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Abstract
We investigate a variant of the so-called INTERNET SHOPPING problem introduced
by Blazewicz et al. (Appl. Math. Comput. Sci. 20, 385–390, 2010), where a customer
wants to buy a list of products at the lowest possible total cost from shops which
offer discounts when purchases exceed a certain threshold. Although the problem is
NP-hard, we provide exact algorithms for several cases, e.g. when each shop sells
only two items, and an FPT algorithm for the number of items, or for the number of
shops when all prices are equal. We complement each result with hardness proofs in
order to draw a tight boundary between tractable and intractable cases. Finally, we
give an approximation algorithm and hardness results for the problem of maximising
the sum of discounts
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1 Introduction

Blazewicz et al. [4] introduced and described the INTERNET SHOPPING problem as
follows: given a set of shops offering products at various prices and the delivery costs
for each set of items bought from each shop, find where to buy each product from a
shopping list at a minimum total cost. The problem is known to be NP-hard in the
strong sense even when all products are free and all delivery costs are equal to one,
and admits no polynomial (c ln n)-approximation algorithm (for any 0 < c < 1)
unless P = NP (here n is the number of products).

A more realistic variant takes into account discounts offered by shops in some
cases. These could be offered, for instance, when the shopper’s purchases exceed
a certain amount, or in the case of special promotions where buying several items
together costs less than buying them separately. Blazewicz et al. [5] investigated such
a variant, which features a concave increasing discount function on the products’
prices. They showed that the problem is NP-complete in the strong sense even if each
product appears in at most three shops and each shop sells exactly three products,
as well as in the case where each product is available at three different prices and
each shop has all products but sells exactly three of them at the same price. A variant
where two separate discount functions are taken into account (one for the deliveries,
the other for the prices) was also recently introduced and studied by [6].

In this work, we investigate the case where a shopper aims to buy n books from m

shops with free shipping; additionally, each shop offers a discount when purchases
exceed a certain threshold (discounts and thresholds are specific to each shop). We
show that the associated decision problem, which we call the CLEVER SHOPPER

problem, is already NP-complete when only two shops are available, or when all
books are available from two shops and each shop sells exactly three books. We also
obtain parameterised hardness results: namely, that CLEVER SHOPPER is W[1]-hard
when the parameter is m or the number of shops in a solution, and that it admits no
polynomial-size kernel. On the positive side, we give a polynomial-time algorithm for
the case where every shop sells at most two books, an XP algorithm for the case where
few shops sell books at small prices, an FPT algorithm with parameter n, and another
FPT algorithm with parameter m. We note that CLEVER SHOPPER generalises well-
studied problems such as BIN COVERING [2] and H -INDEX MANIPULATION [20].

Most of the results in this paper previously appeared in the proceedings of
CSR’18 [8]. The main changes consist in the addition of pseudocode for Algorithms 1
and 2; the proof of Proposition 4; and Proposition 9, which solves an open problem
from [8].

2 Notation and Definitions

Let us now formally define CLEVER SHOPPER. For n ∈ N, let [n] = {1, 2, . . ., n}.
Let B be a set of books to buy, S be a set of shops, E ⊆ B×S encodes the availability
of the books in the shops, and w : E → N encodes the prices. Choosing a shop
in which to buy each book is encoded as a subset E′ ⊆ E, such that each book is
covered exactly once (i.e., any b ∈ B has degree 1 in E′). A discount ds ∈ R

+ is
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associated to each shop s and offered when a threshold ts ∈ R
+ is reached, which is

formally defined using the following threshold function:

δ(s, E′, ds, ts) =
{

ds if
∑

(b,s)∈E′ w(e) ≥ ts ,

0 otherwise.

We refer to the function D that maps each shop s to the pair (ds, ts) as the discount
function. To lighten the notation, we will sometimes denote the cost of a book b at a
shop s using w(b, s) instead of w({b, s}) when no confusion can arise. The problem
we study is formally stated below.
CLEVER SHOPPER

Input: an edge-weighted bipartite graph G = (B ∪ S, E, w); a discount function
D ; a bound K ∈ N.

Question: is there a subset E′ ⊆ E that covers each element of B exactly once and
such that

∑
e∈E′ w(e) − ∑

s∈S δ(s, E′, ds, ts) ≤ K?

3 Hardness Results

We prove in this section several hardness results under various restrictions, both with
regards to classical complexity theory and parameterised complexity theory. We first
show that CLEVER SHOPPER is NP-complete even if there are only two shops to
choose from. For this first hardness result, we need book prices to be encoded in
binary (i.e. they can be exponentially high compared to input size).

Proposition 1 CLEVER SHOPPER is NP-complete in the weak sense (i.e., prices are
encoded in binary), even when |S| = 2.

Proof (reduction from PARTITION) Recall the well-known NP-complete PARTITION

problem [17]: given a finite set A and a size ω(a) ∈ N for each element in A, decide
whether there exists a subset A′ ⊆ A such that

∑
a∈A′ ω(a) = ∑

a∈A\A′ ω(a).
Let I = (A, ω) be an instance of PARTITION, and T = ∑

a∈A ω(a). We obtain
an instance I ′ of CLEVER SHOPPER as follows: introduce two shops s1 and s2 with
(ds1 , ts1) = (ds2 , ts2) = (1, T /2). Each item a ∈ A is a book that shops s1 and s2 sell
for the same price — namely, ω(a). It is now clear that there exists a subset A′ ⊆ A

such that
∑

a∈A′ ω(a) = ∑
a∈A\A′ ω(a) if and only if all books can be purchased for

a total cost of T − 2.

