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/ Context and motivation ' \

e Genome rearrangement: find how (much) several genomes are
related;

e Models vary depending on assumptions:
— gene order known or not;
— orientation of genes known or not;

— mutations taken into account;

e In our model:
— gene order is known, but their orientation is ignored;
— all genomes share the same set /number of genes;

— we consider only transpositions (see next slide);
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Presentation of the problem I \

e A transposition exchanges two adjacent blocks in a

permutation:

(21

(21

e The transposition distance d(w,o) is the minimal number of

transpositions transforming permutation 7 into permutation o;

e Sorting by transpositions is the problem of transforming a
permutation into the identity ¢ = (1 2 --- n) using

transpositions;
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/ Sorting by transpositions I

Example 1 The following permutation can be sorted using two

transpositions and no less:

L= (1234)

Therefore d(m,1) = d(w) = 2.
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Status of the problem I

Introduced in [Bafna and Pevzner, 1998];
Both the complexities of:

— sorting by transpositions;

— computing the transposition distance;

. are apparently unknown;

So is the maximal value d(7) can reach (the diameter);

Best polynomial-time approximation has a ratio of % or 1.375

|[Elias and Hartman, 2005];
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Our results ' \

. Use of another approach than the traditional one (see next
slide);

. A nice correspondence between the cycles of our graph and
that introduced in [Bafna and Pevzner, 1998| for a certain class

of permutations called v—permutations;

. O(n) time and space computation of the transposition distance

of y—permutations, without the need of any graph structure;

. A new upper bound on the transposition distance, tight for

v—permutations.
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The cycle graph [Bafna and Pevzner, 199§] I

Given a permutation m, construct the cycle graph G(7) as
follows:
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. V(G) — {7-‘-0 — 077T177T27 vy Ty Tp41 — N + 1}7
\

The cycle graph [Bafna and Pevzner, 199§] I

Given a permutation m, construct the cycle graph G(7) as

follows:

1 6 2 5 7 3 8

(7'('@',7'('@'_1) ’ 1 SZS’NJ—Fl}

black edges
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. V(G) — {7-‘-0 — 077T177T27 vy Ty Tp41 — N + 1}7
\

The cycle graph [Bafna and Pevzner, 199§] I

Given a permutation m, construct the cycle graph G(7) as
follows:

1 6 2 5 7 3 8

(7Ti,7Ti_1) ’ 1 SZSTL—Fl}U{(TFZ,ﬂ'Z—Fl) | nggn},

~

black edges gray edges
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/ Alternate cycles I \

e The cycle graph decomposes in an unique way into alternate

cycles:

° °
0 4 1 6 2 D 7 3 8

e Parity of a cycle = that of the number of black edges it
contains; here ¢(G(7)) = 2 = coqq(G(m)).

N /
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/ Alternate cycles I

e The identity ¢ = (1 2 --- n) is the only permutation with
c(G(1) =n+ 1= coaa(G(1));

G(L): L [ [ [ ] [ [ [ ] [

0 1 2 3 4 n—1 n n-+1

e Therefore sorting by transpositions comes down to creating
odd alternate cycles “as fast as possible”;

e How fast can it be done?

-
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/ A lower bound on the transposition distance I \

e Best case: two new cycles in one move:

o< o~ o< e D e<— e
1 — 1 1 7 —1 J kE—1 k
/_\* /_\* /_\*
o< o o< o o<— o
1— 1 17 k—1 ) 7 —1 k

Theorem 1 [Bafna and Pevzner, 1998/ ¥ m € S, :
d(ﬂ') > n+1-— Codd(G(ﬂ'))

N o /
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/ Reduced permutations I \

e Breakpoint in a permutation 7: ordered pair (7;,7;+1) such
that Ti+1 7é T; + 1;

e b(m) denotes the number of breakpoints of ;

e 7 is reduced if b(wr) =n —1, m # 1, and m, # n.

Example 2
(4213) isreduced
(1432) is not reduced
(3214) is not reduced
(4231) is not reduced
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/ Reduced permutations I

e Every permutation 7 is reducible to a permutation gl ().

Example 3
= (12]9|456|3]|78]10)

l
([12]|9]|456|3]|78]|10])

l
(L9 4]13117])

|
gl(m) = (4213)

Theorem 2 [Christie, 1998]V m € S, : d(mw) = d(gl(7)) .

-
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4 i h

e Every permutation is the product of disjoint cycles;

e The I'—graph is the graph of the permutation with a total order
on the vertices.

Example 4 Letm= (416 2578) = (1,4, 2) (3, 6, 7) (5); then

() is:
)
o~ o ° ° ° o e
4 1 6 2 5) 7 3

15
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Some definitions on the cycles of the I'—graph I

o A k—cycle of I'(m) is a cycle on k vertices;

e Such a cycle is odd (resp. even) if k is odd (resp. even);

e (Orientation of a cycle:

LN

oriented

unoriented

~

/
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/ An explicit formula for some permutations I \

Definition 1 A v—permutation s a reduced permutation that fixes

all even elements.

