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Abstract—The problem of sorting by transpositions asks for a sequence of adjacent interval exchanges that sorts a permutation and is

of the shortest possible length. The distance of the permutation is defined as the length of such a sequence. Despite the apparently

intuitive nature of this problem, introduced in 1995 by Bafna and Pevzner, the complexity of both finding an optimal sequence and

computing the distance remains open today. In this paper, we establish connections between two different graph representations of

permutations, which allows us to compute the distance of a few nontrivial classes of permutations in linear time and space, bypassing

the use of any graph structure. By showing that every permutation can be obtained from one of these classes, we prove a new tight

upper bound on the transposition distance. Finally, we give improved bounds on some other families of permutations and prove

formulas for computing the exact distance of other classes of permutations, again in polynomial time.

Index Terms—Genome rearrangements, permutations, sorting by transpositions.

Ç

1 INTRODUCTION

THE genome rearrangement problem [1], [2] can be
formulated as that of finding a sequence of evolutionary

events that transforms a given genome into another given
one and is of the shortest possible length. The distance
between the two genomes is the length of such a sequence.

The model we are interested in applies to the case where
the order of genes is known and where all genomes share
the same set and number of genes (without duplications),
which allows us to represent them using permutations. Only
one operation is taken into account here: biological
transpositions, which consist of displacing a block of
contiguous elements. It is easy to show that the induced
distance is indeed a distance on the set of all permutations
(i.e., it satisfies the three usual axioms) and that it is left-
invariant: The distance between any two permutations � and
� of the same set equals the distance between ��1 � � and
the identity permutation � ¼ ð1 2 � � � nÞ. We can therefore
restrict our attention to the problem of sorting permutations
by transpositions.

This problem was first introduced in 1995 by Bafna and
Pevzner [3], [4] and the complexity of both sorting
permutations and computing their distance, as well as the
maximal value the latter can reach, is still open today.
Several authors have proposed polynomial-time approx-
imation algorithms (whose best approximation ratio has
long been 3

2 [4], [5], [6], until Elias and Hartman [7] recently
proposed a new 11

8 -approximation) as well as heuristics (see
[5], [8], [9], [10]).

In this paper, we establish connections between the
common graph of a permutation and the “cycle graph”

introduced in [4]. Use of the former was mentioned in [11] and
led to a formula for computing another rearrangement
distance in [12]. As we suspected, it proved fruitful for our
problem too: The connections between the two graphs
allowed us to compute the distance of a few nontrivial classes
of permutations, bypass the use of any graph structure, prove
a new tight upper bound on the transposition distance, and
improve that upper bound in some other cases.

This paper is organized as follows: In Section 2, we
review previous results and typical notations. In Section 3,
we introduce a graph that we use in Section 4 to provide a
formula for computing the distance of some special
permutations. In Section 5, we use those permutations to
derive an upper bound on the transposition distance of
every permutation. Experimental data, comparisons, and
heuristic improvements of this bound are discussed in
Section 6. We then turn to the study of other permutations
in Sections 7 and 8, for which we can either compute the
transposition distance or improve our upper bound on it.
Finally, we discuss our results in Section 9 and suggest
some open questions of interest.

A preliminary version of this work was presented at the
Fifth Workshop on Algorithms in Bioinformatics (WABI ’05)
in Palma de Mallorca, Spain [13]. The main additions in this
extended version consist of, besides changes in the structure
and presentation, additional experimental data, three new
sections (Sections 6, 7, and 8), and Appendices A and B.

2 NOTATIONS AND PRELIMINARIES

The symmetric group Sn is the set of all permutations of
f1; 2; . . . ; ng; these are denoted by lowercase Greek letters,
typically � ¼ ð�1 �2 � � � �nÞ, with �i ¼ �ðiÞ.

2.1 Transpositions and the Cycle Graph

Definition 2.1. For any � in Sn, the transposition �ði; j; kÞ
with 1 � i < j < k � nþ 1 applied to � exchanges the closed
intervals determined, respectively, by i and j� 1 and by j and
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Bruxelles, CP 216, Service de Géométrie, Combinatoire et Théorie des
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k� 1, transforming � into � � �ði; j; kÞ. So, �ði; j; kÞ is the

following permutation:

1 � � � i� 1 i � � � j� 1 j � � � k� 1 k � � �n

1 � � � i� 1 j � � � k� 1 i � � � j� 1 k � � �n

 !
:

Definition 2.2. The cycle graph of� inSn is the bicolored directed

graph Gð�Þ whose vertex set ð�0 ¼ 0; �1; . . . ; �n; �nþ1 ¼
nþ 1Þ is ordered by positions and whose edge set consists of:

. black edges ð�i; �i�1Þ for 1 � i � nþ 1 and

. gray edges ð�i; �i þ 1Þ for 0 � i � n.

The set of black and gray edges decomposes in a single

way into alternating cycles, i.e., cycles which alternate black

and gray edges, and we note the number of such cycles

cðGð�ÞÞ. Fig. 1 shows an example of a cycle graph, together

with its decomposition.

Definition 2.3. The length of an alternating cycle in G is the

number of black edges it contains and a k-cycle in G is an

alternating cycle of length k.

Definition 2.4. A k-cycle in G is odd (respectively, even) if k is

odd (respectively, even), and we note coddðGð�ÞÞ (respectively,

cevenðGð�ÞÞ) the number of odd (respectively, even) alternating

cycles in Gð�Þ.

Bafna and Pevzner [4] proved the following lower bound

on the transposition distance, hereafter denoted by dð�Þ.
Theorem 2.1 [4]. For all � in Sn:

dð�Þ � ðnþ 1� coddðGð�ÞÞÞ=2:

Definition 2.5. A cycle in G is unoriented if it contains exactly

one gray edge directed from left to right and oriented

otherwise.

For instance, the first cycle in the decomposition of the

graph of Fig. 1 is oriented; the second is not. A transposition

�ði; j; kÞ is said to act on black edges coming out of vertices

�i, �j, and �k in Gð�Þ. By extension, a transposition acts on

one cycle (respectively, on two or three cycles) if all three

black edges belong to that cycle (respectively, to those two

or three cycles).

Definition 2.6. For a permutation �, a k-move is a transposition

� such that cðGð� � �ÞÞ ¼ cðGð�ÞÞ þ k:
Lemma 2.1 [4]. A transposition that acts on exactly two cycles in

G is a 0-move.

Two alternating cycles can interact in several different

ways, which we define below. To every alternating cycle

C in a cycle graph G, associate an interval IC defined by

the minimum and maximum indices of the vertices that

belong to C.

Definition 2.7. A cycle C1 contains a cycle C2 if IC1
� IC2

and

no black edge of C1 belongs to IC2
.

Definition 2.8. Two alternating cycles, C1, C2, cross if they do

not contain each other and at least one black edge of C1

(respectively, C2) belongs to IC2
(respectively, IC1

).

