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Abstract—Intraspecific studies often make use of haplotype networks instead of gene genealogies to represent the evolution of a set

of genes. Cassens et al. [3] proposed one such network reconstruction method, based on the global maximum parsimony principle,

which was later recast by the first author of the present work as the problem of finding a minimum common supergraph of a set of t

partially labelled trees. Although algorithms have been proposed for solving that problem on two graphs, the complexity of the general

problem on trees remains unknown. In this paper, we show that the corresponding decision problem is NP-complete for t ¼ 3. We then

propose a declarative programming approach to solving the problem to optimality in practice, as well as a heuristic approach, both

based on the IDP system, and assess the performance of both methods on randomly generated data.
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1 INTRODUCTION

PHYLOGENETIC trees are the traditional tool for represent-
ing the evolution of a given set of species [6]. The last

two decades, however, have witnessed the emergence of a
new way of reconstructing and representing evolution,
which has become widespread in phylogenetic studies: phy-
logenetic networks, which generalise phylogenetic trees by
allowing multiple paths between species. The main reason
for using networks rather than trees is that evolution is not
always tree-like: genes may be duplicated, transferred or
lost, and recombination events (i.e., the breaking of a DNA
strand followed by its reinsertion into a different DNA mol-
ecule) as well as hybridisation events (i.e., the combination
of genetic material from several species) are known to occur.
Moreover, even when evolution is tree-like, situations exist
in which a relatively large number of tree topologies might
be “equally good,” and not enough information is available
to discriminate between those trees. One proposed solution
to the latter issue is the use of consensus trees, where the idea
is to find a tree that represents a compromise between the
given topologies; another approach, on which we focus in
this paper, is to build a network [7], [9] that is compatible
with all topologies of interest.

Haplotype networks are used in the context of intraspecific
studies, which focus on relations between genes rather
than between species. Cassens et al. [3] proposed a new
method for reconstructing such networks, based on a

given set of trees rather than on the input sequences. Note
that the trees studied in that context, namely, gene genealo-
gies, differ from the typical phylogenetic trees studied in
comparative genomics: whereas phylogenetic trees are
usually binary (i.e., internal nodes have degree three),
have labels attached only to their leaves, and contain
branches of arbitrary real length, gene genealogies allow
internal nodes of arbitrary degree, as well as labelled
nodes that are not leaves, and their branches have length
exactly one. Cassens et al.’s [3] approach comprises two
steps: most parsimonious trees are built from the sequences,
and a subset of these trees is then merged into a graph.
Their approach, which they refer to as “union of most par-
simonious trees” (UMP), does not aim at building a small-
est graph that contains all most parsimonious trees, as [1]
did using median networks, but rather to summarise the
information contained in a selected portion of those most
parsimonious trees in a graph that is as “succinct” as
possible.

The results produced by UMP on simulated data have
been promising, compared with earlier algorithms [3].
However, the algorithm and the overall approach proposed
by the authors lacked rigorous formalisation, and were later
recast by the first author of the present work as a minimum
common supergraph problem: given a set of partially labelled
trees on the same label set, find a graph on the same vertex
set which contains all input trees as subgraphs and which
has as few edges as possible [10]. That work also contains
two exact algorithms for the same problem on two partially
labelled graphs, running in polynomial time under some
assumptions and exponential time in the general case. To
the best of our knowledge, the complexity of the problem
has since remained open.

In this work, we settle the complexity of the above opti-
misation problem, by showing that the associated decision
problem is NP-complete for three trees. We make up for this
bad news by proposing a practical approach to solving the
problem to optimality in practice, using the IDP system [13].
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This allows us to model our minimum common supergraph
problem as a constraint satisfaction problem that is auto-
matically translated into a SAT instance and then solved
quickly by a SAT solver. We give an exact and a greedy
method for UMP, both based on this declarative program-
ming approach, and assess the performances of both
approaches on random instances of various sizes.

2 BACKGROUND

We recall here a few definitions and notation that will be
needed in the study of our problem, formally stated at the
end of this section. Any graph-theoretical concept the
reader might lack familiarity with can be found in any text-
book on the topic, e.g., [5].

