Conjugacy of automata

Marie-Pierre Béal
with Sylvain Lombardy and Jacques Sakarovitch

Institut Gaspard-Monge
Université de Marne-la-Vallée et CNRS

Journées du GDR Informatique Mathématique
1er et 2 Janvier 2007
Conjugacy of symbolic dynamical shifts

Subshift

A set $X_\mathcal{F}$ of bi-infinite sequences of symbols over a finite alphabet avoiding a set of finite blocks \mathcal{F}.

Conjugacy between two subshifts

A bi-continuous bijection commuting with the shift transformation $(\sigma((x_i)_{i \in \mathbb{Z}}) = (x_{i+1})_{i \in \mathbb{Z}})$. Equivalently, a one-to-one and onto block map.

\[
\begin{array}{ccccccccc}
\bowtie & b & b & a & a & b & a & b & b & a \\
\downarrow & & & & & & \bowtie & & & \\
\bowtie & b & a & a & a & b & b & b & &
\end{array}
\]
Conjugacy of shifts of finite type

<table>
<thead>
<tr>
<th>Sofic shift</th>
<th>The set of labels of bi-infinite paths of a finite automaton.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shift of finite type</td>
<td>The set X_F of bi-infinite sequences avoiding a finite set of finite blocks F.</td>
</tr>
<tr>
<td>Edge shift</td>
<td>The set of labels of bi-infinite paths of a finite automaton whose labels are distinct. A shift of finite type is conjugate to an edge shift.</td>
</tr>
</tbody>
</table>
Examples

Shift of finite type $\mathcal{F} = \{bb\}$

Edge shift

Adjacency matrix $A = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$
Output state splitting of the state 2

The edge shifts defined by A and B are conjugate.

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \quad B = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$A = DE$ and $ED = B$ with $D = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{pmatrix}$ division matrix
Elementary equivalence of two nonnegative integral square matrices

\[A \cong B \text{ iff } A = XY \text{ and } YX = B \]

with \(X, Y \) nonnegative integral rectangular matrices.

\[
A = \begin{bmatrix} a & b \\ b & 0 \end{bmatrix} \leftrightarrow XY \quad YX \leftrightarrow B = \begin{bmatrix} a' & 0 & d' \\ c' & 0 & b' \\ 0 & b' & 0 \end{bmatrix}
\]

\[
X = \begin{bmatrix} x_1 & 0 & x_2 \\ 0 & x_2 & 0 \end{bmatrix} \quad Y = \begin{bmatrix} y_1 & 0 \\ y_2 & 0 \\ 0 & y_2 \end{bmatrix}
\]
Strong shift equivalence = conjugacy

\[A \approx B \text{ iff } A = A_0 \cong A_1 \cong \ldots \cong A_n = B \]

\[A \approx B \text{ iff } A = A_0 \rightarrow A_1 \rightarrow \ldots A_i \leftarrow \ldots \leftarrow A_n = B \]

where \(\rightarrow \) is a state splitting, and \(\leftarrow \) a state merging

\[? \ A = \begin{bmatrix} 1 & 4 \\ 3 & 1 \end{bmatrix} \rightarrow A_1 \rightarrow \ldots \rightarrow A_i \leftarrow \ldots \leftarrow A_n = B = \begin{bmatrix} 1 & 12 \\ 1 & 1 \end{bmatrix} \]

Decidability unknown
Automata with multiplicities in \mathbb{N}, \mathbb{Z}, \mathbb{K}

\[A = (I, M, T) \]

\[I = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \]

\[M = \begin{bmatrix} 0 & -a & 0 & a \\ b & 0 & a & 0 \\ 0 & b & 0 & b \\ b & 0 & -a & 0 \end{bmatrix} \]

\[T = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[\langle |A|, ab \rangle = 1 - 1 = 0 \]
Automata with multiplicities in \mathbb{N}, \mathbb{Z}, \mathbb{K}

\[I = \begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix} \]

\[\mu(a) = \begin{bmatrix} 0 & -1 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \]

\[\mu(b) = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \]

\[T = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \]

\[\langle |A|, ab \rangle = 1 - 1 = 0 = I \mu(a) \mu(b) T \]
Let $A = (I, M, T), B = (J, N, U)$, We define $A \xRightarrow{X} B$ iff

\[
IX = J, \quad MX = XN, \quad T = XU.
\]
Let $A = (I, M, T), B = (J, N, U)$, We define $A \overset{X}{\longrightarrow} B$ iff

\[
IX = J, \quad MX = XN, \quad T = Xu.
\]

$IM^n T =$
Let $\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U)$, We define $\mathcal{A} \xrightarrow{X} \mathcal{B}$ iff

$$IX = J, \quad MX = XN, \quad T = XU.$$

$$IM^n T = IM^n X U$$
Let $A = (I, M, T)$, $B = (J, N, U)$, We define $A \rightarrow^X B$ iff

\[IX = J, \quad MX = XN, \quad T = XU. \]

\[IM^n T = IX N^n U \]
Let $\mathcal{A} = (I, M, T), \mathcal{B} = (J, N, U)$, We define $\mathcal{A} \xrightarrow{X} \mathcal{B}$ iff

$$IX = J, \quad MX = XN, \quad T = XU.$$

$IM^n T = JN^n U$

The automata are equivalent.

Equivalence of automata is decidable (Schützenberger reductions).

The conjugacy is not an equivalence relation. It is a pre-order.
Theorem 1

Let A and B be two K-automata. If A and B are equivalent, then there is an automaton C such that $A \xleftarrow{X} C \xrightarrow{Y} B$.