Definition 2.9. Two alternating cycles, C1, C2, interleave if,

when reading the black edges of C1 and C2 from left to right,

we alternately get a black edge from either cycle.

2.2 Reduced Permutations

Definition 2.10. For a permutation �, an ordered pair ð�i; �iþ1Þ
is a breakpoint if �iþ1 6¼ �i þ 1 and an adjacency otherwise.

The number of breakpoints of � is denoted by bð�Þ.
Definition 2.11. A permutation � in Sn is reduced if

bð�Þ ¼ n� 1, �1 6¼ 1, and �n 6¼ n.

Christie [5] shows that every permutation can be

uniquely transformed into a reduced permutation without

affecting its distance. The transformation of a permutation �

into its reduced version glð�Þ consists of decomposing � into

r strips, which are maximal intervals containing no break-

point, then removing strip 1 if it begins with 1, strip r if it

ends with n, replacing every other strip with its minimal

element, and, finally, renumbering the resulting sequence

so as to obtain a new permutation of a possibly smaller set.

Since an adjacency is a 1-cycle in G, a reduced permutation

can also be defined as one whose cycle graph has no

1-cycles.1

Definition 2.12. Two permutations, � and �, are equivalent by

reduction if glð�Þ ¼ glð�Þ, which we also write as � �r �.

Theorem 2.2 [5]. For any two permutations � and �, if � �r �,

then dð�Þ ¼ dð�Þ.

2.3 Toric Permutations

Eriksson et al. [14] introduced an equivalence relation on Sn
whose equivalence classes are called toric permutations and

which we define using Hultman’s notations [15].
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Fig. 1. The cycle graph of (4 2 1 5 3) and its decomposition into two

cycles.

1. Note that glð�Þ is not defined because every element would have to be
removed.



Definition 2.13. The circular permutation obtained from a

permutation � in Sn is �� ¼ 0 �1 �2 � � � �n, with indices

taken modulo nþ 1 so that 0 ¼ ��0 ¼ ��nþ1:

This circular permutation can be read starting from any

position and the original linear permutation is reconstructed

by taking the element following 0 as �1 and removing 0. For x

in f0; 1; 2; . . . ; ng, let xm ¼ ðxþmÞ ðmod nþ 1Þ and define

the following operation on circular permutations:

mþ �� ¼ 0
m
�1

m �2
m � � � �nm:

Definition 2.14. For any � in Sn, the toric permutation ��� is

the set of permutations in Sn reconstructed from all circular

permutations mþ �� with 0 � m � n.

Definition 2.15. Two permutations, �, �, in Sn are torically

equivalent if � 2 ��� (or � 2 ���), which we also write as

� ��� �.

The following property is the main reason why toric

permutations were introduced:

Lemma 2.2 [14]. For all �, � in Sn:

� ��� �) dð�Þ ¼ dð�Þ:

Another interesting, related result has been proved by

Hultman [15].

Lemma 2.3 [15]. For all � in Sn and 0 � m � n: Every cycle in

Gð�Þ is a cycle in Gð�Þ, where � is the permutation obtained

from �� þm.

2.4 Known Upper Bounds

We conclude this section with all upper bounds on the

transposition distance we know of.

Theorem 2.3 [4]. For all � in Sn:

dð�Þ � nþ 1� cðGð�ÞÞ: ð1Þ

Theorem 2.4 [4]. For all � in Sn:

dð�Þ � 3ðnþ 1� coddðGð�ÞÞÞ=4: ð2Þ

Theorem 2.5 [16]. For all � in Sn:

dð�Þ � 3 bð�Þ=4: ð3Þ

Theorem 2.6 [14]. For all � in Sn:

dð�Þ � 2n=3d e if n < 9 ;
ð2n� 2Þ=3b c if n � 9:

�
ð4Þ

Elias and Hartman [7] proved upper bounds on the

distance of three special classes of permutations.2

Definition 2.16. A permutation � in Sn is simple if Gð�Þ
contains no cycle of length greater than three.

Definition 2.17. A permutation � in Sn is a 2-permutation
(respectively, 3-permutation) if all cycles in Gð�Þ are of
length 2 (respectively, 3).

Note that a 2-permutation (respectively, 3-permutation)
only exists if nþ 1 can be divided by 4 (respectively, 3).

Theorem 2.7 [7]. For every simple permutation � in Sn which is
neither a 2-permutation nor a 3-permutation:

dð�Þ � ðnþ 1Þ=2b c: ð5Þ

Theorem 2.8 [7]. For every 2-permutation � in Sn:

dð�Þ � ðnþ 1Þ=2: ð6Þ

Theorem 2.9 [7]. For every 3-permutation � in Sn:

dð�Þ � 11
nþ 1

24

� �
þ

3ðnþ1
3 mod 8Þ

2

� �
þ 1: ð7Þ

3 ANOTHER USEFUL GRAPH

We introduce a slight variant of the well-known graph of a
permutation.

Definition 3.1. The �-graph of a permutation � in Sn is the
directed graph �ð�Þ with ordered vertex set ð�1; . . . ; �nÞ and
edge set fð�i; �jÞ j �i ¼ jg:

Fig. 2 shows an example of a �-graph. If C ¼ ði1; i2; . . . ; ikÞ
is a cycle of � (i.e., � maps il onto ilþ1 for 1 � l � k� 1 and ik
onto i1), we obtain a cycle ð�i1 ; �i2 ; . . . ; �ikÞ, which we also
denote C, in �ð�Þ, and call it a k-cycle. The length of a cycle
in � is therefore k.

Definition 3.2. A k-cycle in � is increasing (respectively,
decreasing) if k � 3 and its elements can be written as an
increasing (respectively, decreasing) sequence and nonmono-
tonic otherwise.

A cycle that is either increasing or decreasing is also
referred to as monotonic. For instance, in Fig. 2, cycle (4, 2, 1)
is decreasing, cycle (5) is nonmonotonic, and cycle (3, 6, 7) is
increasing. In a quite similar fashion to the parity of cycles
defined in the context of G, a k-cycle in � is odd
(respectively, even) if k is odd (respectively, even). Likewise,
cð�ð�ÞÞ denotes the number of cycles in �ð�Þ, and coddð�ð�ÞÞ
(respectively, cevenð�ð�ÞÞ) denotes the number of odd
(respectively, even) cycles in �ð�Þ. Finally, note that
Definitions 2.7, 2.8, and 2.9 naturally adapt to the �-graph.
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2. The definitions we give here are not the ones introduced by
Hannenhalli and Pevzner [17] and Elias and Hartman [7], but we prove
the equivalence between our definitions and theirs in Appendix B.

Fig. 2. The �-graph of the permutation (4 1 6 2 5 7 3).



4 AN EXPLICIT FORMULA FOR SOME

PERMUTATIONS

Definition 4.1. A �-permutation is a reduced permutation that

fixes even elements (thus n must be odd).