Definition 2.1 (10). A labelling L for a subset U of vertices of a
graph G ¼ ðV;EÞ assigns a distinct label to each vertex in U ;
it is partial (resp. complete) if U � V (resp. U ¼ V ), in
which case we say that G is partially (resp. completely)
labelled.

Unless explicitly stated, the label set will always be
f1; 2; . . . ; kg, with k � jV j.
Definition 2.2 (10). An ðn; kÞ-graph G ¼ ðV;E;LÞ is a graph

on n vertices, k of which are labelled by L.
Definition 2.3 (10). An ðn; kÞ-tree is a connected ðn; kÞ-graph

with n� 1 edges and whose labelled vertex set includes all ver-
tices of degree 1.

The following function, which (possibly) returns the label
of vertex v in the ðn; kÞ-graph G, allows us to adapt classical
graph-theoretical concepts to our needs:

lab : V ðGÞ ! f1; 2; . . . ; kg [ f�g

: v 7!labðvÞ ¼ i if v has label i;

� otherwise:

�

This is not to be confused with the labellings introduced in
Definitions 2.1 and 2.2: labelling L assigns labels to vertices,
while function lab (possibly) returns labels. We will also use
lab on edges, in order to obtain the pairs of labels that corre-
spond to the endpoints of interest: if v, w 2 V ðGÞ, then
labðfv; wgÞ ¼ flabðvÞ; labðwÞg. Therefore, we have

labðEðGÞÞ ¼ ffi; jg j i; j 2 f1; 2; . . . ; kg [ f�g and

9fv; wg 2 EðGÞ : labðvÞ ¼ i; labðwÞ ¼ jg:

Definition 2.4. An ðn; kÞ-graph G is a subgraph of an
ðn; kÞ-graph H if the labellings of G and H can be completed

in such a way that the resulting ðn; nÞ-graphs G0 and H 0 sat-
isfy labðEðG0ÞÞ � labðEðH 0ÞÞ. In that case, we also say that
H is a supergraph of G.

“Completing a labelling” means assigning distinct labels
to the remaining unlabelled vertices; already labelled verti-
ces must not be altered. In the following, the primed nota-
tion G0 will always refer to a completely labelled graph
obtained from an ðn; kÞ-graph G by completing its labelling.

Definition 2.5 (10). An ðn; kÞ-graph G is a common super-
graph of a set G of ðn; kÞ-graphs if it is a supergraph of each
element of G. It is minimum if there is no other common
supergraph of G with fewer edges.

Fig. 1 shows two ðn; kÞ-trees T1 and T2 along with two
supergraphs G1 and G2 of fT1; T2g. Both G1 and G2 are
minimal in the sense that deleting any of their edges
invalidates the supergraph property, but only G1 is mini-
mum. Note that LðT1Þ and LðT2Þ cannot be completed in
such a way that labðEðT 0

1ÞÞ ¼ labðEðT 0
2ÞÞ (again, T 0

1 and T 0
2

are ðn; nÞ-trees obtained from T1 and T2 by completing
those ðn; kÞ-trees’ labellings).

We now have everything we need to formally state our
problem as a decision problem:

Note that a common supergraph of the input trees is
defined exactly by the above union.

3 THE COMPLEXITY OF CS-PLT

In this section, we prove the hardness of CS-PLT.

Theorem 3.1. CS-PLT is NP-complete for three trees.

Proof. We present a reduction from MONOTONE 1-IN-3 SATISFI-

ABILITY (see [12]):

a) The transformation: We encode instances of MONO-

TONE 1-IN-3 SATISFIABILITY using three trees, whose con-
struction and purpose are explained below, and we
illustrate the transformation on an example in Fig. 2.

1. The first tree T1 encodes the occurrences of literals
in the MONOTONE 1-IN-3 SATISFIABILITY instance f. It
is constructed using a matrix indexed by the

Fig. 1. Two ð7; 4Þ-trees T1 and T2, and common supergraphs G1 and G2

of T1 and T2; G1 is minimum, but G2 is not.
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literals and clauses from f. Every occurrence of a
literal ‘j in a clause Ci is mapped onto a pair of
nodes connected by an edge, where one node is a
leaf labelled with Lj

i , which we call a literal node,
and the other node is unlabelled. After creating
these nodes for all literal occurrences, we connect
the unlabelled nodes that are connected by an
edge with occurrences of the same literal by add-
ing edges vertically in the matrix, i.e., in order of
occurrence. The first occurrence of every literal is
then connected to a root node R, which is itself
connected to a TRUE node T and a FALSE node F (all
three nodes are labelled).

