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a b s t r a c t

Pancake flipping, a famous open problem in computer science, can be formalised as the
problem of sorting a permutation of positive integers using as few prefix reversals as
possible. In that context, a prefix reversal of length k reverses the order of the first k
elements of the permutation. The burnt variant of pancake flipping involves permutations
of signed integers, and reversals in that case not only reverse the order of elements but
also invert their signs. Although three decades have now passed since the first works
on these problems, neither their computational complexity nor the maximal number of
prefix reversals needed to sort a permutation is yet known. In this work, we prove a new
lower bound for sorting burnt pancakes, and show that an important class of permutations,
known as ‘‘simple permutations’’, can be optimally sorted in polynomial time.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The pancake flipping problem [1] consists in finding the minimum number of flips required to rearrange a stack of
pancakes that all come in different sizes so that the smallest ends up on top and the largest lies at the bottom. The problem
can be more formally stated as follows: given an ordering of {1, 2, . . . , n}, what is the minimum number of prefix reversals
required to sort these numbers in increasing order (where a prefix reversal of length k reverses the order of the first k
elements)? A variant of the problem, known as the burnt pancake flipping problem, is concerned with rearranging stacks of
pancakes that are burnt on one side, in such a way that the pancakes not only end up rearranged in increasing sizes but
also with their burnt side down. Again, a more formal description of the problem is to sort orderings of {±1, ±2, . . . ,±n}
using as few prefix signed reversals (which not only reverse the order of the first k elements but also invert their signs) as
possible.

Gates and Papadimitriou [2] and Györi and Turán [3] proved the first results on pancake flipping three decades ago,
focusing on the number of prefix reversals needed in the worst case (i.e. the maximum number of steps required to sort a
stack of size n), and a tremendous amount of work (see next paragraph for more details) has since been devoted to the study
of both variants of the problem. However, the computational complexity of the sorting problems or merely computing the
minimum number of required steps remains open, as well as that of determining the maximum number of prefix (signed)
reversals needed to sort a permutation. The best known approximation ratio is 2, both in the unsigned case (see [4]) and
in the signed case (see [5], according to [4]). A very interesting and original solution to the burnt pancake flipping problem
was recently proposed by Haynes et al. [6], who use bacteria to represent permutations, which eventually become antibiotic
resistant when they are sorted. However, their model obviously does not yield any combinatorial or algorithmic insight on
pancake flipping, and seems therefore of little theoretical help.
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Fig. 1. The graph of the permutation ⟨4 1 6 2 5 7 3⟩ = (1, 4, 2)(3, 6, 7)(5).

Although pancake flipping was introduced as a game, it is worth noting that it has since found applications in parallel
computing, leading to the famous ‘‘(burnt) pancake network’’ topology which is the Cayley graph of a permutation group
generated by prefix (signed) reversals (see [7] for a thorough survey on the use of Cayley graphs as interconnection
networks). Another major application of pancake flipping, which has received considerable attention, is in the field of
computational biology, where permutations model genomes and reversals correspond to actual mutations by which those
genomes evolve. In that setting, reversals are no longer restricted to the prefix of the permutation: they can act on any of
its segments. Interestingly enough, more is known about these seemingly more challenging versions than on the original
pancake flipping problems: Caprara [8] proved that sorting unsigned permutations by arbitrary reversals was NP-hard, but
quite surprisingly, Hannenhalli and Pevzner [9] proved that the signed version of this problem could be solved in polynomial
time. For an extensive survey of themathematical aspects of genome comparisons bymeans of large-scalemutations, known
as genome rearrangements, see for instance [10].

In this paper, we use ideas introduced in a previous paper [11] to prove a new tight lower bound on theminimumnumber
of prefix signed reversals required to sort a permutation, which is also referred to as their distance. We also examine an
important class of signed permutations, known as ‘‘simple permutations’’, which proved crucial in solving the problem of
sorting permutations by unrestricted signed reversals in polynomial time (see [9]), and give a polynomial-time algorithm
for sorting these permutations optimally, as well as a formula for computing their distance in polynomial time.