This NP-hardness result allows arbitrarily high prices (the reduction from PAR-
TITION requires prices of the order of 2|B|). In a more realistic setting, we might
assume a polynomial bound on prices, i.e., they can be encoded in unary. As we show
below, the problem remains hard for a few shops in the sense of W[1]-hardness. We
complement this result with an XP algorithm in Proposition 7.

Proposition 2 CLEVER SHOPPER isW[1]-hard for m = |S| in the strong sense (i.e.,
even when prices are encoded in unary).
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Proof (reduction from BIN PACKING) Recall the well-known BIN PACKING prob-
lem: given n items with weights w1, w2, . . . , wn and m bins with the same given
capacity W , decide whether each item can be assigned to a bin in such a way that the
total weight of the items in any bin does not exceed W . BIN PACKING is NP-complete
in the strong sense and W[1]-hard for parameter m, even when

∑n
i=1 wi = mW and

all weights are encoded in unary [16].
We build an instance I of CLEVER SHOPPER from an instance of BIN PACKING

with the aforementioned restrictions as follows:

– create m identical shops, each with ts = W and ds = 1;
– create n books, where book i is available in every shop at price wi ;
– set the budget to m(W − 1).

In other words, any solution requires to obtain the discount from every shop, which
is only possible if purchases amount to a total of exactly W per shop before dis-
count. Therefore, the solutions to I correspond exactly to the solutions of the original
instance of BIN PACKING.

We can obtain another hardness result under the assumption that all books are sold
at a unit price. Here we cannot bound the total number of shops (we give an FPT
algorithm for parameter m in Proposition 8 in this setting), but only the number of
chosen shops (i.e., shops where at least one book is purchased).

Proposition 3 CLEVER SHOPPER with unit prices is W[1]-hard for the parameter
“number of chosen shops”.

Proof (reduction from PERFECT CODE) Given a graph G = (V , E) and a positive
integer k, PERFECT CODE asks whether G contains a perfect code of size k, i.e., a
size-k subset V ′ ⊆ V such that for each vertex u ∈ V there is precisely one vertex
in N[v] ∩ V ′ (where N[v] is the closed neighbourhood of v, i.e., v and its adjacent
vertices, as opposed to the open neighbourhood N(v) = N[v] \ {v}). This problem
is known to be W[1]-hard for parameter k [9].

Let I = (G = (V , E), k) be an instance of PERFECT CODE. Write V = {u1, u2,
. . ., un}. We obtain an instance I ′ of CLEVER SHOPPER as follows:

– build a bipartite graph G′ = (B ∪ S, E′) where B = {bi : ui ∈ V }, S = {si :
ui ∈ V } and E′ = {{bj , si} : uj ∈ NG[ui]};

– set all prices to 1;
– for each shop si ∈ S, set D(si) = (dG(ui) + 1, 1) (i.e., a unit discount will be

applied from dG(ui) + 1 of purchase).

Figure 1 illustrates the construction.
We claim that there exists a size-k perfect code for G if and only if all books can

be bought for a total cost of n − k.

Let V ′ ⊆ V be a size-k perfect code in G. For every ui ∈ V , let upc(i) be the
unique vertex in N[v] ∩ V ′ (pc is well-defined since V ′ is a perfect code). Then
buying each book bi ∈ B at shop bpc(i) yields a solution for I ′, and it is simple to
check that its cost is n − k.
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Fig. 1 Reducing PERFECT CODE to CLEVER SHOPPER. Left: The input graph with a size-2 perfect code
(bold). Right: The corresponding bipartite graph and a solution with total cost 5 − 2 = 3 (bold)

Suppose that all books can be bought for a total cost of n − k. Since n

books must be bought at unit price and shops only offer a unit discount, k

shops must be chosen in the solution. Let S′ ⊆ S denote these k shops. Since
D(si) = (1, dG(ui) + 1) for each shop si ∈ S, we conclude that for each book
bi ∈ B there is precisely one shop in N[bi] ∩ S′. Then {ui : si ∈ S′} is a size-k
perfect code in G.

Note that the number of selected shops corresponds exactly to the total discount
received (i.e. to parameter k in the reduction).

We now prove the non-existence of polynomial kernels (under standard complex-
ity assumptions) for CLEVER SHOPPER parameterised by the number of books. To
this end, we use the OR-COMPOSITION technique [7]: given a problem P and a
parameterised problem Q, an OR-COMPOSITION is a reduction taking t instances
(I1, I2, . . . , It ) of P , and building an instance (J, k) of Q, with k bounded by a
polynomial on maxt ′≤t |It ′ | + log t , such that (J, k) is a yes-instance if and only if
there exists t ′ ≤ t such that It ′ is a yes-instance. If P is NP-hard, then Q does not
admit a polynomial kernel unless NP ⊆ coNP/poly [7].

Proposition 4 CLEVER SHOPPER admits no polynomial kernel unless NP ⊆
coNP/poly.