2. In tree T2, R is connected to three paths:

a) a first path that consists of all 3m literal nodes in
an arbitrary order (without loss of generality);

b) a second path, called the TRUE CHAIN, which
containsm unlabelled nodes and endswith T ;

c) a third path, called the FALSE CHAIN, which con-
tains 2m unlabelled nodes and endswith F .

The first path is connected to node R, while the
unlabelled extremities of the TRUE CHAIN and of the
FALSE CHAIN are both connected to R. The TRUE CHAIN

and the FALSE CHAIN represent a truth assignment to
the literals in f. This assignment is determined by
labelling T1 and T2 in the CS-PLT instance: a literal ‘j

in Ci represented by edge fLj
i ; ug in T1 is set to TRUE

(resp. FALSE) if u is assigned the same label as a node
from the TRUE CHAIN (resp. FALSE CHAIN) from T2.

3. Tree T3 overlaps for a large part with T2. The only
difference is that the TRUE CHAIN is split up and

every unlabelled node from this chain is con-
nected to T and three literal nodes from a unique
clause. These edges thus encode the different
clauses in f. In addition, by limiting the number
of allowed edges in a CS-PLT solution by a value K,
they encode the constraint that every clause con-
tains exactly one TRUE literal. Note that a minimal
CS-PLT solution assigns the same labels to the TRUE

chains from T2 and T3, and the same labels and
label ordering to the FALSE chains.

Fig. 3 shows an example of the construction applied to
a small example instance (ignore labels 1 to 12 for now).
In addition to these trees, the CS-PLT decision problem
requires an upper bound K, which we derive later in the
proof:

K ¼ 12mþ nþ 1:

We now show that f is satisfiable under the monotone 1-
in-3 restrictions if and only if the labellings of these three
trees can be completed in such a way that the union of
the resulting labelled edge sets has size at mostK.

ð)Þ:. Let f be a solution to f. We use f to construct a
solution to the CS-PLT instance of size at most K, which
consists of three respective labellings for the unlabelled
nodes of T1, T2 and T3, as follows:

1. We examine each path following the lexicographi-
cal order on literals, and follow paths downwards
from R, assigning and incrementing labels as we
go, starting with 1. More formally, every

Fig. 3. A solution to the CS-PLT instance constructed from the MONOTONE 1-
IN-3 SATISFIABILITY instance ðA _ B _ CÞ ^ ðA _ C _ EÞ ^ ðB _D _ EÞ^
ðA _D _ EÞ, which has as satisfying assignment fðCÞ ¼ fðDÞ ¼ true.
The union of the labelled edge sets has size 26þ 17þ 11 ¼ 54 ¼
12mþ nþ 1, withm ¼ 4 and n ¼ 5.Fig. 2. The three trees built in our transformation.
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unlabelled node Uj
i connected to a literal node Lj

i

in T1 receives the label aðUj
i Þ defined below and

which corresponds to the number of literal nodes
Lj0
i0 connected to unlabelled nodes Uj0

i0 represent-
ing either literals with lexicographically smaller
labels (i.e., ‘j

0
< ‘j) or the same literal but occur-

ring in an earlier clause (i.e., ‘j
0 ¼ ‘j and i0 < i):

a
�
Uj
i

� ¼ ���Lj0
i0 j ð‘j

0
< ‘jÞ _ ð‘j0 ¼ ‘j ^ i0 < iÞ���:

2. The kth unlabelled node from the TRUE CHAIN Uk;T

in T2 (ordered from R to T ) receives the label
assigned to the kth unlabelled node Uj

i in T1 (in
ascending label order) that represents a true lit-
eral:

ðaðU1;T Þ; . . . ; aðUm;T ÞÞ
¼ SORT

��
a
�
Uj
i

�
such that fð‘jÞ ¼ TRUE

��
:

Since f is a 1-in-3 solution, it is guaranteed that this
assigns a unique label to every unlabelled node from
the TRUE CHAIN.