2. Background

2.1. Permutations

Let us start with a quick reminder of basic notions on permutations (for more details, see e.g. [12,13]).

Definition 1. A permutation of {1, 2, . . . , n} is a bijective application of {1, 2, . . . , n} onto itself.

The symmetric group Sn is the set of all permutations of {1, 2, . . . , n}, together with the usual function composition ◦,
applied from right to left. We use lower case Greek letters to denote permutations, typically π = ⟨π1 π2 · · · πn⟩, with
πi = π(i), and in particular write the identity permutation as ι = ⟨1 2 · · · n⟩.

Definition 2. The graph Γ (π) of a permutation π has vertex set {1, 2, . . . , n}, and contains an arc (i, j) whenever πi = j.

As Fig. 1 shows,Γ (π)decomposes in a uniqueway into disjoint cycles (up to the ordering of cycles and of elementswithin
each cycle), leading to another notation forπ based on its disjoint cycle decomposition. For instance, whenπ = ⟨4 1 6 2 5 7 3⟩,
the disjoint cycle notation is π = (1, 4, 2)(3, 6, 7)(5) (notice the parentheses and the commas).

The number of cycles in Γ (π) is denoted by c(Γ (π)), and the length of a cycle is the number of elements it contains. A
k-cycle in Γ (π) is a cycle of length k.

Definition 3. A signed permutation is a permutation of {1, 2, . . . , n} where each element has an additional ‘‘+’’ or ‘‘−’’ sign.

The hyperoctahedral group S±
n is the set of all signed permutations of n elements with the usual function composition

(the usual convention is that π−i = −πi). It is not mandatory for a signed permutation to have negative elements, so
Sn ⊂ S±

n since each permutation in Sn can be viewed as a signed permutation without negative elements in S±
n . To lighten

the presentation, we will conform to the tradition of omitting ‘‘+’’ signs when elements are positive.

2.2. Operations on permutations

We now review a number of operations on permutations, which are themselves modelled as permutations.

Definition 4. An exchange ε(i, j) with 1 ≤ i < j ≤ n is a permutation that swaps elements in positions i and j:

ε(i, j) =


1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j i + 1 · · · j − 1 i j + 1 · · · n


.

Definition 5. A reversal ρ(i, j) with 1 ≤ i < j ≤ n is a permutation that reverses the order of elements between positions i
and j:

ρ(i, j) =


1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n

1 · · · i − 1 j j − 1 · · · i + 1 i j + 1 · · · n


.
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Table 1
Some results on sorting permutations using various operations.

Operation Sorting Distance Best approximation

Exchange O(n) [24] 1
Reversal NP-hard [8] 11/8 [25]
Signed reversal O(n3/2) [20] O(n) [21] 1

Pr
ef
ix Exchange O(n) [16] 1

Reversal ? ? 2 [4]
Signed reversal ? ? 2 [5]

Fig. 2. The breakpoint graph of ⟨−7 3 − 1 4 2 8 − 6 − 5⟩.

Definition 6. A signed reversal ρ(i, j) with 1 ≤ i ≤ j ≤ n is a permutation that reverses both the order and the signs of
elements between positions i and j:

ρ(i, j) =


1 · · · i − 1 i i + 1 · · · j − 1 j j + 1 · · · n
1 · · · i − 1 −j − (j − 1) · · · − (i + 1) − i j + 1 · · · n


.

Each operation σ transforms a permutation π into a permutation π ◦σ . Setting i = 1 in the above definitions turns those
operations into prefix operations, i.e. operations whose action is restricted to the initial segment of the permutation. It can
be easily seen that the effect of any operation can be mimicked by at most three prefix operations of the same kind. We are
interested in the following two problems on permutations.