An example of a �-permutation is (3 2 1 4 7 6 9 8 5). We

will show (Proposition 4.5) that the distance of such a

permutation can be computed quickly, without the need for

any graph structure.

Proposition 4.1. For every �-permutation � in Sn:

cevenðGð�ÞÞ ¼ 2 cevenð�ð�ÞÞ;
coddðGð�ÞÞ ¼ 2 coddð�ð�ÞÞ � n�1

2

� �
:

�

Proof. Each vertex �i of �ð�Þ, with i odd, is both the starting

point of an edge ð�i; �j1Þ and the ending point of an edge

ð�j2
; �iÞ. From our definitions, �i þ 1 is mapped onto

itself since it is even and �j1 precedes �i þ 1 in �ð�Þ. In

Gð�Þ, those edges are each transformed, as explained

below, into one sequence of two edges (gray-black for the

first one, black-gray for the second one):

. ð�i; �j1
Þ becomes ð�i; �i þ 1Þ; ð�i þ 1; �j1

Þ and
. ð�j2 ; �iÞ becomes ð�i; �i�1Þ; ð�i�1; �j2Þ,

i.e., ð�i; �j1
Þ is transformed in one of the following ways

(depending on the relative positions of �i and �j1
):

By definition of �, we know that �j2
¼ i. Since �i�1 ¼ i� 1,

the edge ð�j2 ; �iÞ is transformed in one of the following

ways (depending on the relative positions of �i and �j2 ):

Therefore, each k-cycle (k � 2) in �ð�Þ provides two

alternating k-cycles in Gð�Þ, one of which actually corre-

sponds to the backward course of the cycle in �ð�Þ. Finally,

1-cycles in �ð�Þ are not preserved in Gð�Þ and there are n�1
2

of them. tu
The next observation follows naturally from our trans-

formation.

Observation 4.1. For a �-permutation �, the two alternating

cycles C1, C2 in Gð�Þ that correspond to a k-cycle C in �ð�Þ
interleave. Moreover:

1. If k ¼ 2, then C1 and C2 are unoriented.
2. If C is monotonic, then either C1 or C2 is oriented.
3. If C is nonmonotonic and k � 4, then both C1 and C2

are oriented.

Fig. 3 illustrates Proposition 4.1 and Observation 4.1. We

derive the following lower bound from Proposition 4.1 and

Theorem 2.1:

Lemma 4.1. For every �-permutation � in Sn, we have

dð�Þ � n� coddð�ð�ÞÞ:
Proof. Straightforward. tu

We first study �-permutations such that � has only one

“long” k-cycle (i.e., with k > 1), distinguishing between

monotonic cycles and nonmonotonic ones.

4.1 Monotonic Cycles

Definition 4.2. An �-permutation is a reduced permutation

that fixes even elements and whose nþ1
2 odd elements form one

monotonic cycle in �, referred to as its main cycle.
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Fig. 3. Illustration of Proposition 4.1 and Observation 4.1.



An example of an �-permutation for n ¼ 7 is (3 2 5 4 7 6 1).

Note that, for fixed n, there are only two �-permutations

in Sn: One has an increasing main cycle, and the other

has a decreasing main cycle. Therefore, the only other

�-permutation, for n ¼ 7, is (7 2 1 4 3 6 5), which is the

inverse of the above example.

Proposition 4.2. For every �-permutation � in Sn, we have

dð�Þ ¼ n� coddð�ð�ÞÞ ¼ jCj � jCjmod 2ð Þ;

where jCj ¼ nþ1
2 is the number of elements in its main cycle C.

Proof. Every �-permutation is a �-permutation, so dð�Þ �
jCj � jCjmod 2ð Þ (Lemma 4.1). Assume that C is increas-

ing (a similar proof is easily obtained in the decreasing

case) and consider transpositions �1ð2; 4; nþ 1Þ, �2ð1; 3; nÞ,
�3ð2; 3; nþ 1Þ, and �4ð1; 2; nþ 1Þ. If jCj is odd, then an

optimal sorting sequence of length jCj � 1 for � is

obtained by applying �2 � �1 exactly jCj�1
2 times. If jCj is

even, then an optimal sorting sequence of length jCj for �

is obtained by applying �2 � �1 exactly jCj�2
2 times, then �3

and, finally, �4. The proof that those sequences indeed

sort � is given in Appendix A. tu

4.2 Nonmonotonic Cycles

Definition 4.3. A �-permutation is a reduced permutation that

fixes even elements and whose odd elements form one

nonmonotonic cycle in �.

We now show that Proposition 4.2 still holds if the main

cycle of � is nonmonotonic. We use so-called exchanges in

order to simplify the proofs, thus bypassing the construc-

tion of optimal sequences of transpositions.

Definition 4.4. An exchange excði; jÞ is the permutation that

exchanges elements in positions i and j, thus transforming

every permutation � into the permutation � � excði; jÞ. So,

excði; jÞ is the following permutation:

1 � � � i� 1 i iþ 1 � � � j� 1 j jþ 1 � � �n

1 � � � i� 1 j iþ 1 � � � j� 1 i jþ 1 � � �n

 !
:

We only use exchanges of the form excði; iþ 2kÞ with

k � 1; such an exchange has the same effect as two

transpositions, but the correspondence between those two

types of operations is not that straightforward when

exchanges are composed.

Definition 4.5. Two edges in �ð�Þ cross if the intervals

determined by their endpoints do not contain each other and

have a nonempty intersection.

Fig. 4 shows the four possible configurations for two

crossing edges. Clearly, for every �-permutation � (except

(3 2 1)), the main cycle of �ð�Þ contains crossing edges. We

are going to transform � into a permutation � that reduces

to an �-permutation by removing crossing edges using a

certain sequence E of exchanges. This yields the following

upper bound on the distance of a �-permutation �:

dð�Þ � fðEÞ þ dð�Þ; ð8Þ

where fðEÞ gives the minimum number of transpositions
having the same effect on � as E does. Finding some � is not
difficult, but we have to find a � such that our upper bound
in (8) is minimized.