3. Similarly, the ith node from the FALSE CHAIN in T2

and T3, namely, Ui;F , receives the label of the Uj
i

nodes representing FALSE literals:

aðU1;F Þ; . . . ; aðU2m;F Þ
� �

¼ SORT
��

a
�
Uj
i

�
such that fð‘jÞ ¼ FALSE

��
:

4. The ith split up TRUE CHAIN nodes Uk;s from T3 are
all connected to all three literal nodes from clause
Ck. We label these nodes with the label of the Uj

i

node representing the TRUE literal ‘j in Ci:

aðUi;sÞ ¼ a
�
Uj
i

�
such that fð‘jÞ ¼ TRUE:

The labellings are uniquely defined since f assigns the
TRUE value to exactly one literal in every clause Ci. Fig. 3
shows the completely labelled trees that result from
applying the aforementioned steps to the trees con-
structed from an example instance of MONOTONE 1-IN-3
SATISFIABILITY.

We now show that these labellings yield a graph that
contains exactly K ¼ 12mþ nþ 1 edges. Every tree
potentially adds all its 6mþ 2 edges to the resulting
graph, so we derive K by counting the overlapping
edges between the different trees. Following the defini-
tion of CS-PLT, the completely labelled trees we obtained
will be denoted by T 0

1, T
0
2 and T 0

3. Let us add all edges
from T 0

1 and T 0
3 to T 0

2; we make the following
observations:

� The 2mþ 1 edges connecting the FALSE CHAIN

nodes to R in T 0
3 already appear in T 0

2, since the
unlabelled nodes are assigned exactly the same
label by að�Þ. Moreover, exactly one of the edges
between T and the split up TRUE CHAIN in T 0

3

appears in the TRUE CHAIN in T 0
2;

� Tree T 0
1 contains a lot of edges already in T 0

2 or T
0
3

due to the að�Þ labelling:
- m of the edges to literal nodes overlap with

those from T 0
3 because every Uk;s is assigned

the same label as some Uj
k.

- All of the 3m� n edges connecting the unla-
belled nodes Uj

i connect nodes representing
literals that are assigned the same truth value
by f and consecutive labels by a, so these
nodes are already connected either by the
TRUE CHAIN or by the FALSE CHAIN in T 0

2.
- Two edges between R and newly labelled

nodes overlap with those in T2 since the TRUE

CHAIN and FALSE CHAIN start with the smallest
label assigned to a TRUE and a FALSE literal by
a, corresponding to the first occurrence of
these literals.

- One edge connecting Rwith T .
This sums up to 3ð6mþ 2Þ � ð2mþ 1þ 1Þ � ðmþ

3m� nþ 2þ 1Þ ¼ 12mþ nþ 1 edges, which equalsK.
ð(Þ:. If the constructed CS-PLT instance is true, then the

original MONOTONE 1-IN-3 SATISFIABILITY instance is true. We
first observe that the value we derived for K in the ())
part is the minimum number of edges that can be
obtained by labelling our three trees and taking the union
of the resulting edge sets since we counted the maximum
number of overlapping edges, making in total:

� two edges due to T1 (fR; Tg and fR; Fg);
� n edges connecting R with unlabelled nodes,

which is minimal due to T1;

� 5m edges between literal nodes and unlabelled
nodes, minimal due to T1 and T3;

� 3m edges connecting literal nodes, minimal due to
T2;

� 2m� 1 edges between unlabelled nodes in the
FALSE CHAIN, minimal due to T2;

� m� 1 edges between unlabelled nodes in the TRUE

CHAIN, minimal due to T2;

� m edges between T and unlabelled nodes in the
split up TRUE CHAIN, minimal due to T3;

� and one edge between F and an unlabelled node
in the FALSE CHAIN, minimal due to T2.

This sums up to 12mþ nþ 1 ¼ K.
We note that after completing the labelling of T1, T2

and T3, we necessarily obtain a common supergraph
G ¼ ðV;EÞ such that:

1 � ���fv; wg 2 E : labðvÞ 2 Lj
i

��� � 2:

In other words, every literal node is adjacent to at least
one and at most two newly labelled nodes, independent
of the labelling. Since we counted exactly 5m edges
between these nodes, and there are 3m literal nodes, this
gives exactly m literal nodes that are connected by a sin-
gle edge with a newly labelled node. Consequently, for
every split up TRUE CHAIN node from T3, exactly one node
receives a label such that one of its three edges with lit-
eral nodes overlaps with an edge from T1. The literal
nodes connected to these overlapping edges determine
the TRUE literals in the original satisfiability instance, all
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other literals are set to FALSE. Since every split up TRUE

CHAIN node in T3 is connected to nodes representing
exactly the literal occurrences of a single clause, this
makes exactly one literal TRUE in every clause.