Definition 7. Given a permutation π in S±
n and a set X ⊆ S±

n of allowed transformations, the problem of sorting π by X is
that of finding a minimum-length sequence of elements of X that transforms π into ι. The distance of π (with respect to X)
is the length of such a sequence.

The operations we have presented give rise to the exchange distance (denoted by ed(π)), the reversal distance (denoted
by rd(π)) and the signed reversal distance (denoted by srd(π)), respectively, as well as the corresponding prefix variants
(namely ped(π), prd(π) and psrd(π)). Table 1 summarises a selected portion of the current state of knowledge about these
distances and the corresponding sorting problems.

2.3. The breakpoint graph

Bafna and Pevzner [14] introduced the following graph, which turned out to be an extremely useful tool to sort
permutations by (possibly signed) reversals.

Definition 8. Given a signed permutation π in S±
n , transform it into an unsigned permutation π ′ in S2n by mapping πi onto

the sequence (2πi−1, 2πi) ifπi > 0, or (2|πi|, 2|πi|−1) ifπi < 0, for 1 ≤ i ≤ n. The breakpoint graph ofπ ′ is the undirected
bicoloured graph BG(π) with ordered vertex set (π ′

0 = 0, π ′

1, π
′

2, . . . , π
′

2n, π
′

2n+1 = 2n+ 1) and whose edge set consists of:

• black edges {π ′

2i, π
′

2i+1} for 0 ≤ i ≤ n;
• grey edges {π ′

2i, π
′

2i + 1} for 0 ≤ i ≤ n.

Fig. 2 shows an example of a breakpoint graph. Since each vertex in that graph has degree two, the breakpoint graph
decomposes in a single way into alternating cycles, i.e. cycles that alternate black and grey edges. It can be easily seen that
the breakpoint graph shown in Fig. 2 decomposes into two such cycles.

Definition 9 ([15]). The support of a grey edge {π ′

i , π
′

j }, with i < j, is the interval of π ′ delimited by i and j, endpoints
included. A grey edge is oriented if its support contains an odd number of elements, and nonoriented otherwise. A cycle in
BG(π) is oriented if it contains an oriented edge, and nonoriented otherwise.
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a b c
Fig. 3. (a) The effect of an exchange on a cycle of Γ (π), (b) the effect of a signed reversal on an oriented cycle and (c) on a nonoriented cycle of BG(π).
Dotted lines in those drawings stand for (alternating) paths.

For example, the grey edge that connects 0 and 1 in Fig. 2 is oriented, while the one that connects 4 and 5 is nonoriented.
The length of a cycle in a breakpoint graph is the number of black edges it contains, and a k-cycle is a cycle of length k. A
k-cycle is called trivial if k = 1, and nontrivial otherwise.

Definition 10. A signed reversal ρ(i, j) is said to act on black edges {π ′

2i−2, π
′

2i−1} and {π ′

2j, π
′

2j+1} of BG(π). Likewise, it is
said to act on one cycle (resp. on two cycles) if both black edges on which ρ(i, j) acts belong to the same cycle (resp. to two
distinct cycles) in BG(π).

3. A new lower bound for sorting burnt pancakes

We exploit a connection between the effect of exchanges on Γ (π) and that of signed reversals on BG(π) to derive a new
lower bound on the prefix signed reversal distance of any permutation.Wewill need the following result by Akers et al. [16]
on computing the prefix exchange distance.

Theorem 1 ([16]). For any π in Sn, we have

ped(π) = n + c(Γ (π)) − 2c1(Γ (π)) −


0 if π1 = 1,
2 otherwise,

where c1(Γ (π)) denotes the number of 1-cycles in Γ (π).

Theorem 2. For any π in S±
n , we have

psrd(π) ≥ n + 1 + c(BG(π)) − 2c1(BG(π)) −


0 if π1 = 1,
2 otherwise, (1)

where c1(BG(π)) denotes the number of 1-cycles in BG(π).

