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Abstract. We study the problem of computing the minimal number
of adjacent, non-intersecting block interchanges required to transform
a permutation into the identity permutation. In particular, we use the
graph of a permutation to compute that number for a particular class
of permutations in linear time and space, and derive a new tight upper
bound on the so-called transposition distance.

1 Introduction

The problem we study is a particular case of a problem called genome rear-
rangement [I2], which is motivated by applications in biology. The genome
rearrangement problem can be formulated as follows: given two genomes, find
the minimum number of evolutionary events transforming one into the other.
This number is defined as the distance between the two genomes.

The model we are interested in applies to the case where the order of genes is
known and where all genomes share the same set and number of genes (without
duplications), which allows us to represent them by permutations. It is easy to
show that what we have defined as a distance is indeed a distance on the set of
all permutations (i.e. it satisfies the three usual axioms).

We will consider only one operation on permutations: biological transposi-
tions, which consist in moving a block of contiguous elements from one place to
another one. This problem was first introduced in 1995 by Bafna and Pevzner [3],
and is generally considered harder than similar problems. In particular, neither
its complexity, nor even the diameter of the transposition distance (i.e. the
maximal value it can reach), is known, which has led several authors to design
polynomial-time approximation algorithms (whose best known ratid] is % [3U51E])
as well as using and comparing heuristics [5I7I8/9]. An interesting property of
this distance is that the transposition distance between any two permutations
7, o is the same as the distance between o~! o m and the identity permutation
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t=(12 --- n). Therefore, the problem of transforming a permutation into an-
other one using as few transpositions as possible is the same as that of sorting a
permutation using the minimum number of transpositions. In what follows, we
refer to the latter number as the distance of m, noted d(m). While other authors
have tried to find the shortest possible sequences of transpositions that sort a
permutation, we have chosen to focus on computing their length.

In this paper, we make use of the common graph of a permutation rather than
of the “cycle graph” introduced in [3]. A step in this direction was mentioned
in [I0] and successfully used to compute another rearrangement distance in [I1].
As we suspected, it proved fruitful for our problem too: we were able to show that
the distance of some nicely characterized permutations, namely those who fix
even or odd elements and another class derived from those two, can be computed
in linear time, using a formula that completely bypasses any graph structure used
so far. Furthermore, we use those permutations to derive a tight upper bound
on the transposition distance of every permutation.

This paper is organized as follows. In Section Bl we review previous results
and typical notations. In Section[3] we introduce a graph that we use in Section[4]
to provide a formula for computing the distance of some special permutations
in linear time. In Section Bl we use those to derive an upper bound on the
transposition distance of every permutation. Finally, we discuss our results in
Section [0] and suggest some open questions of interest.

2 Notations and Preliminaries

Permutations are denoted by lower case Greek letters, typically 7, and S, is
the set of all permutations of {1,2,...,n}. For any permutation 7 in S,, the
transposition 7(i,j,k) with 1 < i < j < k < n+ 1 applied to 7 exchanges
the closed intervals determined respectively by ¢ and j — 1 and by j and k£ — 1,
transforming 7 into 7 o 7(4, j, k). So 7(4, j, k) is the following permutation:

Leoi—1]iitl - j=25—1][jj+1 - k—1]k - n
Leed=1jj+1 - k=1[ii+1 - j=2j—1]k - n)

The usual notation is shorter than the one we have just used to describe
transpositions, i.e. we write a permutation 7 in S,, as (7, 72 - -+ 7,). Bafna and
Pevzner [3] define the cycle graph of 7 as the bicoloured directed graph G(m),
whose vertex set consists of the elements of 7 plus two new elements 7y = 0 and
Tn+1 = 1+ 1, and whose edge set consists of:

— black edges (m;j,mi—1) for 1 <i<n+1;
— gray edges (i,i+1) for 0 <i<n.