In addition to this property, we require that if a literal
is true, then every instance of that literal is TRUE. We
show this by making the following observation that is
key to our translation:

A CS-PLT solution of size K has no edges
between the TRUE CHAIN of T2 and the FALSE

CHAIN of T3.

To see why this holds, one only has to observe that in
the above edge counts, we counted exactly 3m� 2 edges
between unlabelled nodes. Since the TRUE CHAIN and the
FALSE CHAIN in T2 already contribute this amount of edges,
any additional edge will yield a solution of size K þ 1.
Thus, in a solution of sizeK, the same labels are assigned
to the FALSE CHAIN nodes from T2 and T3. Furthermore, all
of the edges between unlabelled nodes from T1 have to
overlap with those from T2. Since these edges connect the
different occurrences of literals, these occurrences are all
labelled with either TRUE CHAIN or FALSE CHAIN labels, but not
both. Consequently, if the CS-PLT instance is true (has a solu-
tion of size K), then using our construction, every literal
occurrence of the same literal is assigned the same truth
value, and exactly one literal is set to TRUE in every clause,
making the MONOTONE 1-IN-3 SATISFIABILITY instance satisfied.

b) Time complexity: The transformation clearly runs in
time polynomial in the size of the MONOTONE 1-IN-3 SATISFI-

ABILITY instance, and a solution to CS-PLT can easily be veri-
fied in polynomial time. The CS-PLT problem is therefore
NP-complete. tu

4 FINDING A MINIMUM COMMON SUPERGRAPH

IN PRACTICE

The hardness of CS-PLT motivates our search for efficient
exact or approximate solutions. In that spirit, we decided to
translate our problem into a constraint satisfaction problem,
and to rely on an efficient SAT solver to obtain an exact solu-
tion to it.

Fig. 4 shows the typical workflow of a SAT solver based
approach. We circumvent the difficulties pointed out in that
workflow by relying on the IDP model expansion system
[13], which merely requires us to provide a logical descrip-
tion of our problem and a specific instance. IDP translates the
description into a constraint satisfaction problem, runs a

solver, and translates the result back into a solution to our
problem. Another attractive feature of IDP is that it can be
used as an anytime algorithm: one can terminate the solving
process before its completion and retrieve the best solution
found so far.

We give an exact approach (Section 4.4) and a greedy
approximation (Section 4.5) in the following sections, start-
ing with an introduction to SAT solvers in Section 4.1. We
then describe IDP, its input and two models in Sections 4.2 to
4.4, and explore their efficiency in practice on artificial data
in Section 4.6.

4.1 Satisfiability and SAT Solvers

The NP-complete satisfiability problem, which we recall
below for completeness, is central to the field of computa-
tional complexity theory [4].

SAT and its variants have spawned tremendous interest
among researchers, who have developed a number of prac-
tical and efficient algorithms, generally referred to as SAT

solvers, for solving instances of those problems in practice
(see, e.g., [8] for a recent account). A number of highly-opti-
mised implementations exist, which makes it possible to
solve several well-known hard problems to optimality in a
reasonable amount of time in many cases. One of the diffi-
culties lies in formulating the problem as a satisfiability
problem [2, ch. 2]; fortunately, the IDP system, described
below, makes this step a lot easier.

4.2 The IDP System

The IDP system [13] consists of two parts: a grounder [14]
and a solver [11]. The grounder (GIDL) transforms a search
or optimisation problem into a propositional formula that
can be solved using the solver; the solver (MINISATID) then
produces a solution if one exists. This provides an easy
method for declarative problem solving: all we have to do is
provide a high-level specification of our problem and of the
instance we want to solve; the IDP system then determines,
using searches and heuristics, a good formulation of this
problem in propositional logic (i.e., as an efficiently solvable
instance of SAT), and finally runs the solver, translating
upon completion any solution it finds back to the high-level
specification.