Proof. The key observation is that the action of signed reversals on the cycles of the breakpoint graph is analogous to the
action of exchanges on the cycles of (the graph of) a permutation: both involve at most two distinct cycles, and can create
at most one new cycle in the graph on which they act, as Fig. 3 shows.

The analogy obviously still holds under the prefix restriction, and the proof then follows from Theorem 1. �

Note that, as observed by Hannenhalli and Pevzner [9] and as shown in Fig. 3(c), it is not always possible to split a cycle
in BG(π) using a signed reversal, whereas it is always possible to split a cycle in Γ (π) using an exchange (hence the lower
bound instead of an equality).

4. Sorting simple permutations in polynomial time

We now turn our attention to an important class of signed permutations, which proved crucial in solving the signed
version of sorting by unrestricted reversals in polynomial time (see [9]), and show how to sort those permutations by prefix
signed reversals in polynomial time.

Definition 11. A signed permutation π is simple if BG(π) contains only cycles of length at most 2.

Our analysis is based exclusively on simple permutations; therefore, we need to ensure that the sequences of prefix
signed reversals we use will transform any given simple permutation into another simple permutation.
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Definition 12. A sequence of signed reversals applied to a simple permutation π is conservative if it transforms π into a
simple permutation σ .

We wish to stress that we only require σ to be simple: we allow intermediate permutations obtained in the process of
transforming π into σ not to be simple.

Definition 13. Let g(π) denote the right-hand side of lower bound (1); an (x, y)-sequence is a sequence of x prefix signed
reversals transforming a permutation π into a permutation σ with g(π) − g(σ ) = y. It is optimal if x = y.

4.1. Components of the breakpoint graph

We will need the following definitions and results of Hannenhalli and Pevzner [9].

Definition 14. Two distinct grey edges in the breakpoint graph interleave if their supports overlap but do not contain each
other. Likewise, two distinct cycles in the breakpoint graph interleave if either cycle contains a grey edge that interleaves
with a grey edge of the other cycle.

Definition 15. Let H(π) be the graph whose vertices are the cycles in BG(π) and whose edges connect two vertices if the
corresponding cycles interleave. A component of BG(π) is a connected component of H(π); it is oriented if a vertex of that
component in H(π) corresponds to an oriented cycle in BG(π), and nonoriented otherwise.

Lemma 1 ([9]). A signed reversal acting on a given cycle C in BG(π) changes the orientation of every cycle in BG(π) that
interleaves with C (i.e. it transforms every nonoriented (resp. nonoriented) cycle that interleaves with C into a nonoriented (resp.
oriented) cycle).

Lemma 2 ([9]). Every grey edge of a nontrivial cycle in BG(π) interleaves with another grey edge.

Lemma 2 implies in particular that if π is a simple permutation, then every nontrivial nonoriented cycle in BG(π)
interleaves with another nontrivial cycle. In the following, we sometimes abuse language by saying that we sort a cycle
or a component, which actually means that we transform a k-cycle or a component involving k black edges in BG(π) into a
collection of k 1-cycles.

4.2. Preliminary results

In the following, we will refer to the cycle in BG(π) that contains the black edge {π ′

0, π
′

1} as the leftmost cycle, and to the
component that contains the leftmost cycle as the leftmost component.

Definition 16 ([9]). A signed reversal is proper if it increases the number of cycles in BG(π) by one.

The following observation will be crucial.

Lemma 3. For any simple permutation π , any minimal sequence of prefix reversals that mimics a proper reversal is both
conservative and optimal.