- Compute a left reduction C of $A + B$ (If $A + B = \langle I, \mu, T \rangle$, compute a finite generating set of $\langle I\mu(w) \rangle$).

- One has $C \xrightarrow{[X\mid Y]} A + B$. If $C = (J, N, U)$, let $C' = (J, N, U/2)$. We get $C' \xrightarrow{X} A$ and $C' \xrightarrow{Y} B$.

Marie-Pierre Béal with Sylvain Lombardy and Jacques Sakarovi

Conjugacy of automata
Example

\[I = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix} \]

\[I \mu(a) = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} = J \]

\[J \mu(a) = \begin{bmatrix} 0 & 2 & 2 \end{bmatrix} = J \]
Example

Conjugacy of automata

\[
\begin{bmatrix}
1 & 1 & 0 \\
0 & 2 & 2
\end{bmatrix}
\]
Input state merging and covering

State merging from \mathcal{A} to \mathcal{B}

$\mathcal{A} = (I, M, T)$ covering of \mathcal{B}

$\mathcal{B} = (J, N, U)$
Let $\mathcal{A} = (I, M, T)$ and $\mathcal{B} = (J, N, U)$ be two \mathbb{Z}-automata.

There is a **covering** from \mathcal{A} to \mathcal{B} if $\mathcal{A} \xrightarrow{X} \mathcal{B}$, with X an amalgamation matrix $(\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 1 \end{pmatrix})$.

There is a **co-covering** from \mathcal{A} to \mathcal{B} if $\mathcal{B} \xrightarrow{X} \mathcal{A}$, with X a co-amalgamation matrix.

There is a **circulation** between \mathcal{A} and \mathcal{B} if $\mathcal{A} \xleftarrow{X} \mathcal{B}$, with X is diagonal matrix with coefficients 1 or -1.
Theorem 2

Let \(A \) and \(B \) be two \(\mathbb{Z} \)-automata. If \(A \xrightarrow{X} B \), then

\[
\begin{align*}
\text{co-covering} & \quad \text{circulation} \quad \text{covering} \\
A & \quad B
\end{align*}
\]
Theorem 2

Let A and B be two \mathbb{N}-automata. If $A \xrightarrow{x} B$, then A co-covering B linked with the finite equivalence theorem of W. Parry between sofic shifts of equal entropy.
Example of decomposition of a conjugacy

Marie-Pierre Béal with Sylvain Lombardy and Jacques Sakarovi
Conjugacy of automata
Theorem 1 + Theorem 2

\[|A| = |B| \]

\[A \xrightarrow{X} C \xrightarrow{Y} B \]
Theorem 1 + Theorem 2

\[|A| = |B| \]
Theorem 1 + Theorem 2

|\mathcal{A}| = |\mathcal{B}|

covering
\quad \text{circulation}
\quad \text{co-covering}
\quad X
\quad C
\quad Y
\quad \text{covering}

Marie-Pierre Béal with Sylvain Lombardy and Jacques Sakarovitch
Theorem 1 + Theorem 2

\[|A| = |B| \]
Theorem 1 + Theorem 2

$|A| = |B|$

$A \subseteq B$

covering

co-covering

X

C

co-covering

co-covering

circulation

co-covering

co-covering

circulation

Y

B

covering

Marie-Pierre Béal with Sylvain Lombardy and Jacques Sakarovitch

Conjugacy of automata
Theorem 1 + Theorem 2

\[|A| = |B| \]

covering

co-covering

circulation

\[A \leftarrow X \rightarrow C \rightarrow Y \rightarrow B \]

co-covering

circulation

covering
We knew that equivalence of automata with multiplicity was decidable.
We knew that equivalence of automata with multiplicity was decidable.

We have proved that there is a finite sequence of elementary transformations (with “graphical” interpretations) between the two equivalent automata.
We knew that equivalence of automata with multiplicity was decidable.

We have proved that there is a finite sequence of elementary transformations (with “graphical” interpretations) between the two equivalent automata.

Many results about series and rational languages can be obtained by the use of conjugacies of automata. Ex:
Conclusion

- We knew that equivalence of automata with multiplicity was decidable.
- We have proved that there is a finite sequence of elementary transformations (with “graphical” interpretations) between the two equivalent automata.
- Many results about series and rational languages can be obtained by the use of conjugacies of automata. Ex:
 - Characterization of the generating sequences of leaves of regular k-ary trees [Bassino, B, Perrin]
We knew that equivalence of automata with multiplicity was decidable.

We have proved that there is a finite sequence of elementary transformations (with “graphical” interpretations) between the two equivalent automata.

Many results about series and rational languages can be obtained by the use of conjugacies of automata. Ex:

- Characterization of the generating sequences of leaves of regular k-ary trees [Bassino, B, Perrin]
- Characterization of the generating sequences of the lengths of words of a regular language on k symbols [B, Perrin].
We knew that equivalence of automata with multiplicity was decidable.

We have proved that there is a finite sequence of elementary transformations (with “graphical” interpretations) between the two equivalent automata.

Many results about series and rational languages can be obtained by the use of conjugacies of automata. Ex:

- Characterization of the generating sequences of leaves of regular k-ary trees [Bassino, B, Perrin]
- Characterization of the generating sequences of the lengths of words of a regular language on k symbols [B, Perrin].
- If two regular languages have the same length distribution, there is a rational bijection between them realized by a letter-to-letter transducer.