The IDP language is straightforward and easy to use,
thanks to a multitude of logical operators, the ability to
perform arithmetic operations, and the possibility of pro-
viding inductive definitions. The latter two in particular
make it possible to define complex constraints or optimi-
sation parameters in a neat and succinct way. Although
such definitions would normally result in a blow-up of
the propositional specification of the problem, the IDP

solver contains specialised propagation mechanisms suit-
able for reasoning directly on such inductive definitions.
These mechanisms are built on top of the popular MINISAT

Fig. 4. The typical workflow of a SAT solver based approach.
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solver without sacrificing much performance. The ability
to write complex problem descriptions in just a few lines
of code makes it an ideal tool for testing different prob-
lem specifications, and is the main strength of the IDP

system.

4.3 A Basic Model

Fig. 5 shows an IDP model we designed to represent the opti-
misation version of CS-PLT. This model is basic, but we show
it nonetheless for clarity, and will improve it in Section 4.4.
It consists of four sections:

1. the “Given:” section specifies the format of an
instance (in our case, a list of edges for each tree,
along with some labels that are already assigned to a
few vertices in each tree);

2. the “Find:” section describes the format of a solution
(in our case, a set of labelled edges);

3. the “Satisfying:” section specifies the constraints
edges and labels are subject to; and finally,

4. the “Minimize:” section describes the function that a
solution should optimise (in our case, the size of the
union of the completely labelled edge sets).

Specifying an instance of CS-PLT in this format is easy.
Fig. 6 shows an example of a valid input, which consists of
the following parts:

1. the Tree line specifies the unique indices from
f1; 2; . . . ; tg summarising our input ðn; kÞ-trees T1,
T2, . . ., Tt;

2. the Node and Label lines specify the set f1; 2; . . . ; ng
of indices and labels used to refer to vertices;

3. the PreLabel set specifies the labellings L1, L2, . . .,
Lt, where i; v�> b means that vertex v in tree Ti

has label b; and
4. the TEdge section specifies each tree’s edge set,

where i, u, vmeans that fu; vg 2 EðTiÞ.
Given this input, IDP will try to find an assignment to

Edges and Label, as specified in the Find: part, that sat-
isfies all constraints as specified in the Satisfying: part.
Once a solution has been found, IDP records the number of
Edges, as specified in the Minimize: part, and automati-
cally adds clauses that force the underlying solver to try to
find another solution with fewer edges. This continues
until the solver is unable to find new solutions, or proves

that the resulting instance is unsatisfiable. The last solution
(assignment to Edges and Label) is returned by IDP, and
its edges constitute a (minimum) common supergraph of
the input trees.

4.4 An Improved Model

The model described in Section 4.3 lacks efficiency. We
identify two reasons for this lack of speed: differently
labelled solutions can yield isomorphic supergraphs, and
the definition of edges produces an unnecessarily difficult
SAT instance. We address these issues by adding symmetry
breaking predicates, and by defining a completely labelled
edge set for each tree instead of a “global” supergraph
edge set.

a) Symmetry Breaking. Labellings merely match vertices in
different trees; the actual labels do not matter, and permut-
ing the labels assigned to the initially unlabelled vertices in
any tree will not affect the size of the solution if we permute
the corresponding labels in the other trees accordingly.
Therefore, we can safely choose an arbitrary labelling for
the unlabelled vertices of any one tree in our instance,
thereby reducing the search space by a factor of ðn� kÞ!.

b) Supergraph Edges per Tree. The way edges are defined
in the model of Fig. 5 results in an instance that is difficult
to solve, which makes the model inefficient. The reasons
why a particular model is inefficient are unfortunately not
always obvious; models that yield SAT instances with fewer
clauses are usually regarded as more efficient, but some-
times larger models and redundant clauses have a positive
effect on the runtime of a SAT solver [2]. We identified by
trial-and-error three inefficiencies in the definition of edges
in the model of Fig. 5, which we list and address below.

1. A first cause of inefficiency is the way in which the
edges of the supergraph are specified as being undi-
rected. In Fig. 5, this is specified using the labels of
nodes, and in an inductive way. Since these labels
are free variables, and the nodes in a tree are fixed
by the model input, it is more efficient to specify this
property using these nodes instead of their labels.
We do so by adding an additional declaration for
undirected edges:

UEdge(i,u,v), which is TRUE if and only if
TEdge(i,u,v) or TEdge(i,v,u) is TRUE.