Eliminating a crossing can be done by making the ending
point of one edge become the starting point of the one it
crosses, and this will be achieved using a sequence of
exchanges of the form described in the following proposition:

Proposition 4.3. For both sequences E ¼ excði; iþ 2Þ �
excði; iþ 4Þ � � � � � excði; iþ 2tÞ a n d F ¼ excði; iþ 2tÞ �
� � � � excði; iþ 4Þ � excði; iþ 2Þ of t exchanges:

fðEÞ ¼ fðFÞ ¼ tþ ðtmod 2Þ:

Proof. Both sequences, when applied to the identity
permutation, result in a permutation � which contains
one long cycle and whose other cycles are all fixed points
since they are never affected by any exchange. If t ¼ 1,
then the long cycle is nonmonotonic, and it is easily seen
that dð�Þ ¼ 2; otherwise, the long cycle of � is increasing
in the case of E and decreasing in the case of F . All
elements before position i and after position iþ 2t are
fixed and removing them transforms � into glð�Þ, which
is an �-permutation whose main cycle has tþ 1 elements.
Therefore, by Theorem 2.2 and Proposition 4.2, we have:

dð�Þ ¼ tþ 1� ððtþ 1Þmod 2Þ

¼ tþ ðtmod 2Þ ¼ fðEÞ ¼ fðFÞ:
ut

By a path, we mean a sequence of edges joining the
ending point i of an edge to the starting point j of the edge it
crosses and such that the extremities of each edge in this
path belong to the interval determined by i and j.
Furthermore, we will refer to the elimination of this path
as its contraction. Let us now compute the distance of
�-permutations.

Proposition 4.4. For every �-permutation � in Sn, we have

dð�Þ ¼ n� coddð�ð�ÞÞ ¼ jCj � jCjmod 2ð Þ;

where jCj ¼ nþ1
2 is the number of elements in its main cycle C.

Proof. Every �-permutation is a �-permutation, so dð�Þ �
jCj � jCjmod 2ð Þ (Lemma 4.1). If � ¼ ð3 2 1Þ, we are
done; otherwise, C contains at least one crossing.
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Fig. 4. The four possible configurations for crossing edges in �ð�Þ.



In that case, there is a path of t edges joining the two

crossing edges; this path can be contracted by a sequence of

t exchanges, sorting the elements belonging to that part of

the cycle. For instance, in Fig. 4a, it suffices to apply the

sequence excði2; j1Þ � � � � � excði2; i2 þ 4Þ � excði2; i2 þ 2Þ
and those t exchanges correspond to exactly tþ ðtmod

2Þ transpositions (Proposition 4.3).

Once this path has been contracted, t vertices have

been removed from C and this results in a permutation �

reducible to an �-permutation. Therefore,

dð�Þ � dð�; �Þ þ dð�Þ
¼ tþ ðtmod 2Þ þ jCj � t� jCj � tð Þmod 2ð Þ
¼ jCj � jCjmod 2ð Þ:

If there are p paths of tg edges each (1 � g � p),

contracting them all “individually” takes
Pp

g¼1 tg ex-

changes or
Pp

g¼1ðtg þ ðtg mod 2ÞÞ transpositions (Proposi-

tion 4.3). This can actually be improved by exchanging

the last exchanged element in the first contracted path

with the first element of the next path to contract, then

continuing the contraction of the latter with dependent

exchanges as before, repeating the same process when-

ever needed. For instance, Fig. 5 shows two different

transformations of a �-permutation into a permutation

reducible to an �-permutation: Fig. 5a, which removes

both crossings using two disjoint sequences, uses 3 + 3

exchanges = 8 transpositions (Proposition 4.3), whereas

Fig. 5b, which removes both crossings using a single

sequence, uses the same number of exchanges, but

requiring only six transpositions this time.

Every �-permutation � whose �-graph contains p paths

of tg edges to contract (1 � g � p) can therefore be

transformed into a permutation � reducible to an

�-permutation and such that dð�; �Þ ¼ T þ ðT mod 2Þ,
where T ¼

Pp
g¼1 tg. The transformation removes T

vertices from C, which yields the following upper

bound:

dð�Þ � dð�; �Þ þ dð�Þ
¼ T þ ðT mod 2Þ þ jCj � T � jCj � Tð Þmod 2ð Þ
¼ jCj � jCjmod 2ð Þ;

which equals the lower bound given above. tu

4.3 Distance of �-Permutations

Each cycle in �ð�Þ can be sorted (by transpositions)

individually so that the resulting permutation has the same

�-graph as �, except that one cycle has been transformed

into fixed points. This strategy yields the following upper

bound on dð�Þ:
Lemma 4.2. For every permutation �, consider its disjoint cycle

decomposition �ð�Þ ¼ C1 [ C2 [ � � � [ Ccð�ð�ÞÞ. Denote

dðCÞ the minimum number of transpositions required to

transform C ¼ ði1; i2; . . . ; ikÞ into ði1Þ; ði2Þ; . . . ; ðikÞ; then,

dð�Þ �
Xcð�ð�ÞÞ
i¼1

dðCiÞ: ð9Þ

We now show that (9) is tight for �-permutations.

Proposition 4.5. For every �-permutation � in Sn:

dð�Þ ¼ n� coddð�ð�ÞÞ: ð10Þ

Proof. Denote oddð�ð�ÞÞ (respectively, evenð�ð�ÞÞ) the set of

odd (respectively, even) cycles in �ð�Þ; Lemma 4.2 and

Propositions 4.2 and 4.4 yield
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dð�Þ �
Xcð�ð�ÞÞ
i¼1

jCij � ðjCijmod 2Þ

¼
X

Ci12 oddð�ð�ÞÞ
ðjCi1 j � 1Þ þ

X
Ci22 evenð�ð�ÞÞ

jCi2 j

¼
Xcð�ð�ÞÞ
i¼1

jCij � coddð�ð�ÞÞ:

Since every element belongs to exactly one cycle, the last

sum equals n and the proof follows from Lemma 4.1. tu
This proposition actually leads to a more general result.

Theorem 4.1. Every permutation � in Sn that reduces to a

�-permutation has distance

dð�Þ ¼ n� coddð�ð�ÞÞ:

Moreover, every permutation � with n odd and whose odd

elements occupy odd positions and form an increasing

subsequence modulo nþ 1 can be transformed in linear time

into a permutation � such that dð�Þ ¼ dð�Þ ¼ n� coddð�ð�ÞÞ.
Proof. Let � be a �-permutation in Sn: transforming � into a

permutation � 6¼ � such that � �r � is done by creating

adjacencies in �, i.e., repeatedly adding an element e

between �i and �iþ1 such that e ¼ �i þ 1 or e ¼ �iþ1 � 1

(a subsequent renumbering of elements is, of course,

required). Since either �i or �i þ 1 is fixed (or possibly

both, if this is not the first addition), adding e comes

down to inserting a new 1-cycle in �ð�Þ, and this

increases both n and coddð�ð�ÞÞ by 1 at each step, so

(10) still holds (Theorem 2.2).
For the second category, note that �� 	 1 fixes all even

elements and therefore falls into the category discussed
above. The proof follows from Lemma 2.2. tu

5 A NEW UPPER BOUND

We now show that the right-hand side of (10) is an upper

bound on the transposition distance. First, we show why

�-permutations are so important.

Theorem 5.1. Every permutation � in Sn, except �, can be

obtained from a permutation � in Snþk that reduces to a

�-permutation.