The following classical NP-complete problem [17] will be useful in that regard. It
is known to remain NP-complete when each xi appears in exactly 3 sets of C [14],
an additional constraint which we will use in our proof.
EXACT COVER BY 3-SETS (X3C)

Input: a set X = {x1, x2, . . . , x3m} of items, a collection C of 3-sets of X.
Question: is there a subset C ′ of C that covers each item of X exactly once?
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Proof We build an OR-COMPOSITION using EXACT COVER BY 3-SETS. Consider t

instances of X3C over the same number n of items. They are represented as bipartite
graphs (Sh ∪ [n], Eh) for h ∈ [t], where the 3-sets of [n] are represented as degree-3
vertices u ∈ Sh. An example of the reduction is depicted in Fig. 2.

We first define some “shop identifiers”. Write J = {0, 1} × [
log t�]. For each
integer h ∈ [t], let Keyh be the size-
log t� subset of J containing (b, j) if the j th
digit in the binary representation of h is equal to b. Note that for 1 ≤ h < h′ ≤ t , we
have Keyh �= Keyh′ . We now build a new instance (B ∪ S, E, w, D, K) as follows:

– Create shops σj for all j ∈ J . Let � = {σj | j ∈ J }. The global set of shops is
S = � ∪ ⋃

h∈[t] Sh. Note that |S| = t + 2 log t .

– Create books xi
j for all i ∈ [n] and j ∈ J . The global set of books is B = {xi

j |
i ∈ [n], j ∈ J } ∪ [n]. Let n′ = |B| = n(2 log t + 1).

– For each edge e = {s, i} ∈ Eh, where h ∈ [t], s ∈ Sh, i ∈ [n], add edges {s, i}
and {s, xi

j } for all j ∈ Keyh. Add also edges {σj , x
i
j } for all i ∈ [n] and j ∈ J .

The overall set of edges is denoted E.
– Let all costs be equal to T +1 where T is any non-negative integer (say, T = 42).
– Let shop s ∈ S have ts = k(T + 1) and ds = k where k is the degree of s. In

other words, all shops give a discount of 1 per book only the buyer buys all books
available from the shop.

– The budget is K = T n′.

Fig. 2 Illustration of the reduction from EXACT COVER BY 3-SETS. The instances are drawn in the top
part, as bipartite graphs between Sh and books [n] (for better readability, most edges are ommited, but
in fact all vertices in sets Sh have degree 3). The reduction introduces shops in �, and books xi

j . Books
sold in one of the shops from S2 are highlighted in green. They correspond to the books i to which this
element is connected in the corresponding instance of EXACT COVER, as well as books xi

j where j visits
the elements of Key2 (the “identifier” of S2). Since 2 is written 0010 in binary, the key contains positions
(0, 1), (0, 2), (1, 3), (0, 4). Books sold by shop σ0,3 ∈ � are highlighted in red. They are books xi

0,3 for
all i. Notice that those two shops have no books in common, since (0, 3) /∈ Key2
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Note that due to the pricing and discount functions, the average cost of a book in
a shop is between T and T + 1, and it reaches T if and only if all books in this shop
have been purchased. Since the shopper needs to buy n′ books with a budget of T n′,
she must either buy all books from the shops she visits, or none at all. Thus she is
faced with the problem of finding a set of shops whose available books correspond
exactly to the set of books she needs.

The intuitive idea behind our construction is the following. We first build a set of
shops behaving exactly like the union of all the sets in the instances of X3C. This is
achieved directly by selling the original books in the corresponding shops: the fact
that each book must be taken exactly once directly gives an exact cover. The rest
of the shops (�) and books (xi

j ) ensure that shops are used from a single set Sh.

More precisely, half of the books xi
j are purchased together with book i, and they

correspond to an identifier of the shops, while the other half must be purchased in
shops from �, and enforce that the identifiers are the same for all books. That is, all
books are purchased in shops from the same set Sh, which yields a solution to the hth
instance of X3C.

We now formally prove that there is a solution to this instance of CLEVER SHOP-
PER if and only if some instance (Sh ∪ [n], Eh) of EXACT COVER BY 3-SETS for
h ∈ [t], is a yes-instance, which completes the OR-COMPOSITION.

Let h ∈ [t] be such that (Sh ∪[n], Eh) is a yes-instance. Let S′
h be the solution

(that is, a subset of Sh such that all vertices in [n] have exactly one neighbour in
S′

h). Let �′ = {σj | j ∈ J \ Keyh}. We show that buying all books in all shops of
S′ = S′

h ∪�′ gives a valid solution. Pick i ∈ [n]. Since S′
h is a solution to the X3C

instance, then there exists a single s ∈ S ′
h such that (s, i) ∈ E. Books i and xi

j for
j ∈ Keyh are thus sold by shop s, but not by any other shop in S ′ (in particular,
not by any shop in �′ since j /∈ Keyh). Consider now a book xi

j with i ∈ [n] and

j ∈ J \ Keyh. Then xi
j is sold by shop σj ∈ �′ ⊂ S′, and by no other shop in S′.

Overall, each book is sold by exactly one shop in S′, so the shopper buys all books
from those shops, for a base price of n′(T + 1) and with a discount of n′.