The set of black and gray edges decomposes in a single way into alternate
cycles, i.e. cycles which alternate black and gray edges, and we note the number
of such cycles ¢(G()). An alternate cycle of G() is odd (resp. even) if it con-
tains an odd (resp. even) number of black edges, and we note coqq(G(7)) (resp.
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Ceven (G(m))) the number of odd (resp. even) alternate cycles of G(7). Bafna and
Pevzner proved the following lower bound on the transposition distance.

Theorem 1. [3/V 7 € S, : d(n) > "+1_c+d(c(”)) .

For a permutation m, define an ordered pair (m;,m; 1) as a breakpoint if
miy1 7 ™ + 1. The number of breakpoints of 7 is denoted by b(w). Christie [5]
decomposes permutations into strips, which he defines as maximal intervals con-
taining no breakpoint. He denotes gl(w) the reduced version of m, obtained as
follows: assuming 7 has r strips, remove strip 1 if it begins with 1, strip r if
it ends with n, replace every other strip with its minimal element and finally,
renumber the resulting sequence so as to obtain a permutation of S, (r < n).

Theorem 2. [5]V 7 € S, : d(m) = d(gl(m)).

We say that m and o are equivalent by reduction if gl(w) = g¢l(o), which
we also write as m =, o. Since we are presenting a new upper bound on the
transposition distance of every permutation, it is only fair that we conclude this
section with the ones that were previously shown.

Theorem 3. [J/V 7€ S, :

i) < 3n+1-— Zodd(G(Tr))) ' (1)

Theorem 4. [19/V 7€ S, :

d(r) < 2 b(r) 2)
Theorem 5. [13]/V 7€ S, :
2n ifn
am<{ bl ISy 3

3 Another Useful Graph

We will make use of a variant of the well-known graph of a permutation. The
I'—graph of a permutation 7 in S, is the directed graph I'(w) with vertex set
{(1,m),(2,72), ..., (n, ™)} and edge set {((¢,m), (j, 7)) | j =mi}.

If C = (1,42, ..., 1) isacycle of 7 (i.e. m maps 4; onto ;41 for 1 <1 < k—1 and
i, onto 1), we obtain a cycle (i1, m;,), (i2,7iy ), --vy (ik, ™, ), Which we also denote
C,in I'(7), and call it a k—cycle. We say that such a cycle is positively oriented if
k > 3 and its elements can be written as a strictly increasing sequence, negatively
oriented if k > 3 and its elements can be written as a strictly decreasing sequence,
and unoriented otherwise.

For instance, in Fig. [ cycle (4, 2, 1) is negatively oriented, cycle (5) is
unoriented, and cycle (3, 6, 7) is positively oriented. Note that every 1—cycle
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(1,4) (2,1) (3,6) (4,2) (5,5) (6,7) (7.3)

Fig. 1. The I'—graph of the permutation (416 25 7 3)

and every 2—cycle is unoriented. In a quite similar fashion to the parity of cycles
defined in the context of G(w), we say that a k—cycle of I'(w) is odd (resp.
even) if k is odd (resp. even). Likewise, we note ¢(I'()) the number of cycles of
I'(7), and coqq(I(m)) (resp. ceven(I'())) the number of odd (resp. even) cycles
of I'(rm).

4 An Explicit Formula for Some Permutations

We define a y—permutation as a reduced permutation that fixes even elements
(thus n must be odd), and show (Theorem [6) that the distance of such a per-
mutation, and several others, can be computed quickly, without the need of the
cycle graph.

Proposition 1. For every v—permutation m in Sy:

{Ceven(G<7")) =2 Ceven(r<7")) ;
codd(G(w)) =2 (Codd(F(ﬂ)) — nT—l) .