Proof. If � 6¼ � does not reduce to a �-permutation, add

a 1-cycle to �ð�Þ between every ordered pair

ð�i; �iþ1Þð1 � i � n� 1); then the resulting permutation

� in Snþk reduces to a �-permutation. The transformation

can clearly be reverted, and this completes the proof. tu
Theorem 5.2. For all � in Sn:

dð�Þ � n� coddð�ð�ÞÞ: ð11Þ

Proof. If � ¼ �, then the proof follows at once. Otherwise, let �

be the permutation from which � is obtained by removing

k 1-cycles from �ð�Þ, as described in Theorem 5.1. The

sorting strategy of Lemma 4.2, optimal for �, still works for

�, only it may not be optimal anymore. Moreover,

Theorem 4.1 gives the distance of �. Therefore,

dð�Þ � dð�Þ ¼ nþ k� coddð�ð�ÞÞ

¼ nþ k� coddð�ð�ÞÞ � k

¼ n� coddð�ð�ÞÞ:
ut

6 TESTS AND HEURISTIC IMPROVEMENTS OF THE

NEW UPPER BOUND

Table 1 shows the number of cases where (11) is at least as

good as the bounds given in Section 2. A first heuristic

improvement can be obtained through torism.

Theorem 6.1. For all � in Sn:

dð�Þ � n�max
�2���

coddð�ð�ÞÞ: ð12Þ

Proof. Straightforward from Theorem 5.2 and Lemma 2.2.tu

Experiments show (Table 1) that (12) is a substantial

improvement over (11), but it is hard to express or evaluate

this improvement because the evolution of � under the toric

equivalence relation does not seem easy to predict, whereas

that of G is well known (Lemma 2.3). Note, by the way, that

the other upper bounds cannot be lowered through torism

since neither the cycle graph structure nor the number of

breakpoints will be affected.
A second heuristic improvement of (11) can be obtained

through reduction.

Theorem 6.2. For all � 6¼ � in Sn, let glð�Þ denote its reduced

version in Sm, where m � n, then

dð�Þ � m� max
�2ðglð�ÞÞ��

coddð�ð�ÞÞ: ð13Þ

All other bounds can take advantage of this reduction as

well, except for (1), (2), and (3). This time, we do not

compare (13) with other bounds; instead, for 1 � i � 9, we

generate all permutations with their distance and check

how (13) overestimates their distance. Table 2 shows the

results; for our range of experiments, it seems that (13) is a
3
2 -approximation.

7 PERFORATIONS OF �-Permutations

After looking at �-permutations, it is natural to wonder how

deleting their fixed points affects their distance. A careful

analysis allows us to further improve (11) in the case of

�-permutations.
Note that deleting a 1-cycle in position i in � can be done

by placing �i just before �i þ 1 using a transposition, then

removing the obtained adjacency and renumbering the

other elements appropriately.

Definition 7.1. A k-perforation � in Sn of an �-permutation �

in Snþk is a permutation obtained by removing k � 1 1-cycles

from �ð�Þ and renumbering the remaining elements.

For instance, a 3-perforation of the�-permutation (3 2 5 4 7 6

9 8 11 10 1) is (3 2 5 4 7 6 9 8 11 10 1) = (2 4 3 5 6 8 7 1). Let us
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have a look at how the structure of G evolves when

perforating an �-permutation.

Lemma 7.1. For every k-perforation � of an �-permutation �

in Snþk:

cðGð�ÞÞ ¼ coddðGð�ÞÞ ¼ k

and Gð�Þ contains only noncrossing cycles, not containing

each other, except for a large one containing all others.

Proof. Induction on k. The main cycle of �ð�Þ is again

assumed to be increasing, the decreasing case

corresponding to ��1 whose cycle graph has the same

structure (see Hultman [15]). Recall that nþ k is odd, by

definition of �.

If k ¼ 1, let us remove some fixed element �i ¼ i (i

is therefore even) by first applying transposition

�ði� 1; i; iþ 1Þ. This transposition acts on two interleav-

ing cycles of the same parity in G (Observation 4.1) and

is therefore a 0-move (Lemma 2.1), transforming those

cycles into a 1-cycle and an ðnþ kÞ-cycle, both odd. We

now remove the adjacency, and get a permutation � with

cðGð�ÞÞ ¼ coddðGð�ÞÞ ¼ 1.

For the induction, we again remove 1-cycles from � in

two steps by first applying all our transpositions, then

removing k adjacencies. Since the thesis is assumed to

hold for k� 1 perforations, we start with the correspond-

ing ðk� 1Þ-perforation �0 and put back the k� 1

adjacencies that needed to be deleted, thus obtaining a

permutation �00 with cðGð�00Þ ¼ coddðGð�00ÞÞ ¼ 2ðk� 1Þ.
None of these cycles cross, and one of them contains

all others. Let us now select some even �00i we wish to

remove and apply the adequate transposition � to make

it adjacent to �00i þ 1. The odd alternating cycle to which

this element belongs will be cut into three cycles: an

adjacency (1-cycle) “framed” by two cycles.
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We need to prove that both framing cycles are odd,
which comes down to showing that one of them is;
indeed, the cycle we cut was odd, so the two cycles
framing the new adjacency have the same parity. By
induction, since at least one perforation has already
been performed, there is an adjacency on the right-
hand side or on the left-hand side of the cut cycle. This
adjacency is caused by an even element in an odd
position and the number of black edges between an
even position i and an odd position j is odd (Fig. 6
illustrates our claim). Therefore, the three new cycles
are odd and we get the permutation �000 ¼ �00 � � with
cðGð�000ÞÞ ¼ coddðGð�000ÞÞ ¼ 2k. We now remove k 1-cycles
from Gð�000Þ and the proof follows. tu

This leads to a formula for computing the distance of

such a permutation.

Corollary 7.1. For every k-perforation � of an �-permutation

� in Snþk:

dð�Þ ¼ n� coddð�ð�ÞÞ � kþ jCjmod 2ð Þ;

where jCj ¼ nþkþ1
2 is the number of elements in its main cycleC.