As we have already remarked, in any solution, the set of shops S′ ⊆ S must
contain each book exactly once. Consider first book 1: it is sold by a shop s1 ∈
S′ ∩ Sh1 for some h1 ∈ [t] (since no shop in � sells books in [n]). Consider now
books x1

j , with j ∈ J . If j ∈ Keyh1
, then x1

j is sold by s1, and thus σj /∈ S′.
If j ∈ J \ Keyh1

, then x1
j is not sold by s1, nor by any other shop in S′ \ �

(such a shop would also sell book 1, which is already taken from shop s1). Thus
x1
j must be sold by some shop from �, which can only be σj by construction.

Hence {σj | J \ Keyh} ⊆ S′. Consider now any index h2 �= h1. There exists
some j ∈ Keyh2

\ Keyh1
. If there exists some shop s ∈ Sh2 ∩ S′, then s sells book

xi
j for some i ∈ [n]. However, this book is already taken at shop σj ∈ S′ (since

j ∈ J \ Keyh1
), hence there is no such shop s. Overall, S′ \ � ⊆ Sh1 , that is,

the shopper uses only shops from the same set Sh1 as well as some shops from
�′. We can now prove that S′

h1
= S′ ∩ Sh1 = S′ \ � is a solution to the instance
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(Sh1 ∪ [n], Eh1) of EXACT COVER BY 3-SETS. Indeed, consider any i ∈ [n], then
it is sold by a single shop in s ∈ S ′, which cannot be in �, hence s ∈ S′

h1
. In other

words, there is exactly one s ∈ S ′
h1

such that (s, i) ∈ Eh1 , so S′
h1

is a valid cover
of [n].

4 Positive Results

We now give exact algorithms for CLEVER SHOPPER: a polynomial-time algorithm
for the case where every shop sells at most two books, and four parameterised algo-
rithms based respectively on the number of books, the number of shops, a bound on
the prices, and the combination of the number of shops and the largest price of a book.

Algorithm 1 solves the case where each shop sells at most two books. As we shall
see in Section 5, this bound is best possible. Its running time is dominated by the time
required to find a maximum matching in a graph with |B ∪ S| vertices. We prove its
correctness below.
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Proposition 5 CLEVER SHOPPER is in P if every shop sells at most two books.

Proof Let I be an instance of CLEVER SHOPPER given by an edge-weighted bipartite
graph G = (B ∪ S, E, w) and a pair (ds, ts) for each s ∈ S, where ds, ts ∈ R

+.
Vertices in S (resp. in B) have degree at most 2 (resp. at least 1). Note that vertices
in S can be made to have degree exactly 2, by adding dummy edges with arbitrarily
high costs, with no impact on the solution. We will therefore assume for simplicity
that those degrees are all 2. For b ∈ B, let p(b) be the cheapest available price for
book b (discount excluded), i.e., p(b) = min{w({b, s}) | s ∈ S}.

Algorithm 1 constructs a new, non-necessarily bipartite graph G′ from G, then
computes a maximum weight matching on G′ which it then converts into a solution
for G. Figure 3 illustrates the construction. Note that G′ may contain edges with
negative weights: they may be safely ignored, but we keep them to avoid case distinc-
tions in the rest of this proof. Since a maximum weight matching for G′ can be found
in polynomial time [11], it is now enough to prove the following claim: G′ admits a
matching of weight at least W if and only if instance I of CLEVER SHOPPER admits
a solution of total cost at most

∑
b∈B p(b) − W .

Assume that instance I admits a solution E∗ ⊆ E of total cost
∑

b∈B p(b)−X,
where X ≥ 0 (the sum of the minimum prices of the books is an upper bound
of the optimal solution). We build a matching M for G′ as follows. Let s ∈ S be

Fig. 3 Each shop offers a discount of 3 on a purchase of value ≥ 10. Bold edges indicate how to obtain
optimal discounts: buy book b1 from shop s1, book b2 from shop s3, and books b3 and b4 from shop s4.
The remaining books are bought at their cheapest available price (so here we buy b5 from s5). Our clever
customer used the discounts to buy all books for 6 less than if she had bought each book at its lowest price:
3 for b1, 1 for b2, 2 for b3 and b4 together
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any discount shop, i.e., a shop whose discount is claimed, and let b1 and b2 be the
books it sells. Then at least one of them has to be bought from s to get the discount.
We distinguish between the following three cases, where the computation of the
amount spent at each shop follows directly from how weights in G′ were assigned:

– If {b1, s} ∈ E∗ and {b2, s} /∈ E∗, add {b1, s} to M . The amount spent at this
shop is w({b1, s}) − ds = p(b1) − w′({b1, s}).

– Similarly, if {b2, s} ∈ E∗ and {b1, s} /∈ E∗, add {b2, s} to M . The amount
spent at this shop is w({b2, s}) − ds = p(b2) − w′({b2, s}).

– Finally, if {b1, s} ∈ E∗ and {b2, s} ∈ E∗, then add {b1, b2} to M . The
amount spent at this shop is w({b1, s}) + w({b2, s}) − ds ≥ p(b1) + p(b2) −
w′({b1, b2}).

Note that edges added to M are indeed present in E′, since in order to obtain the
discount from s, the book prices must satisfy the same condition as for creating
the corresponding edges. Note also that M is a matching, since each book can be
bought from at most one shop. Let B∗ be the set of books bought from discount
shops. Summing over all these shops, the total price paid for the books in B∗ is at
least

∑
b∈B∗ p(b) − ∑

e∈M w′(e).