Constraints are then specified using the UEdge

variables instead of the TEdge variables.

Fig. 5. The code used by the IDP system to model the optimisation ver-
sion of CS-PLT.

Fig. 6. An example of an instance of our problem formatted for use by the
IDP system; in this case, the instance consists of five ð8; 4Þ-trees.
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2. A second cause of inefficiency that we discovered is
related to the way in which MINISATID makes use of
the clauses. For reasons that remain to be investi-
gated (likely due to propagation mechanisms), MINIS-

ATID is able to find satisfying assignments much
more quickly when the edges of the common super-
graph are specified per tree:

TreeEdge(i,n,m), which is TRUE if UEdge(i,
u,v) is TRUE and Label(i,v)¼n and Label(i,

u)=m.

An element of Edges is then TRUE if and only if
there exists a corresponding TreeEdge.

3. A third and final cause of inefficiency is already visi-
ble in the TreeEdge definition. Instead of an equiva-
lence constraint (if and only if), we require an
implication (if). This means that a TreeEdge(i,n,

m) can be TRUE even though the nodes with labels n

and m are not joined by an edge in tree i. However,
since the aim is to minimise the number of Edges
and therefore the number of TreeEdges, this con-
straint is implicit in the model. Requiring
TreeEdges (or Edges) to be FALSE when there is no
corresponding edge in a tree is redundant informa-
tion. In our experience, removing this information
results in an improved performance of MINISATID.

Fig. 7 shows the improved model that we used in the
experiments.

4.5 The Greedy Approach

We implemented the following greedy approach in addition
to our exact approach:

1. find a minimum common supergraph for every pair
of trees using IDP;

2. merge the two trees that yield the smallest common
supergraph G, and replace them with G;

3. for every remaining tree T , use IDP to compute a min-
imum common supergraph of T and G;

4. merge G with the tree T that adds the fewest edges
to G, and replace G and T with their resulting super-
graphH;

5. go back to step 3 if any tree remains.

Merging one tree at a time with the current common
supergraph greatly reduces the search space. The idea of
carrying out the merging process in a way that minimises
the number of edges added at each step seems sensible, but
it is not necessarily optimal, as Fig. 8 shows. An interesting
open question is whether the ratio between the solution
found using an optimal pairwise merging strategy
and the optimal solution is bounded. In our experiments
(Section 4.6), the greedy method performed very well, sig-
nificantly outperforming the exact approach on larger prob-
lem instances where the solver timed out before reaching an
optimal solution.

4.6 Experimental Results

For our experiments,1 we generated random CS-PLT instances
of varying difficulty. We generated four different instances
for every setting of the following parameters: five, 10, or 20
trees; 10, 20, or 50 nodes per tree; and five, 10, or 25 labelled
nodes per tree. Unlabelled trees are generated by randomly
adding edges between a growing connected component
and an isolated vertex; since the number of leaves in the
resulting tree may exceed the number of labels, we then
modify it by repeatedly connecting random pairs of leaves,
and removing the existing edge incident to either leaf to
avoid creating cycles. When we have enough labels, we
then randomly assign them first to the leaves and then to
the internal nodes.

We ran both the exact method and the greedy method on
every generated instance. The exact method was given a
maximum runtime of 2,000 seconds. Since even pairwise
mergers can take a long time, the greedy method was given
at most 10 seconds for every pairwise merger. Table 1
reports on the average sizes per parameter setting of the sol-
utions found by both methods.

Fig. 7. An improvement over the model shown in Fig. 5.

Fig. 8. An instance on which the greedy approach performs subopti-
mally. The first step creates a minimum common supergraph G1 of
fT2; T3g with only one additional edge, then creates a minimum common
supergraph G2 of fG1; T1g with 10 edges. However, G3 is a common
supergraph of fT1; T2; T3g with only nine edges.