Proof. Again, assume without loss of generality that C is

increasing; Lemma 7.1 and Theorem 2.1 yield

dð�Þ � jCj � k. It is easily seen that removing a fixed

point from �ð�Þ replaces the edge of length 2 that

overhangs it in C with an edge of length 1, so C contains

k edges of length 1 and nþkþ1
2 � k� 1 ¼ n�1�k

2 edges of
length 2 (the last one has length n). Using n�1�k

2

transpositions of the form �ði; iþ 1; iþ 2Þ, where i is
the starting point of an edge of length 2, we transform �
into ð2 3 4 5 � � � nþ k� 2 nþ k� 1 nþ k 1Þ which is one
transposition away from �. We therefore apply

n� 1� k
2

þ 1 ¼ nþ kþ 1

2
� k ¼ jCj � k

transpositions in order to sort �, which completes the
proof since

dð�Þ ¼ jCj � k

¼ jCj � k� jCjmod 2ð Þ þ jCjmod 2ð Þ

¼ dð�Þ � kþ jCjmod 2ð Þ

¼ nþ k� coddð�ð�ÞÞ � kþ jCjmod 2ð Þ

¼ n� coddð�ð�ÞÞ þ jCjmod 2ð Þ

¼ n� coddð�ð�ÞÞ � kþ jCjmod 2ð Þ:
ut

The next logical move, as in our analysis of �-permutations,

would be to consider perforations of �-permutations. How-

ever, counterexamples have been found that prevent us from

proving an equivalent of Lemma 7.1 in the case of those

permutations; for instance, consider the �-permutation (7 2 13

4 3 6 5 8 15 10 9 12 11 14 1). Then, the cycle graph of the

4-perforation (7 2 13 4 3 6 5 8 15 10 9 12 11 14 1) = (5

2 10 3 4 11 7 6 9 8 1) has only two cycles, both odd.
We can nevertheless still study permutations whose

�-graph contains noncrossing cycles only. Fortunately, the
exact distance of some subcases in that family can be
computed; if not, we are nonetheless still able to improve (11).

Before tackling this general problem in the next section,
we conclude this one with the particular case where all
noncrossing long cycles are perforations of �-permutations,
starting with the case shown in Fig. 7, where we do not
allow containment of long cycles. In such a configuration,
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the 1-cycles between every pair of long cycles are referred to
as the separating 1-cycles or, more concisely, the separators.

Proposition 7.1. Let � in Sn be a permutation with �ð�Þ of the

form shown in Fig. 7, where Ci (1 � i � k) is a ki-perforation

of an �-permutation; then,

dð�Þ ¼ n� coddð�ð�ÞÞ �K þ
Xk
i¼1

jCijmod 2ð Þ;

where K ¼
Pk

i¼1 ki and jCij is the number of elements in the

main cycle of each perforation.

Proof. Lemma 7.1 and Theorem 2.1 yield

dð�Þ � nþ 1�
Pk

i¼1 ki
2

¼ nþ 1�K
2

:

We have n ¼ k� 1þ
Pk

i¼1 ni, where ni is the number of

elements of each perforation and Lemma 4.2 and

Corollary 7.1 yield

dð�Þ �
Xk
i¼1

dðCiÞ ¼
Xk
i¼1

jCij � ki

¼
Xk
i¼1

ni þ ki þ 1� 2ki
2

¼ 1

2

Xk
i¼1

ni þ 1� kið Þ

¼ nþ 1�K
2

:

The expression given in the thesis is obtained by

replacing dðCiÞ with the expression provided by Cor-

ollary 7.1. tu
We now show that removing any subset of the separators

in the case we just examined does not affect the distance.
For any transposition � and any permutation �, let
�coddð�;Gð�ÞÞ ¼ coddðGð� � �ÞÞ � coddðGð�ÞÞ. The following
lemma will be useful:

Lemma 7.2. Let � ¼ �ði; iþ 1; ��1
�iþ1Þ and let C1, C2 be two

cycles in Gð�Þ which share vertex �i, as shown below:

Then, �coddð�;Gð�ÞÞ ¼ 2 if both C1 and C2 are even and 0
otherwise.

Proof. Fig. 8 shows the four cases. tu
Corollary 7.2. Let � be a permutation that satisfies the conditions

of Proposition 7.1; then, removing j (1 � j � k� 1) separa-
tors from �ð�Þ yields a permutation with the same distance.

Proof. By Lemma 7.1, each Ci in �ð�Þ corresponds to a
collection of alternating cycles in Gð�Þ wrapped in a
large one and all of them are odd. Every pair of
consecutive “wrapping cycles” in Gð�Þ shares a vertex,
which is the 1-cycle separating the corresponding long
cycles in �ð�Þ. By Lemma 7.2, deleting that separating
cycle does not change the bounds obtained in Proposi-
tion 7.1 and the proof follows. tu

We refer to subpermutations reducing to �-permutations
as �-cycles. Similar arguments can be used to handle the
case of cycles in � that contain other ones, so we have the
following result:

Theorem 7.1. For every � in Sn whose �-graph contains only
1-cycles and k noncrossing perforations of �-cycles:

dð�Þ ¼ n� coddð�ð�ÞÞ �K þ
Xk
i¼1

jCijmod 2ð Þ;

where K is the number of edges of length 1 in �ð�Þ.
Proof. The formula follows from Proposition 7.1 and

previous observations. The correspondence with 1-edges
in �ð�Þ was observed in the proof of Corollary 7.1, and
this is the only case where deleting a 1-cycle creates an
edge of length 1. tu

It is less clear how exactly a perforation would be
defined in the case of crossing cycles. Even less clear is the
evolution of cycles in G when deleting fixed points in this
situation: It depends on how the cycles cross and on their
monotonicity. We can, however, prove some further results
on permutations whose �-graph has no crossing cycles,
which we do in the next section.

8 NONCROSSING CYCLES IN �

We consider permutations with a �-graph of the form
shown in Fig. 7 and have a look at what happens in G and �
when deleting separators. Depending on the parity of each
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long cycle, the deletion of separators can have various

effects.

Proposition 8.1. Let � in Sn be a permutation with �ð�Þ of the

form shown in Fig. 7, where Ci (1 � i � k) is one of the

following:

. an �-permutation with an odd main cycle,

. a �-permutation with an odd main cycle, and

. a perforation of an �-permutation.

Then, deleting j separators (1 � j � k� 1) transforms � into

a permutation with the same distance.

Proof. By Propositions 4.1 and 4.5, we have

dð�Þ ¼ nþ 1� coddðGð�ÞÞ
2

:

Each pair ðCi; Ciþ1Þ yields a pair of alternating cycles

(Observation 4.1 and Lemma 7.1) that share the separator

as described in Lemma 7.2. This lemma also implies that

deleting the separator does not change the lower bound

of Theorem 2.1, which is tight for �, because it will

decrease both n and the number of odd alternating cycles

by 1. So, dð�Þ is a lower bound on the distance of the

resulting permutation and, since dð�Þ is also an upper

bound on that distance (Lemma 4.2), the proof follows.tu
Although we are unable to compute the exact distance

when all large cycles are even (and are not perforations of

�-permutations), we can still lower (11) in that case. In order

to express this improved bound formally, we need to

introduce the following graph:

Definition 8.1. Given a permutation � with �ð�Þ of the form

shown in Fig. 7, the contact graph Hð�Þ is the undirected

graph whose vertices are the long cycles in �ð�Þ and whose

edges are fCi; Ciþ1g if Ci and Ciþ1 are even and not separated

by a 1-cycle in �ð�Þ.

This graph uniquely decomposes into p connected

components, which we denote C1; . . . ; Cp. The following

lemma will be useful:

Lemma 8.1. Let

	k ¼ ð3 2 1|ffl{zffl}
1

6 5 4|ffl{zffl}
2

� � � n n� 1 n� 2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
k

Þ;

then dð	kÞ � 3k
2

� 	
¼ n

2

� 	
.