The books in B \ B∗ do not yield any discount, so the total price paid for them
is at least

∑
b∈B\B∗ p(b). Overall, the cost of the books is at least

∑
b∈B p(b) −∑

e∈M w′(e), therefore
∑

e∈M w′(e) ≥ X.

Let M be a matching of G′ of weight W ; the conversion that takes place from
line 10 to line 11 in Algorithm 1 proceeds as follows. For each edge e ∈ M , let
se be the shop for which e was introduced. For an edge e = {b, se} ∈ M , buy
book b from shop se. The price is sufficient to reach the threshold for the discount,
so we pay w({b, se}) − de = p(b) − w′(e). For an edge e = {b1, b2} ∈ M ,
buy books b1 and b2 together from shop se. We again get the discount, and pay
w({b1, se})+w({b2, se})−de = p(b1)+p(b2)−w′(e). Note that for e �= f ∈ M ,
se �= sf , so we never count the same discount twice. For every other book, buy
them at the cheapest possible price p(b), without expecting to get any discount.
The total price paid is at most

∑
b∈B p(b)−∑

e∈M w′(e) = ∑
b∈B p(b)−W .

We now give a dynamic programming FPT algorithm with the number of books
as parameter.

Proposition 6 CLEVER SHOPPER admits an FPT algorithm for parameter n with
running time O(m3n).

Proof Given j ∈ [m] and B ′ ⊆ B, let pj (B
′) be the price for buying all books in B ′

together from shop sj (discount included), and p≤j (B
′) be the lowest price that can

be obtained when purchasing all books in B ′ from a subset of {s1, s2, . . . , sj }. Our
goal is to compute p≤m(B).

For j = 1, clearly p≤1(B
′) = p1(B

′) for every B ′. For any other j , consider
an optimal way of buying the books in B ′ from shops s1, s2, . . . , sj . This way the
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customer buys some (possibly empty) subset B ′′ of books in sj , and the rest, i.e.,
B ′ \ B ′′, at the lowest price from shops s1, s2, . . . , sj−1. Therefore:

p≤j (B
′) =

{
pj (B

′) if j = 1,

minB ′′⊆B ′ {pj (B
′′) + p≤j−1(B

′ \ B ′′)} otherwise.

The values of pj (B
′) for all j and B ′ can be computed in O(m2n) time. Then

the dynamic programming table requires to enumerate, for all j , all subsets B ′ and
B ′′ such that B ′′ ⊆ B ′ ⊆ B. Any such pair B ′′, B ′ can be interpreted as a vector
v ∈ {0, 1, 2}n, where i ∈ B ′′ ⇔ vi = 2 and i ∈ B ′ ⇔ vi ≥ 1. Therefore, filling the
dynamic table takes m3n steps, each requiring constant time.

As usual with dynamic programming, this algorithm yields the optimal price that
can be obtained. One gets the actual solution (i.e., where to buy each book) with
classic backtracing techniques.

The NP-hardness of CLEVER SHOPPER for two shops (using large prices, encoded
in binary) and its W[1]-hardness when the parameter is the number of shops leave a
very small opening for positive results: we can only consider small prices (encoded
in unary) for a constant number of shops. The following result proves the tractability
of this case.

Proposition 7 CLEVER SHOPPER admits an XP algorithm running in time
O(nmWm), where W is the sum of all the prices of the instance, n is the number of
books, and m is the number of shops.

Proof We propose the following dynamic programming algorithm, which generalises
the classical pseudo-polynomial algorithm for PARTITION. Let i ∈ [n] and ps ∈ [W]
for s ∈ S. Define T [i, ps1 , . . . , psm ] as 1 if it is possible to buy books 1 to i by
spending exactly ps (discount excluded) at shop s; and 0 otherwise. For i = 0,
T [0, ps1 , . . . , psm ] = 1 if and only if ps = 0 for all s ∈ S. The following formula
allows to fill the table recursively for i ≥ 1:

T [i, ps1 , . . . , psm ] = max
e∈E,i∈e

T [i − 1, p′
s1

, . . . , p′
sm

] where p′
s =

{
ps − w(e) if s ∈ e,
ps otherwise.

Finally, we need to check whether the table contains a valid solution. To this end,
we need to take the discounts into account. Clearly, an entry T [n, ps1 , . . ., psm ] = 1
leads to a solution if the following holds:

m∑
i=1

psi −
m∑

i=1,psi
≥tsi

dsi ≤ K .

The running time corresponds exactly to the time needed to fill the table: any of the
nWm cells requires at most m look-ups, which yields the claimed running time.

The CLEVER SHOPPER problem also turns out to be fixed parameter tractable in
the number of shops in the case where all books are sold at the same price. It is based
on the following notion. Let G = (B∪S, E) be a bipartite graph, and f : B∪S → N;
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an f -star subgraph [13] is a subgraph G′ of G such that the degree of each vertex
u ∈ B ∪S is at most f (u) in G′, and every connected component of G′ is isomorphic
to K1,p for some integer p.

Let S′ ⊆ S. We write fS′ : B ∪ S → N for the following function:

fS′(b) = 1 for b ∈ B,

fS′(s) = ts for s ∈ S′,
fS′(s) = 0 for s /∈ S′.