Proof. Each vertex (i,7;) of I'(m) corresponding to an odd element 7; is both
the starting point of an edge ((¢,m;), (7, 7;,)) and the ending point of an edge
((j2,1), (i,7;)). Since ; is odd and 7 is a y—permutation, 7; + 1 is mapped onto
itself, and 7;, precedes m; + 1 in 7. In G(m), those edges are each transformed
into one sequence of two edges (gray-black for the first one, black-gray for the
second one):

((ivﬂ-i)v (7T1',7Tj1)) becomes (TrivTri + 1)7 (Tri + lvﬂ-jl) ;
((jg,i), (i,ﬂi)) becomes (7Tia7ri—1)7 (7Ti_1,7Tj2) .

Le. the outgoing edge of (i,7;) in I'(w) is transformed in one of the following
ways (according to the relative positions of m; and 7, ):

2N ) TN

a/) [ ] .. [ ] [ ] — [ ] e @=<—— 0
(,7;) (7, i) (mi +1,m +1) T T m+1
b) Omo — e<—e@ --- @

(ms,m50)  (m+1,m + 1) (4, ;) T, mt+l o om
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Similarly, the incoming edge of (¢, 7;) in I'(w) is transformed in one of the fol-
lowing ways (according to the relative positions of m; and 7, ):

9 /N 7N

a) [ ] [ ] Y — oe<— o °
(Tim1,mi—1) (i,7) (ja, 1) i1 ue Tj,

b) ./_(;N. — [ ] .. o<—-20
(ja,1) (mic1,mic1)  (4,7) Tjy i1 T

Each k—cycle (k > 2) of I'(m) provides an alternate cycle with k black edges
in G(); moreover, for every such cycle of I'(7), a new cycle is created in G(r),
which actually corresponds to the cycle of I'(7) followed in the opposite direction.
Parity of cycles of I'(r) is obviously preserved in G(), since to each vertex of a
k—cycle (k > 2) of I'(m) corresponds a black edge in G(). Finally, 1—cycles of
I'(m) are not preserved in G(r), and there are 251 of them. O

We derive the following lower bound from Proposition [l and Theorem [l
Lemma 1. For every y—permutation 7 in Sy, we have d(w) > n — coqa(I()).
Proof. Straightforward. O

We will first study permutations such that odd elements form only one cycle
in I'(n), distinguishing the case of oriented cycles and that of unoriented ones.

4.1 Oriented Cycles

We define an a—permutation as a reduced permutation that fixes even elements
and whose odd elements form one oriented cycle in the graph I', and refer to
the long cycle formed by the "TH odd elements as its main cycle.

Proposition 2. For every a—permutation © in Sy, we have d(r) nrs —

("T'H mod 2) .

Proof. Since every a—permutation is a y—permutation, Lemma [l yields d(7) >

"T'H — ("T'H mod 2). We assume that the main cycle of I'(w) is positively oriented

(a similar proof is easily obtained in the negative case).

1. if "T“ is odd, consider transpositions 71 (2,4,n + 1), 72(1,3,n); then an op-
timal sequence of "T'H — 1 transpositions that sorts 7 is

n+1
iri-1

(7'107'2) 2
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(ihﬂ-il) (i277ri2) (j1777j1) (j277rj2) (i1777i1) (j2777j2) (j1777j1) (i2777i2)
(a) b)

(41, 751) (2, 75) (i1, miy) (i2,mi5) |(J1,751) (i2, i) (i1, miy) (J2,7js)
(c) (d)

Fig. 2. The four possible configurations for crossing edges in I'(m)

2. if "TH is even, consider again transpositions 71, 7o defined above, and also
transpositions 73(2,3,n+ 1), 74(1,2,n+ 1); then an optimal sequence of ”T“
transpositions that sorts m is

n+1
=2

(T10T2) 2 073074 .
Short of space, we omit the proof that those sequences indeed sort our permu-
tations, but this can be easily shown by induction. ]

4.2 Unoriented Cycles

We now show that the orientation of a cycle does not matter, i.e. Proposition 2]
still holds if the main cycle of I'(7) is unoriented. We will make use of so-called
exchanges to simplify the proofs, namely bypassing the construction of optimal
sequences. An exchange exc(i,j) is the permutation that exchanges elements in
positions ¢ and 7, thus transforming every permutation 7 into the permutation
moexc(i,j).

exc(i,j) = (1"-1'—1i—i—l---j—lj-i—l"'”).