Proof. Since 	k is a simple permutation (Fig. 9), the proof

follows from Theorem 2.7. tu

One way to sort 	k is to handle 2-cycles of �ð	kÞ pairwise,

i.e., partition 	k into bk2c subpermutations of the form of 	2.

Those can each be sorted optimally using three transposi-

tions and, possibly, one last subpermutation of the form of

	1 will require two transpositions. Note that this permuta-

tion is the general form of an example given by Christie [5]

that shows how his improved lower bound on the

transposition distance fails (meaning that even though it

gives a larger value than the lower bound of Theorem 2.1, it

still underestimates the true distance). Branch-and-bound

seems, however, to indicate that the upper bound of

Lemma 8.1 is the actual distance of 	k.

Proposition 8.2. Let � be a �-permutation with �ð�Þ of the form

shown in Fig. 7, where Ci (1 � i � k) is either an

�-permutation or a �-permutation with an even main cycle,

then deleting j separators (1 � j � k� 1) transforms � into a

permutation � such that

dð�Þ � dð�Þ � 2kþ
Xp
i¼1

3jCij
2


 �
;

where Ci (1 � i � p) is a connected component of Hð�Þ.

Proof. Instead of removing separators directly, we first apply

some transpositions on �. Each sub-�-permutation can be

sorted “incompletely” using the optimal sorting sequence

of Proposition 4.2, without the last two transpositions. A

similar process can be applied to sub-�-permutations,

which first require a transformation as depicted in the

proof of Proposition 4.4. By reduction, the resulting

permutation has a �-graph of the form shown in Fig. 7,

where eachC0i is now of the form of 	1. Let us now remove a

subset of j separators (1 � j � k� 1) from that permuta-

tion; this will diminish the number of components in its

contact graph, thus creating subpermutations of the form

of 	k. The following upper bound is obtained from

Lemmas 4.2 and 8.1:
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dð�Þ �
Xp
i¼1

dðCiÞ

�
Xp
i¼1

X
Cj2Ci

dðCjÞ � 2
� �

þ dð	jCijÞ

0
@

1
A

¼
Xp
i¼1

X
Cj2Ci

dðCjÞ � 2
� �

þ
Xp
i¼1

dð	jCijÞ

� dð�Þ � 2kþ
Xp
i¼1

3jCij
2


 �
:

ut

An easy particular case of this proposition is when all

separators are deleted; in that case, dð�Þ � dð�Þ � dk2e. There

remains one case to deal with, which encompasses both

previous propositions.

Proposition 8.3. Let � be a �-permutation with �ð�Þ of the form
shown in Fig. 7, where Ci (1 � i � k) is one of the following:

. an �-permutation or a �-permutation with an even
or an odd main cycle and

. a perforation of an �-permutation.

Then deleting j separators (1 � j � k� 1) transforms � into a
permutation � such that

dð�Þ � dð�Þ � 2kþ
Xp
i¼1

3jCij
2


 �
;

where Ci (1 � i � p) is a connected component of Hð�Þ.
Proof. As hinted by Lemma 7.2 and confirmed by previous

results, the only case in which deleting a separator affects

the distance of the resulting permutation is when that

deletion occurs between two even cycles. This means

that Proposition 8.2 naturally generalizes to the case

where some cycles are allowed to be odd because

deleting separators adjacent to at least one long odd

cycle will not modify the distance of the resulting

permutation. By the same arguments as those used in

Proposition 8.2’s proof, we obtain the same upper bound

on the distance of the resulting permutation, and

�-permutations, �-permutations as well as perforations

of the former kind can be handled individually in � as

was already done in �. tu
We conclude with the case where we allow containment

and perforation of �-cycles.

Theorem 8.1. For all � in Sn with �ð�Þ containing only
noncrossing �-cycles that are odd or perforated (possibly both)
and 1-cycles, we have

dð�Þ ¼ n� coddð�ð�ÞÞ �K þ
Xk
i¼1

jCijmod 2ð Þ;

where Ci (1 � i � k) are the long cycles in �ð�Þ and K is the
number of edges of length 1.

Proof. Suppose that every pair of consecutive long cycles

in �ð�Þ is separated by a 1-cycle; since each long cycle

is odd or a perforation of an �-permutation, the

corresponding alternating cycles in Gð�Þ are all odd

(Proposition 4.1 and Lemma 7.1). Therefore, removing

any subset of the separators cannot affect the distance

(Lemma 7.2), so the strategy of Lemma 4.2 remains

optimal and the proof follows from Theorem 7.1. tu

9 CONCLUSIONS

We have exhibited connections between two different

graph representations of permutations, one of which is a

well-known object in combinatorics and the other one is

the traditional structure used in the problem of sorting

permutations by transpositions. Those connections al-

lowed us to derive a formula for computing the distance

of a nontrivial class of permutations, which we called

�-permutations. Showing how �-permutations could be used

to generate all others, we were able to prove that our

formula is an upper bound on the transposition distance of

every permutation. A more involved analysis of the

operation used to obtain other permutations from this class

allowed us to describe three additional interesting families

of permutations: more instances for which our bound is

tight, instances for which our bound is not tight, but for

which we found other formulas to compute their distance,

and, finally, instances for which we can lower our upper

bound without a guarantee that the obtained formula gives

the exact distance.

It should be noted that (10) gives the distance of more

permutations than the ones characterized in Theorem 4.1:

Among the other permutations for which (10) still holds are

1-perforations of �-permutations with an odd main cycle

(Corollary 7.1), permutations obtained by concatenating

such configurations, whether they are separated (Proposi-

tion 7.1) or not (Corollary 7.2), and permutations character-

ized in Proposition 8.1. Our results can also be used as

upper bounds in some cases where cycles cross, for which it

seems difficult to give an accurate formula or a more precise

upper bound.

A few questions remain open. Although we now have a

large quantity of permutations whose distance is compu-

table in polynomial time, there are still some instances for

which we have no clear answer yet. Among those are

perforations of �-permutations, and permutations whose

�-graph contains only crossing cycles and do not reduce to

�-permutations. Is it possible to compute their distance in

polynomial time or to show it is NP-hard to do it? Can an

improved upper bound be given as well?

An obviously related question is that of finding the

diameter, i.e., the maximal value the transposition distance

can reach. Using permutations whose distance we know,

can we give an improved upper bound on the distance of

permutations that do not belong to these families and,

therefore, improve the upper bound of Theorem 2.9?
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APPENDIX A

ON THE SEQUENCES OF PROPOSITION 4.2

Consider the following transpositions:

�1 ¼ �ð2; 4; nþ 1Þ;
�2 ¼ �ð1; 3; nÞ;
�3 ¼ �ð2; 3; nþ 1Þ;
�4 ¼ �ð1; 2; nþ 1Þ:

8>><
>>:

Proposition A.1. For every �-permutation � in Sn whose main

cycle C is odd and increasing, the sequence

�2 � �1ð Þ
jCj�1

2

sorts �.