Algorithm 2 enumerates all subsets S′ of S in time 2|S|, and for each subset, com-
putes a maximum fS′-star subgraph in time O(|E| log |B ∪ S|) [13]. We prove its
correctness in Proposition 8.

Proposition 8 CLEVER SHOPPER admits an FPT algorithm for parameter m when
all prices are equal.

Proof We assume without loss of generality that all prices are equal to 1. We write
dS′ = ∑

s∈S′ ds and tS′ = ∑
s∈S′ ts . Let I = (B ∪ S, E, w,D, K) be an instance of

CLEVER SHOPPER with w(e) = 1 for all e ∈ E. We show that I is a yes-instance if
and only if there exists S′ ⊆ S with |B| − dS′ ≤ K such that (B ∪ S, E) admits an
fS′-star subgraph with tS′ edges, thereby proving the correctness of Algorithm 2.

Let E′ ⊆ E be a solution and S′ be the set of shops whose threshold ts is
reached. Since the total price is |B| − dS′ , we have |B| − dS′ ≤ K . Since every
weight equals 1, all vertices of S′ have degree at most ts in E′. Let E′′ ⊆ E′ be a
subset obtained by keeping exactly ts edges incident to each s ∈ S′ and no edge
incident to s /∈ S′. Then E′′ is an fS′-star subgraph of size tS′ .

Let G′ = (B ∪ S, E′) be a spanning fS′-star subgraph of G of size tS′ with
S′ ⊆ S, and |B| − dS′ ≤ K . The degree and size constraints force all vertices
in S′ to have degree exactly ts in G′. We build a solution as follows: for each
book b ∈ B, if E′ contains an edge {b, s} incident to b, then buy b from shop s,
otherwise buy b from any other shop. Overall, at least ts books are purchased from
a shop s ∈ S′, so the total price is at most |B| − dS′ .

Theory of Computing Systems (2020) 64:17–3428



Finally, another fixed parameter tractability result can be obtained based on the
number of shops and the largest price at which a book is sold. The algorithm we
design is based on n-fold integer programming, or n-fold IP for short. An instance
of n-fold integer programming is given by a matrix E = (

D
A

)
with E ∈ Z

(r+s)×t , a
positive integer n, and integral vectors w,b, l, u. The solution is an nt-dimensional
vector x – a minimiser of the following integer linear program:

min
{
wx | E(n)x = b , l ≤ x ≤ u , x ∈ Z

nt
}

,

where E(n) :=

⎛
⎜⎜⎜⎜⎜⎝

D D · · · D

A 0 · · · 0
0 A · · · 0
...

...
. . .

...
0 0 · · · A

⎞
⎟⎟⎟⎟⎟⎠

.

Note that vector x splits naturally into n so-called bricks. Hemmecke et al. [15] gave
the first FPT algorithm for parameters r, s, t , and � = ‖E‖∞. Its running time has
been improved in subsequent works [1, 12, 18, 19]; the following theorem gives
the currently best known running time. We use 〈·〉 to express the length of binary
encoding.

Theorem 1 [12, 19] There is an algorithm for solving n-fold IP in time �O(r2s+rs2) ·
(nt)2 · log(n)〈‖w‖∞, b, l, u〉.

Proposition 9 CLEVER SHOPPER admits an FPT algorithm for combined parameter
m and wmax, where wmax is maximal price of a book.

Proof We may assume a set of shops SD ⊆ S where the shopper gets the discount is
fixed, since m is a parameter and we may thus try all possibilities for SD .

We present an n-fold IP formulation for CLEVER SHOPPER. We associate a brick
with each book. Let D be an m × (m(wmax + 1)) matrix consisting of m copies of
a row vector (0, 1, . . . , wmax); here each row is associated with a shop in S. Before
we reveal the use of D (which will be responsible for passing the thresholds in the
selected shops SD), let us first consider matrix A and the intuition behind variables
x, more precisely, its bricks xb for b ∈ B. The entries of x are xb

s,ω, where b ∈ B,
s ∈ S, and ω ∈ � = {0, 1, . . . , wmax}. The matrix A has only one row corresponding
to the condition ∑

s∈S

∑
ω∈�

xb
s,ω = 1 , (1)

that is, we are going to buy one copy of each book in B as requested. We set the lower
bounds on x to 0 while the upper bounds are set as follows

xb
s,ω ≤

{
1 if the shop s sells the book b at price ω

0 otherwise.

Note that by this xb
s,ω = 0 whenever it is not possible to buy a book b in a shop s for

price ω.
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Returning our attention back to D, using this matrix we introduce the following m

conditions (each for a shop s ∈ S)
∑
b∈B

∑
ω∈�

ω · xb
s,ω ≥ τs , (2)

where τs = ts if s ∈ SD and τs = 0 otherwise.
Finally, we are going to minimize the following objective

∑
b∈B

∑
s∈S

∑
ω∈�

w · xb
s,ω −

∑
s∈SD

ds .

This finishes the description of our model and thus it remains to conclude that the
solution of the above n-fold IP is indeed a solution to CLEVER SHOPPER and deter-
mine its parameters in order to use Theorem 1. To see this, recall that by (1) we buy
one copy of each book b ∈ B and by (2) we buy books for at least ts in all shops
s ∈ SD . To this end, the largest coefficient � is wmax, the matrix D has m rows, and
the matrix A has only one row; thus, by Theorem 1 one can solve the above IP in
(wmax)

O(m2)n2 log(n) time. Consequently, our algorithm solves the given instance of
CLEVER SHOPPER in 2m(wmax)

O(m2)n2 log(n) = (wmax)
O(m2)n2 log(n) time, since

we may assume wmax ≥ 2.