1~~'i71i+1~'j71 j+1-n

We will only use exchanges of the form exc(i, i 4+ 2k) with k& > 1; such an ex-
change can be simulated by two transpositions, but the correspondence between
those two types of operations is not that straightforward when exchanges are
composed.

We say that two edges a1 = ((i1, 7, ), (j1, 75, )) and as = ((i2, mi,), (J2,7j,))
of I'(m) cross if intervals [i1, j1] and [ia, j2] do not contain each other and have a
non-empty intersection. The four possible configurations for crossing edges are
shown in Fig.

We define a f—permutation as a reduced permutation that fixes even el-
ements and whose odd elements form one unoriented cycle in the graph I'.
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Fig. 3. Two possible ways of contracting paths in a S—permutation (1—cycles and
indices omitted for clarity)

Clearly, the main cycle of the I"'—graph of every S—permutation 7 (except (3
2 1)) contains crossing edges. We are going to transform 7 into a permutation
o that reduces to an a—permutation, and this will be achieved through the re-
moval of crossing edges using a certain sequence & of exchanges. We thus get
the following upper bound on the distance of a f—permutation 7:

d(m) < f(&) + d(o)

where f(&) gives the minimum number of transpositions having the same effect
on 7 as & does. Finding ¢ is not difficult, but we have to find a ¢ such that our
upper bound is minimized.

To eliminate a crossing, we just have to make the ending point of one edge
become the starting point of the one it crosses, and this will be achieved using
a sequence of exchanges of the form described in the following proposition. By
a path, we mean the sequence of edges joining the extremities of the crossing
edges as mentioned above, and we will refer to the elimination of this path as
the contraction of it. The following proposition will be useful.

Proposition 3. For both sequences & = exc(i,i+2)oexc(i,i+4)o---oexc(i,i+
2t) and F = exc(i i+ 2t)o---oexc(i,i +4) o exc(i,i + 2) of t exchanges:

F(&) = f(F) =t+ (t mod 2) .

Proof. For any valid i, t, & and .% reduce to an a—permutation = whose main
cycle is a (t + 1)—cycle, and by Proposition 2

dir)=t+1—((t+1) mod2) =t+ (t mod 2) . 0
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Proposition 4. For every B3—permutation © in S,, we have d(r) = 2L —

("TH mod 2) . ’

Proof. Since every f—permutation is a y—permutation, Lemmal[ll yields d(7) >
ol — (24l mod 2). If 7 = (3 2 1), the thesis is easily verified; else the main
cycle of I'() contains at least one crossing.

If the main cycle of I'(7) contains only one crossing, then there is a path of ¢
edges joining the two crossing edges; this path can be contracted by a sequence
of t exchanges, sorting the elements belonging to that part of the cycle. For
instance, in case (a) of Fig. 2 it suffices to apply the sequence exc(iz,j1) o
-+ oexc(ia, iz + 4) o exc(is, iz + 2), and those t exchanges correspond to exactly
t + (t mod 2) transpositions (Proposition []).

Once this path has been contracted, t vertices have been removed from
the main cycle of I'(w) and this results in a permutation o reducible to an
a—permutation. We have:

d(7r)gd(w,a)-l—d(o):t+(tmod2)+nT+1—t— ((";1 —t) mod2)

o n+1 (n+1

5 5 mod 2)

which verifies our thesis.