Proof. A proper reversal ρ(i, j) on π splits a 2-cycle into two 1-cycles; if i = 1, then the resulting permutation σ now fixes
1, and lower bound (1) has decreased by 1. Otherwise, the status of the first element in π and σ is the same, and there is
a sequence of three prefix reversals which mimics the effect of ρ(i, j) and decreases lower bound (1) by 3. Therefore, the
resulting sequence of prefix reversals is optimal, and clearly conservative. �

As a result, if BG(π) contains an oriented component, then we can sort that component optimally in polynomial time
(see [17] for more details). Therefore, the only remaining cases we need to examine are the cases where π admits no proper
reversal, or equivalentlywhere BG(π) contains no oriented cycle, distinguishing between the casewhereπ1 ≠ 1 andπ1 = 1.

Lemma 4. Let π be a simple permutation; if π1 ≠ 1 and BG(π) contains no oriented cycle, then π admits a conservative (1, 0)-
sequence.

Proof. A prefix signed reversal acting on the leftmost cycle will flip the orientation of any cycle it interleaves (Lemma 1),
thereby guaranteeing the creation of at least one oriented cycle in BG(π) and in particular transforming the leftmost
component into an oriented component. Note that lower bound (1) is unaffected by that move. �

Lemma 5. Let π be a simple permutation; if π1 = 1 and BG(π) contains no oriented cycle, then π admits a conservative (2, 2)-
sequence.

Proof. If π1 = 1 and BG(π) contains no oriented 2-cycle, then any nonoriented component BG(π) contains can be
transformed into an oriented leftmost component as follows. Pick the leftmost cycle C1 in any nonoriented component; by
Lemma 2, C1 interleaves with another nonoriented cycle, say C2. If C2 contains black edges {π ′

2j−2, π
′

2j−1} and {π ′

2ℓ−2, π
′

2ℓ−1},
then applying ρ(1, j − 1) followed by ρ(1, ℓ − 1) transforms π into another simple permutation with an oriented leftmost
component, as Fig. 4 shows.

Neither the number of cycles nor the number of 1-cycles in the breakpoint graph is affected, but the resulting permutation
no longer fixes 1, so lower bound (1) decreases by 2. �
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Fig. 4. An optimal conservative sequence of prefix signed reversals that transforms a nonoriented component into an oriented leftmost component.

4.3. Computing psrd for simple permutations

We have proved the existence of optimal conservative sequences for every simple permutation, except in the case where
π1 ≠ 1 and the leftmost component is nonoriented. In this section, we prove that the strategy proposed in Lemma 4
is optimal (Lemma 8), and derive a formula for computing the prefix signed reversal distance of simple permutations
(Theorem 3).

We will refer to prefix signed reversals that act on two nontrivial cycles of the breakpoint graph as merging moves, and
to those that split the leftmost cycle into two cycles, at least one of which is trivial, as splitting moves. It can be easily seen
from Theorem 2 that any sequence of prefix signed reversals that is to outperform the strategy proposed in Lemma 4 must
consist solely of these types of moves, and eventually lead to an oriented leftmost 2-cycle, a step that must precede the
creation of two new trivial cycles. Therefore, our proofwill consist in showing that this strategywill fail to orient the leftmost
component.

We have already defined orientation for grey edges (Definition 9 page 697). We will also need an analogous definition
for black edges by Tannier and Sagot [18].

Definition 17 ([18]). A black edge {π ′

2i, π
′

2i+1} in BG(π) is oriented if πi and πi+1 have opposite signs, and nonoriented
otherwise.

Definition 18 ([9]). The smallest interval that contains the leftmost and rightmost elements of a given component C in
BG(π) is denoted by

Extent(C ) =


min
C∈C

min
π ′
i ∈C

i,max
C∈C

max
π ′
j ∈C

j


.

Components can be ordered by inclusion based on their extent. We will be interested mainly in minimal components,
defined below.

Definition 19 ([9]). A component C of BG(π) isminimal if every cycle C with support(C) ⊆ Extent(C ) belongs to C .