Example 5

o o  J o o o o o o o
3 2 1 11 8 13 10 5 12 9

e o o
4 7 6

N /
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/ Correspondence between G and I' for y—permutations I \

Proposition 1 For every y—permutation m in S, :

G(m) :

-

{ Ceven(G(T)) = 2 cepen(I'(7)) ;

Codd<G(7T)) = 2 (Codd(r(ﬂ')) — nT—l) .
3

NN

o<: o<— 0<: o<— 0<: o<— 0<: o<— 0<: o<— o

o
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/ Correspondence between G and I' for y—permutations I \

e Recall that d(7) > n“_c";d(G(ﬁ)) (Theorem 1);

e This and Proposition 1 yield the following result:

Lemma 1 For every y—permutation ™ in Sy, :

d(ﬂ') Z n — Codd(r(ﬂ')) .

e This lower bound is actually reached, as will be shown through
the separate analysis of:

1. oriented cycles of I', and

2. unoriented cycles of T'.

N /
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/ a—permutations . \

Definition 2 An a—permutation s a reduced permutation that
fizes all even elements and whose odd elements form one oriented

cycle in T".

Example 6
C
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/ Distance of a—permutations I \

Proposition 2 For every a—permutation m in Sy, :
d(m) =n — coqq(I'(m)) = |C|] — (|C| mod 2) .

Example 7

3125||476981

( )
([s4]|769812]5)
(7(69|[812345]) 3
( )

78|[125456
(123456789

—_ O

= d(m) =4 =>5—(5bmod 2).
N /
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/ [—permutations I \

Definition 3 A —permutation is a reduced permutation that fixes
all even elements and whose odd elements form one unoriented

cycle in T'.

Example 8
C

/
e )
\H.
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Path contraction '
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Path contraction '




/ Distance of —permutations I \

General strategy:
1. 7w (B—permutation) — 7’ (no crossing);

2. 7' reduces to an a—permutation o whose distance is known

(Proposition 2);
3. d(m) < d(mw,n") + d(n');

4. d(m) = d(m, ") + d(7’) because the lower bound of Lemma, 1 is
reached.

Proposition 3 For every —permutation ™ in Sy, :

d(m) =n — coqq(I'(m)) = |C|] — (|C| mod 2) .

N /
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d(m)

<

Distance of y—permutations I

Every cycle of I'(m) is either oriented or unoriented and can be
sorted independently — one by one. We have:

c(I'(m))
> 1Cil = (ICi] mod 2)
1=1

Sl Y e
Ci, € odd(I'(m)) Ci, € even(I'(m))
c(I'(m))
S (G cona(T()

n : Codd(r(ﬂ'))

which equals the lower bound of Lemma 1.

~

26



/ A new upper bound I

e Every permutation m # ¢ can be obtained by removing k
1—cycles from the I'—graph of a y—permutation o.

27
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A new upper bound I

e Every permutation m # ¢ can be obtained by removing k
1—cycles from the I'—graph of a y—permutation o.
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/ A new upper bound I \

e Every permutation m # ¢« can be obtained by removing k
1—cycles from the I'—graph of a y—permutation o.

e The independent cycle elimination that worked for o still works
for m (but is not necessarily optimal anymore).

e Therefore:
dim) <d(oc) = n+k—coqql(o))
= n+k—codd(F(7r)) — k
= n— Codd(r(ﬂ')) .
Theorem 3 V7€ 5, :

d(ﬂ') S n — Codd<r(ﬂ')) . (1)

N /
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/ Comparison with other bounds I

e Other upper bounds have been found by:
— |Bafna and Pevzner, 1998]:

d(m) <
() < :
— |Dias et al., 2000]:

3

d(m) < = b(m)

4

— [Eriksson et al., 2001]:
2n ifn<9;
d(m) < L 3 o

\o How does our upper bound compare with earlier results?

3(7?/ + 1 — Codd(G(ﬂ'))) .

~
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Comparison with other bounds I

n | Number of permutations | (1)<(2) | (1)<(3) | (1)<(4)
3 6 2 1 6
4 24 8 8 15
5! 120 45 24 31
6 720 304 49, 495
7 5040 2055 722 1611
8 40320 17879 3094 4355
9 362880 | 1104392:| 60871 | 110243
(28-44%) | (6-33%) | (2-100%)
(x| = best case, X! — worst case; (1) = the new upper bound, (2)

\— Bafna and Pevzner’s, (3) = Dias et al.’s, (4) = Eriksson et al.’s)/
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/ Future plans I \

e Further improvement of the upper bound of Equation (1);
— a good improvement can be achieved partly through torism
|Hultman, 1999, but it is heuristic;
e Complexity?
— Increase the number of polynomial-time solvable instances;

— Characterize hardest cases;
e Help find diameter;

e Extension of those results to other rearrangement problems?

— the graph of a permutation has proved useful when
additionally dealing with fusions and fissions

\ |Dias and Meidanis, 2001]. /
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