1. Experiments run on a desktop machine equipped with an Intel(R)
Core TM i7 CPU 870 2.93 GHz CPU (64bits) with 8 GB of RAM.
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IDP was able to solve all instances with 10 nodes per tree
to optimality within approximately 10 seconds. No timeout
occurs either in the pairwise greedy merges for these instan-
ces. As Table 1 shows, the greedy method performs slightly
worse on these instances, yielding solutions with two addi-
tional edges on average. None of the other instances are
solved to optimality by IDP; the solver either times out (2,000
seconds), or runs out of memory. Interestingly, the quality
of the solutions obtained by the greedy approach vastly
exceeds that of the solutions obtained by the exact solver on
the largest instances in Table 1. This is partly due to the
large amount of memory used by the SAT solver, which
keeps learning clauses as it runs; the solver eventually runs
out of memory and returns the best solution found so far.
Since this occurs frequently, even after running IDP for only
300 seconds, these solutions are worse than what IDP would
have found in 2,000 seconds. However, this only partially
explains the differences: on some instances (e.g., those with
20 trees with five labelled nodes), IDP does reach the 2,000
second time limit and still performs a lot worse than the
greedy method. We therefore conclude that on large

instances the greedy approach is a very promising method
for solving CS-PLT.

We also investigated how the loss of quality evolves
with the number of trees in the input. Fig. 9 compares the
sizes of the solutions obtained by the exact method and the
greedy methods on random instances made of ð12; 6Þ-trees
with no timeout. Solutions obtained by the greedy method
were at most 13 percent larger than those obtained by the
exact method.

Fig. 10 concludes our experiments and shows how the
running time of the exact solver grows with respect to the
instance size, measured on the one hand by the number of
trees in the instance and, on the other hand, by the number
of unlabelled nodes in those trees.

5 CONCLUSIONS

In this work, we have shown that the decision version of
the problem of finding a minimum common supergraph of
a given set of partially labelled trees is NP-complete, which
justifies and magnifies the importance of good approxi-
mate solutions to the original optimisation problem, as
well as fast heuristics and exact algorithms for solving it in
practice. In that regard, we have investigated how promis-
ing the popular SAT solver-based approach could be in our
case; we bypassed the difficulties that arise when trying to
encode instances and problem descriptions as Boolean for-
mulas by relying on the IDP system to handle the transla-
tion to a SAT instance and then to solve instances of our
problem using a SAT solver. We proposed an optimised
model that allowed us to obtain both an exact solution to
our problem and a greedy approach that proved very

Fig. 10. Growth of the exact solver’s running time with respect to the
number t of trees (averages over 20 runs) or the number k of unlabelled
vertices (averages over 50 runs with n ¼ 12). Note that the search space
has size Oððn� kÞ!t�1Þ.

Fig. 9. Number of edges obtained by the exact and the greedy methods
on random instances as the number of trees increases (no timeouts).
The greedy approach produced solutions that were at most 13 percent
larger than the optimal solution.

TABLE 1
Average Solution Sizes Obtained by the Exact and the Greedy
Methods on Random Instances with Various Parameters and

Prescribed Timeouts

The greedy approach was able in some cases (shown in bold) to outper-
form the exact approach.
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useful in practice, yielding very high quality solutions
much faster than the exact approach.

Several interesting theoretical questions arise. Most nota-
bly, the complexity of CS-PLT on two partially labelled trees
remains open. Moreover, the computational complexity
classification of CS-PLT could perhaps be further refined: in
particular, does the problem admit a c-approximation algo-
rithm for some constant c? Are there nice parameterisations
of the problem that could prove useful in practice? The
excellent performance of the greedy method justifies the
importance of finding efficient algorithms for the pairwise
case, since merging partial solutions in a greedy fashion
usually gives solutions of high quality to the general prob-
lem. In addition, it would be interesting to further investi-
gate the case where at least one of the input graphs is a
graph instead of a tree, both from a complexity point of
view and from an approximation point of view.

As far as practical aspects are concerned, fast and accu-
rate solutions for real-world instances with actual data are
still needed, especially in light of the problem’s complexity.
Future work will in particular investigate how the SAT

solver-based approach proposed in this paper applies and
scales in practice.

Finally, other considerations might need to be taken into
account in order to assess the relevance of the results
yielded by the UMP method in practice, which will require
input from biologists. Are there other parameters that
should be taken into account when searching for a mini-
mum common supergraph? Which criteria should be used
to discriminate between nonisomorphic optimal solutions?
We note that additional criteria could be easily incorporated
directly into IDP, using the multitude of available logical
operators and arithmetic operations.
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