Graphically speaking, a minimal component is an ‘‘innermost’’ one. Tannier and Sagot [18] note that BG(π−1) can be
obtained from BG(π) by exchanging positions and elements in π ′ as well as edge colours (i.e. black (resp. grey) edges in
BG(π) become grey (resp. black) edges in BG(π−1)). As a consequence, cycles in BG(π) and in BG(π−1) are in one-to-one
correspondence, and we denote C−1 the cycle in BG(π−1) onto which a given cycle C in BG(π) is mapped. We show below
that this mapping extends to whole components of the breakpoint graph.

Lemma 6. A cycle C belongs to a component C in BG(π) if and only if C−1 belongs to C −1 in BG(π−1).

Proof. We examine components by their inclusion order, starting with minimal ones and removing them as we go to
proceed by induction.

We refer to the pairs {π ′

2i−1, π
′

2i} for 1 ≤ i ≤ n as white edges, which form the same set in both BG(π) and BG(π−1). The
alternating path made of white and grey (resp. black) edges in BG(π) will be referred to as the WG-path (resp. WB-path),
which when starting with the leftmost vertex of BG(π) visits the vertices of BG(π) in the natural order (resp. in the order in
which they appear in π ′).

We now show that a minimal component C in BG(π) corresponds to a minimal component C −1 in BG(π−1). If
Extent(C ) = [i, j], then vertices {π ′

2i, . . . , π
′

2j−1} induce a sub-path of the WG-path in BG(π), which is mapped onto a
WB-path in BG(π−1) and implies that cycles of C −1 do not interleave with cycles outside C −1. To see that the cycles we
obtain in that way belong to the same connected component in BG(π−1), assume on the contrary that some cycles were
mapped onto an additional minimal component, say C ′, in BG(π−1). By the above argument, cycles in C ′−1 do not interleave
with other cycles in BG((π−1)−1) = BG(π), a contradiction. �

The following result will also be useful.
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Lemma 7. A component C in BG(π) is oriented if and only if it contains an oriented black edge.

Proof. As in the proof of Lemma 6, we examine components by their inclusion order, starting with minimal ones and
removing them as we go to proceed by induction. Recall (Definition 15 page 699) that C is oriented if it contains an oriented
grey edge, which corresponds to a pair of elements of opposite signs in π . If C is minimal, then it contains two elements of
opposite signs in π if and only if it contains a pair of adjacent elements of opposite sign, which themselves correspond to an
oriented black edge (Definition 17).

As observed by Bergeron et al. [19], the elements of π that ‘‘frame’’ C (i.e. πi/2 and π(j+1)/2, if Extent(C ) = [i, j]) have the
same sign.We can then removeC from BG(π), renumber the elements appropriately, and handle the remaining components
in the same way. �

Since oriented black (resp. grey) edges in BG(π) become oriented grey (resp. black) edges in BG(π−1), Lemma 7 implies
that the orientation of components in BG(π) is also preserved in BG(π−1).

Lemma 8. Let π be a simple permutation which does not fix 1 and whose leftmost component is nonoriented. If a sequence of
merging and splittingmoves transformsπ into a permutation σ whose leftmost cycle is a 2-cycle, then σ is simple and the leftmost
component of BG(σ ) is nonoriented.

Proof. Splitting moves extract 1-cycles from the leftmost cycle, while merging moves merge it with 2-cycles, so clearly σ
is simple. To prove that its leftmost component is nonoriented, we first show that the sets of black edges in BG(π) and in
BG(σ ) differ only in the black edges that belonged to 2-cycles in BG(π) and became 1-cycles in BG(σ ).

Grey edges in BG(σ−1) connect pairs of elements that appear at the same positions as in BG(π−1), except for edges that
originally belonged to 2-cycles that were turned into 1-cycles. Each 2-cycle in BG(σ−1) corresponds to a 2-cycle in BG(π−1)
on the same quadruple of positions (since by the transformation described right after Definition 19, black and grey edges are
exchanged in the process of transforming BG(π) into BG(π−1) and conversely). The orientation of any 2-cycle in BG(σ−1)
is the same as the orientation of the corresponding 2-cycle in BG(π−1), and there is no new pair of interleaving 2-cycles in
BG(σ−1). This together with Lemma 7 implies that the leftmost component of BG(σ ) is nonoriented. �

We now have everything we need to prove a formula for computing the prefix signed reversal distance of simple
permutations.