5 Approximations

Since variants of CLEVER SHOPPER are, by and large, hard to solve exactly, it is
natural to look for approximation algorithms. However, our hardness proofs can be
modified to imply the NP-hardness of deciding whether the total price (including
discounts) is 0 or more. For instance, in Proposition 1, we can set the discounts to
T/2 instead of 1, so the PARTITION instance reduces to checking whether the optimal
solution has cost 0. Therefore, we start with the following bad news:

Corollary 1 CLEVER SHOPPER admits no approximation unless P = NP.

Since this result seems resilient to most natural restrictions on the input structure
(bounded prices, bounded degree, etc.), our proposed angle is to maximise the total
discount rather than minimise the total cost. However, maximising the total discount
is only relevant when the base price of the books is the same in all solutions (other-
wise the optimal solution might not be the one with maximum discount), i.e., each
book b has a fixed price wb, and w({b, s}) = wb for every {b, s} ∈ E. We call
this variant MAX-DISCOUNT CLEVER SHOPPER. This “fixed price” constraint is not
strong (all reductions from Section 3 satisfy it). In this setting, Proposition 1 shows
that it is NP-hard to decide whether the optimal discount is 1 or 2. This yields the
following corollary:

Corollary 2 MAX-DISCOUNT CLEVER SHOPPER is APX-hard: it does not admit a
(2 − ε)-approximation unless P = NP.
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Whether or not MAX-DISCOUNT CLEVER SHOPPER admits a fixed-ratio approx-
imation remains open. We show that it remains APX-hard even when the degrees of
vertices in the input graph are bounded.

Proposition 10 MAX-DISCOUNT CLEVER SHOPPER is APX-hard even when each
shop sells at most 3 books, and each book is available in at most 2 shops.

Proof We reduce from MAX 3-SAT (the problem of satisfying the maximum num-
ber of clauses in a 3-SAT instance), known to be APX-hard when each literal occurs
exactly twice [3]. Let ϕ = C1 ∧ C2 ∧ · · · ∧ Cm be such a 3-CNF formula over a set
X = {x1, x2, . . . , xn} of boolean variables. For every 1 ≤ i ≤ m and 1 ≤ j ≤ 3,
let �i,j be the j -th literal of clause Ci . We obtain an instance I of MAX-DISCOUNT

CLEVER SHOPPER by first building a bipartite graph G = (B ∪S, E) as follows (for
ease of presentation, Ci , xi and �i,j will be used both to denote respectively clauses,
variables and literals in 3-CNF formula context, and the corresponding vertices in G):

B = {�i,j : 1 ≤ i ≤ m and 1 ≤ j ≤ 3} ∪ {xi : 1 ≤ i ≤ n}
S = {Ci : 1 ≤ i ≤ m} ∪ {ti , fi : 1 ≤ i ≤ n}
E = E1 ∪ E2,p ∪ E2,n ∪ E3

where

E1 = {{�i,j , Ci} : 1 ≤ i ≤ m and 1 ≤ j ≤ 3}
E2,p = {{�i,j , ti} : 1 ≤ i ≤ m and �i,j is the positive literal xi}
E2,n = {{�i,j , fi} : 1 ≤ i ≤ m and �i,j is the negative literal xi}

E3 = {{xi, ti}, {xi, fi} : 1 ≤ i ≤ n}.
Observe that each shop sells exactly 3 books and that each book is sold in exactly 2
shops. We now turn to defining the prices, the thresholds and the discounts. All shops
sell books at a unit price. For the shops Ci , 1 ≤ i ≤ m, a purchase of value 1 yields
a discount of 1. For the shops ti and fi , 1 ≤ i ≤ n, a purchase of value 3 yields a
discount of 2. This discount policy implies that, for every 1 ≤ i ≤ n, a customer
cannot obtain a 2 discount both in shop ti and in shop fi (this follows from the fact
that the book xi is sold by both shops ti and fi).

First, it is easy to see that the largest discount that can be obtained is 2n + m (the
upper bound is achieved by obtaining a discount in every shop Ci for 1 ≤ i ≤ m, and
in either the shop ti or the shop fi for 1 ≤ i ≤ n). On the other side, for any truth
assignment τ for ϕ satisfying k clauses, a 2n+k discount can be obtained as follows.

– For any variable xi , 1 ≤ i ≤ n, if τ(xi) = false, then buy 3 books from shop
ti , and if τ(xi) = true then buy 3 books from shop fi . Intuitively, if a variable
is true, then all negative literals are “removed” by fi , and all positive literals
remain available for the corresponding clauses.

– For any clause Ci = �i,1 ∨ �i,2 ∨ �i,3 satisfied by the truth assignment τ , buy
book �i,j from shop Ci , where �i,j is a literal satisfying the clause Ci .
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Then it follows that

opt(I ) = 2n + opt(ϕ) = 3m/2 + opt(ϕ) (since 4n = 3m)

≤ 3opt(ϕ) + opt(ϕ) (since 2opt(ϕ) ≥ m)

≤ 4opt(ϕ).

