlund, J. (2001). Sorting a bridge hand. Discrete Mathematics, 241(1-3):289–300. Selected papers in honor of Helge Tverberg.
- [Hultman, 1999] Hultman, A. (1999). Toric Permutations. Master's thesis, Dept. of Mathematics, KTH, Stockholm, Sweden.