In the case where several crossings exist, one must be careful not to contract
paths “individually”. Indeed, if we were to contract p such paths of ¢, edges
(1 < g < p) in that way, we would have to use 22:1 ty exchanges to contract
them all, which would correspond to 521 (ty+ (ty mod 2)) transpositions. This
can actually be improved by exchanging the last exchanged element in the first
contracted path with the first element of the next path to contract, then continue
the contraction of the latter with dependent exchanges as before, and repeating
the same process whenever need be. For instance, Fig. [3] shows the transforma-
tion of a f—permutation into a permutation reducible to an a—permutation in
two different ways. Scenario (a) uses 3+3 exchanges = 8 transpositions (Propo-
sition[]), whereas scenario (b) uses the same number of exchanges, but requiring
this time only 6 transpositions.

Every S—permutation 7 containing p paths of ¢, edges to contract (1 < g <
p) can thus be transformed into a permutation o reducible to an a—permutation
such that d(m,0) = T + T mod 2, where T' = >V _, t,. The transpositions rep-
resenting those exchanges will eliminate T vertices from the main cycle of I'(w),
which yields the following upper bound:

d(x) < d(m,0) + d(0)
— T+ (T mod 2) + (”;Ll T ((”;1 —T) mod2)>

:nJrli n+1mod2
2 2

which equals the lower bound given above. a
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4.3 Distance of y—Permutations

Every permutation 7 can be sorted by eliminating each cycle of I'(7) individually
using exchanges (and therefore also using only transpositions), so that each

elimination does not modify other cycles. This strategy yields the following upper
bound on d(7).

Lemma 2. For every permutation w, consider its disjoint cycle decomposition
I'(m) = C1 U Cy U -+ U Cyr(r))- Denote d(C) the minimum number
of transpositions required to transform C = (i1,ia,...,4x) nto (i1), (i2), ..., (ix);
then:

e(I'(m))

d(m) < Z d(C;)

We now show that the lower bound of Lemma [I] is reached.

Proposition 5. For every y—permutation 7 in Sy, :
d(m) = n — coaa(I'(m)) - (4)

Proof. Each cycle of I'(w) is either oriented or unoriented, and the distance of
both kinds of cycles is known (Propositions 2] and H)). Denote odd(I'(w)) (resp.
even(I'(m))) the set of odd (resp. even) cycles of I'(); by Lemma [2] we have:

e(I'(m))
i=1
> G-+ > |Cis |
Ciy € odd(I'(m)) Ciy € even(I'(m))
e(I'(m))
> 1Cil = coaa(T(m)) -

i=1

d()

IN

And since every element belongs to exactly one cycle, the last sum equals n and
Lemma [I] verifies the thesis. O

Note that Proposition [Bl can be expressed in a more general way: by Theo-
rem [2, we know that 7 needs not be reduced, and adding k 1—cycles to I'(n)
at any position increases both n and ¢,qq4(I'(7)) by k, so Equation M still holds.
The same Theorem allows us to ask for odd elements to be fixed, instead of
even ones; we then have m; = 1, and we can reduce 7 to a y—permutation (e.g.
(14365872)=, (325476 1)). This result can also be extended using
toric permutations, introduced in [I3] and further studied in [I4]. We borrow the
latter author’s notations; let us note, for = € {0,1,2,...,n}:

1. " = (z+m) (mod n+ 1);
2. z,, = (x—m) (mod n+1).
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Define a circular permutation obtained from a permutation 7 in S,, as 7° =
0 m mo +++ mp, where 0 = w5 = 7, ;. This circular permutation can be read
starting from any position, and the original linear permutation is reconstructed
by taking the element following 0 as 7; and removing 0. Define the following
operation on circular permutations:

=m __ JR— —_
m+n=0 T TR Ty

Then for 7 in S,,, the corresponding toric permutation is w2, which is the set
of permutations obtained from m + 7° with 0 < m <mn.

Lemma 3. [I3/V 7,0 € S, :0€nd=d(o)=d(m) .