Proof. Induction on jCj. The base case is � ¼ ð3 2 5 4 1Þ; we

have � � �1 ¼ ð3 4 1 2 5Þ, and ð3 4 1 2 5Þ � �2 ¼ �.
For the induction, the permutation to sort is

� ¼ ð3 2 5 4 7 6 � � � n� 2 n� 3 n n� 1 1Þ:

Applying �1 to � transforms it into

ð3 4 7 6 � � � n� 2 n� 3 n n� 1 1 2 5Þ

to which we apply �2, thus transforming it into

ð7 6 � � � n� 2 n� 3 n n� 1 1 2 3 4 5Þ:

Reducing the latter permutation merges the last five

elements into a new element called 1 and subtracts 4

from every other element. It is then clear that, if � is the

permutation for which our induction hypothesis is true,

then � � �1 � �2 �r �, and this completes the proof. tu

Proposition A.2. For every �-permutation � in Sn whose main

cycle C is even and increasing, the sequence

�4 � �3 � �2 � �1ð Þ
jCj�2

2

sorts �.

Proof. Similar to that of Proposition A.1, with base case

� ¼ ð3 2 5 4 7 6 1Þ. tu

APPENDIX B

ON THE DEFINITION OF SIMPLE PERMUTATIONS,
2-PERMUTATIONS, AND 3-PERMUTATIONS

A signed permutation is a permutation whose elements can

be either positive or negative. Denote S	n the group of

permutations of f	1;	2; . . . ;	ng. It is not mandatory for a

signed permutation to have negative elements, so Sn 
 S	n .

The following graph was introduced by Bafna and Pevzner

[18] in the context of sorting permutations by reversals.

Definition B.1. Given a signed permutation � in S	n , transform

it into an unsigned permutation �0 in S2n by replacing �i with

the sequence ð2�i � 1; 2�iÞ if �i > 0 or ð2j�ij; 2j�ij � 1Þ if

�i < 0, for 1 � i � n. The breakpoint graph of �0 is the

undirected bicolored graph BGð�0Þ with ordered vertex set

ð�00 ¼ 0; �01; �
0
2; . . . ; �02n; �

0
2nþ1 ¼ 2nþ 1Þ and whose edge set

consists of

. black edges f�02i; �02iþ1g for 0 � i � n and

. gray edges f�02i; �02i þ 1g for 0 � i � n.

We show that, for every signed permutation � with no
negative element, the cycle graph Gð�Þ is equivalent to the
breakpoint graph BGð�0Þ. By equivalent, we mean that
every alternating cycle in Gð�Þ is an alternating cycle in
BGð�0Þ and that the “topological” relations between the
cycles are the same; for instance, if two cycles cross in either
graph, then they also cross in the other one.

Theorem B.1. For all � in Sn: Gð�Þ � BGð�0Þ.
Proof. We show that either graph can be constructed by

transforming the other one without affecting its features.
Intuitively, transforming Gð�Þ into BGð�0Þ is done by
spacing black edges in Gð�Þ and removing the orienta-
tion; conversely, transforming BGð�0Þ into Gð�Þ is done
by orienting edges in BGð�0Þ, then merging every
consecutive pair of vertices that are not connected by a
black edge.

1. Starting with Gð�Þ: Split each vertex �i (1 � i � n)
into two unconnected vertices ð�iÞl, ð�iÞr (one to
the left and one to the right), and rename �0

(respectively, �nþ1) into ð�0Þr (respectively,
ð�nþ1Þl). Black edge ð�i; �i�1Þ is mapped onto a
new black edge ðð�iÞl; ð�i�1ÞrÞ, as shown in
Fig. 10. Similarly, gray edge ð�i; �i þ 1Þ is mapped
onto a new gray edge ðð�iÞr; ð�i þ 1ÞlÞ, as shown
in Fig. 11. Finally, rename ð�iÞl (respectively,
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Fig. 10. Mapping of the black edges in the transformation of Gð�Þ into BGð�0Þ; here, G0ð�Þ is a graph that will be isomorphic to BGð�0Þ once the

orientation of edges is removed.



ð�iÞr) into 2�i � 1 (respectively, 2�i) and remove
the orientation of edges. This results in BGð�0Þ
since:

a. each black edge ð�i; �i�1Þ is mapped onto a
black edge fð�iÞl; ð�i�1Þrg ¼ f2�i � 1; 2�i�1g
and

b. each gray edge ð�i; �i þ 1Þ is mapped onto a
gray edge fð�iÞr; ð�i þ 1Þlg ¼ f2�i; 2�i þ 1g.

2. Starting with BGð�0Þ: Since �0 comes from some

permutation � with no negative element, for all

1 � i � n, we have �02i ¼ 2�i and �02i�1 ¼ 2�i � 1.

This implies that alternating cycles in BGð�0Þ can

be followed starting from the leftmost vertex of a

black edge, then following a gray edge that will

take us to the rightmost vertex of the next black

edge. Therefore, adding an orientation to all

edges that corresponds to this course will result

in a collection of directed alternating cycles that

can be followed using the direction of the arrows

and this orientation is obtained by transforming

gray edge f�02i; �02i þ 1g into ð�02i; �02i þ 1Þ and

black edge f�02i; �02iþ1g into ð�02iþ1; �
0
2iÞ.

Next, for 1 � i � n, merge vertices �02i�1 and �02i

into vertex �02i and rename vertex �02nþ1 into �02nþ2;

black edge ð�02iþ1; �
0
2iÞ is mapped onto a new black

edge ð�02iþ2; �
0
2iÞ, as shown in Fig. 12.

Finally, replace �02i with �i, for 0 � i � nþ 1.

This results in Gð�Þ since:

a. each black edge f�02i; �02iþ1g is mapped onto a
black edge ð�02ðiþ1Þ; �

0
2iÞ ¼ ð�iþ1; �iÞ and

b. each gray edge f�02i; �02i þ 1g is mapped onto
a grey edge ð�i; �i þ 1Þ. tu

As in the case of the cycle graph, the length of a cycle in a

breakpoint graph is the number of black edges it contains.

Definition B.2 [17]. A permutation � in S	n is simple if BGð�0Þ
does not contain a cycle of length greater than three.

Definition B.3 [17]. A permutation � in S	n is a 2-permutation

(respectively, 3-permutation) if all cycles in BGð�0Þ are of

length 2 (respectively, 3).

Corollary B.1. For every � in Sn, Definition 2.16

(respectively, Definition 2.17) and Definition B.2 (respec-

tively, Definition B.3) are equivalent.

Proof. Straightforward from Theorem B.1. tu
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