Theorem 3. For every simple permutation π in S±
n , we have:

psrd(π) = n + 1 + c(BG(π)) − 2c1(BG(π)) + t(π) −


0 if π1 = 1
2 otherwise ,

where t(π) = 1 if π1 ≠ 1 and the leftmost component of BG(π) is nonoriented, and 0 otherwise.

Proof. The upper bound follows from the fact that there exists an optimal conservative sequence for dealing with every
simple permutation, except when π1 ≠ 1 and BG(π) contains no oriented cycle; however, a single prefix signed reversal
turns the leftmost component into an oriented component (Lemma 4). This situation cannot occur more than once in the
sorting process, since once the leftmost component has been sorted, either the resulting permutation is ι or we can sort
every remaining oriented component of BG(π) optimally — or create a leftmost oriented component in BG(π) if no oriented
component exists (Lemma 5).

Finally, if π1 ≠ 1 and the leftmost component of BG(π) is nonoriented, then no sorting sequence can outperform the
strategy proposed in Lemma 4 (see Lemma 8), which implies the desired lower bound and completes the proof. �

4.4. The sorting algorithm

Algorithm 4.1 outlines how to sort simple permutations by prefix signed reversals in polynomial time. Tannier et al. [17]
cover step 3 in details (they sort oriented components using arbitrary signed reversals, but as we have seen these can be
mimicked by optimal sequences of prefix signed reversals (Lemma 3)), while step 5 can be achieved either by applying a
reversal on the leftmost cycle, if D is the leftmost component (Lemma 4), or by applying the 2-move sequence proposed in
Lemma 5. The algorithm can be implemented so as to run in O(n3/2) time (see [17,20]), while the distance can be computed
in O(n) time (see [21]).

5. Conclusions

Weproved a new lower bound on theminimumnumber of prefix signed reversals needed to sort any signed permutation
of n elements, whereas the exact computation of that number remains an open problem. Using this lower bound, we were
able to show that an important class of permutations, known as ‘‘simple permutations’’, could be sorted in polynomial time,
and proposed both a sorting algorithm and a formula for computing the minimum number of required operations.

Hannenhalli and Pevzner [9] proved that every permutation π could be transformed into a simple permutation π̃ in
such a way that srd(π) = srd(π̃) (see [22] for a O(n) time algorithm for transforming π into π̃ , and a O(n log n) time
algorithm for recovering the original permutation). Unfortunately, the transformation does not preserve the prefix signed
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Algorithm 4.1 SimpleBurntPancakeFlipping(π )
Input: a simple permutation π
Output: the identity permutation
1: while π ≠ ι do
2: if BG(π) contains an oriented component C then
3: sort C;
4: else
5: orient any nonoriented component D;
6: end if
7: end while

reversal distance, as shown by the following counter-example: if π = ⟨2 1⟩, then the corresponding simple permutation
is π̃ = ⟨3 2 1⟩, but it can be verified that psrd(π) = 3 and psrd(π̃) = 5. Therefore, Algorithm 4.1 cannot immediately be
used to sort an arbitrary permutation, but since every sequence of signed reversals on a simple permutation can be used
to sort the original permutation [9], we have psrd(π) ≤ psrd(π̃). Moreover, we believe that our contributions should be
useful for designing improved approximation or exact algorithms for solving the burnt pancake flipping problem, as well
as for getting insight into its computational complexity. The unsigned version of sorting by prefix reversals (i.e. the original
pancake flipping problem) may also benefit from our results, since both variants are strongly connected (see [23] for more
details).
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