Therefore, if n is odd and all odd elements of 7 in S,, occupy odd positions
and form an increasing subsequence modulo n+ 1, then m € ¢F where o satisfies
the conditions described right after Proposition Bl Indeed, if n is odd, adding 1
(mod n+1) to each element of 7° transforms n into 0, i.e. the new starting point
of the resulting permutation, and all odd elements into even ones; therefore 7 is
transformed into a permutation whose even elements are all fixed, and we have
the following.

Theorem 6. For every m in S, that fizes even or odd elements:
d(m) =n — coqa(I' (1)) .

Moreover, every permutation o with n odd and whose odd elements occupy odd
positions and form an increasing subsequence modulo n + 1 can be transformed
in linear time into a permutation 7 such that d(c) = d(7) = n — coqa(I'(7)) .

5 A New Upper Bound

We now show that the right-hand side of Equation Bl is an upper bound on the
transposition distance. First we show why y—permutations are so important.

Theorem 7. Every permutation 7 in Sy, except v, can be obtained from a
~y—permutation o in Snpir by removing k even elements in o.

Proof. If  # + is no y—permutation, just add a 1—cycle to I'(w) between every
ordered pair (m;,m41) (1 < i < n — 1) of non-fixed elements and reduce the
resulting permutation 7’ in order to obtain a y—permutation ¢ € Sy x. This
operation can clearly be reverted, and this completes the proof. ]

We can now prove our main result.

Theorem 8. V7 €S, :

d(m) <n— coqa(I' (1)) . (5)
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Proof. Let o be the y—permutation from which 7 # ¢ is obtained by deletion of
k even elements. Cycles in I'(c) can all be sorted individually by sequences of ex-
changes for which we know the corresponding minimal number of transpositions
(Proposition (), and all these exchanges still work on I'(w) (after accordingly
adapting some of them). Therefore, we can claim that d(7) < d(o), and:

d(m) <d(o) =n+k—coaa(I'(0)) =n+k — coqa(I(7)) — k =n — coqa(I'(7)).

And even though ¢ cannot be obtained from a y—permutation, it is clear that
our thesis holds for it too, since d(¢) =0 <n —n. O

6 Conclusions and Future Plans

Using a well-known graph, we were able to show that the transposition distance
of some nicely characterized permutations can be computed in linear time, by-
passing the classical structure introduced in [3]. In fact, no graph at all is needed,
since decomposing a permutation into “classical cycles” is quite a trivial algo-
rithm, running in linear time. Such an approach has proved most successful for
computing another rearrangement distance in [I1], and we are confident it is of
great interest, certainly not just for the transposition distance. Furthermore, we
also proved that the formula used to compute this distance is actually an upper
bound on the transposition distance of every permutation.

Several questions arise.

Firstly, this new upper bound in Equation (fl) is sometimes better, sometimes
worse than the bounds in Equations (), @) and @), and we want to tighten
it. Table [Tl compares our result with previous ones, giving the number of cases
where it is at least as good as that of Theorems[3], [ and [5 Apart from a fast
approximation of the transposition distance, this could also help determine the
maximal value of d(7), which is still an open problem, as is the complexity of
sorting by transpositions.

Secondly, the permutations characterized in Theorem [@ are not the only ones
to reach our upper bound. Can the set of all such permutations be characterized?

Finally, there might be other useful permutation-related notions in combina-
torics that are as well-known and eluded in the theory of genome rearrangement
as is the graph we used. Although we do not think that those classical notions

Table 1. Comparison of our new upper bound with previous results

Number of permutations| B)<[@D)| E<@)| E<@)
2 6

6 1
24 8 8 15
120 45 24 31
720 304 49 495

5040 2055 722 1611
40320 17879 3094 4355
362880| 104392| 60871 10243

© 00 O Utk w3
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can model each and every notion of this problem (in particular, it has been
shown [I4] that the structure of G(7) is much more stable than that of I'(m)
under the toric equivalence class), we feel that some of them could be of interest.
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