Suppose now that we buy all books in B for a total discount of k′. First, we may
clearly assume that k′ ≥ 2n since a total 2n discount can always be achieved by
buying 3 books either from shop ti or from shop fi , for every 1 ≤ i ≤ n. Second,
we may also assume that, for every 1 ≤ i ≤ n, we buy either exactly 3 books from
shop ti or exactly 3 books from shop fi . Indeed, if there exists an index 1 ≤ i ≤ n

for which this is false, then buying either exactly 3 books from shop ti or exactly 3
books from shop fi instead results in a total k′′ discount with k′′ ≥ k′ (this follows
from the fact that we can get a 2 discount from ti or fi but only a 1 discount from
any shop Cj , 1 ≤ j ≤ m). We now obtain a truth assignment τ for ϕ as follows:
for any variable xi , 1 ≤ i ≤ n, set τ(xi) = false if we buy 3 books from shop
ti , and set τ(xi) = true if we buy 3 books from shop fi (the truth assignment τ is
well-defined since, for 1 ≤ i ≤ n, we cannot simultaneously buy 3 books from shop
ti and 3 books from shop fi because of book xi). Therefore, a clause Ci is satisfied
by τ if and only if the corresponding shop Ci contains at least one book li,j which is
not bought from some other shop ti or fi . If we let k stand for the number of clauses
satisfied by τ , then we obtain k ≥ k′ − 2n. It then follows that

opt(ϕ) − k = opt(I ) − 2n − k ≤ opt(I ) − 2n − k′ + 2n = opt(I ) − k′.
Therefore, our reduction is an Ł-reduction (i.e., opt(I) ≤ α1opt(ϕ) and opt(ϕ)− k ≤
α2

(
opt(I) − k′)) with α1 = 4 and α2 = 1.

On the other hand, we can obtain an approximability result based on the number
of books sold by each shop.

Proposition 11 MAX-DISCOUNT CLEVER SHOPPER where each shop sells at most
k books admits a k-approximation.

Proof Let Bs be the set of books sold by shop s. Our approximation algorithm pro-
ceeds as follows: start with a set of selected shops S′ = ∅, a set of available books
B ′ = B and sort the shops by decreasing value of ds . Then for each shop s, let
B ′

s = Bs ∩ B ′. If the books in B ′
s are enough to get the discount (

∑
b∈B ′

s
≥ ts), then

assign all books of B ′
s to shop s, add s to S′ and set B ′ = B ′ \ B ′

s . Finally, assign the
remaining books to arbitrary shops that sell them.

We now prove the approximation ratio. For any b ∈ B, if b ∈ B ′
s for some s ∈ S′

then let δ(b) = ds , and δ(b) = 0 otherwise. Thus, for any shop s ∈ S′, ds =
1

|B ′
s |

∑
b∈B ′

s
δ(b) ≥ 1

k

∑
b∈B ′

s
δ(b) due to the degree-k constraint. Note that for each

shop of S′, the amount spent at s is at least ts , so the total discount obtained with this
algorithm is D ≥ ∑

s∈S′ ds ≥ 1
k

∑
b∈B δ(b).

We now compare the result of the algorithm with any optimal solution. For such
a solution, let D∗ be its total discount, S∗ be the set of shops where purchases reach
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the threshold, and, for any s ∈ S∗, let B∗
s be the (non-empty) set of books purchased

in shop s. Note that D∗ = ∑
s∈S∗ ds .

Consider a shop s ∈ S∗. We show that there exists a book b∗(s) ∈ B∗
s with

δ(b∗(s)) ≥ ds . If s ∈ S∗ ∩ S′, then we take b∗(s) to be any book in B∗
s . Either

b∗(s) ∈ B ′
s , in which case δ(b∗(s)) = ds , or b∗(s) /∈ B ′

s , in which case b∗(s) was
assigned by the algorithm to a shop with a larger discount, i.e., δ(b∗(s)) ≥ ds . If
s ∈ S∗ \ S′, since s /∈ S′, at least one book in B∗

s is not available at the time the
algorithm considers shop s; let b∗(s) be such a book. Since it is not available, it
has been selected as part of B ′

s′ for some earlier shop s′ (i.e., ds ≤ ds′). Therefore,
b∗(s) ∈ B∗

s ∩B ′
s′ and δ(b∗(s)) = ds′ ≥ ds . Since the sets B∗

s are pairwise disjoint for
s ∈ S∗, we have

∑
s∈S∗ δ(b∗(s)) ≤ ∑

b∈B δ(b). Putting it all together, we obtain:

D∗ =
∑
s∈S∗

ds ≤
∑
s∈S∗

δ(b∗(s)) ≤
∑
b∈B

δ(b) ≤ kD.

6 Conclusion

We introduced the CLEVER SHOPPER problem, a variant of INTERNET SHOPPING

with free deliveries and shop-specific discounts based on shop-specific thresholds.
We proved a number of hardness results, both in the classical complexity setting and
from a parameterised complexity point of view. We also gave efficient algorithms
for particular cases where restrictions apply to the number of books, the number of
shops, or the nature of prices.

An interesting angle for future work is that of designing efficient exact algorithms
for the general cases in which our FPT algorithms are not sufficient.
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