A Characterization of Sturmian Morphisms *

Jean Berstel¹ and Patrice Séébold²

¹ LITP, Institut Blaise Pascal, Paris ² LAMIFA, Amiens France

Abstract. A morphism is called *Sturmian* if it preserves all Sturmian (infinite) words. It is *weakly Sturmian* if it preserves at least one Sturmian word. We prove that a morphism is Sturmian if and only if it keeps the word $ba^2ba^2baba^2bab$ balanced. As a consequence, weakly Sturmian morphisms are Sturmian. An application to infinite words associated to irrational numbers is given.

1 Introduction

A one-sided infinite word is balanced if the difference of the number of occurrences of a letter in two factors of the same length never exceeds one. It is Sturmian if it is balanced and not ultimately periodic.

Sturmian words have a long history. A clear exposition of early work by J. Bernoulli, Christoffel, and A. A. Markov is given in the book by Venkov [22]. The term "Sturmian" has been used by Hedlund and Morse in their development of symbolic dynamics [9, 10, 11]. These words are also known as Beatty sequences, cutting sequences, or characteristic sequences. There is a large literature about properties of these sequences (see for example Coven, Hedlund [6], Series [20], Fraenkel et al. [8], Stolarsky [21]). From a combinatorial point of view, they have been considered by S. Dulucq and D. Gouyou-Beauchamps [7], Rauzy [16, 17, 18], Brown [3], Ito, Yasutomi [12], Crisp et al. [5] in particular in relation with iterated morphisms, and by Séébold [19], Mignosi [13]. Sturmian words appear in ergodic theory [15], in computer graphics [2], in crystallography [1], and in pattern recognition.

A morphism is Sturmian if the image of every Sturmian word is a Sturmian word. Sturmian morphisms appear in number theory in connection with the so-called substitutions of characteristic sequences. A recent account of results in this direction is given by T. C. Brown in [4]. In this paper, we show that in order to test whether a morphism f is Sturmian, it suffices to check whether the single word $f(ba^2ba^2baba^2bab)$ is balanced. This is in fact a strengthening of a result by Mignosi, Séébold [14]. The decidability is an immediate consequence. We also get a simpler proof of a theorem by Crisp et al. [5] characterizing those irrational numbers for which the characteristic sequence is a fixed point of a (Sturmian) morphism.

^{*} Partially supported by the PRC "Mathématiques et Informatique".

2 Definitions

Let $A = \{a, b\}$ be a two letter alphabet. A^* is the set of (finite) words on A and ε is the empty word. A^{ω} is the set of infinite words on A and $A^{\infty} = A^* \cup A^{\omega}$.

A word $w \in A^*$ is *primitive* if it is not a power of another word, i.e. if $w = u^p$ for $u \in A^*$ and $p \in \mathbb{N}$ implies w = u.

For any $u \in A^*$, |u| denotes the length of u and $|u|_x$ denotes the number of occurrences of the letter x in the word u.

A morphism h is a mapping from A^* into itself such that h(uv) = h(u)h(v) for all words u, v. A morphism is nonerasing if neither h(a) nor h(b) is the empty word. For any morphism f, ||f|| denotes the length of f which is |f(a)| + |f(b)|. In the sequel, all morphisms f will be supposed to be distinct from the null morphism which maps all letters into the empty word (thus $||f|| \ge 1$). Consider the morphism ϕ defined by

$$\phi(a) = ab, \qquad \phi(b) = a$$

Setting, for $n \geq 1$,

$$u_n = \phi^n(a), \qquad v_n = \phi^n(b)$$

it is easily seen that $u_{n+1} = u_n u_{n-1}$, $v_{n+1} = u_n$. The morphism ϕ can be extended to infinite words; it has a unique fixed point

$$\mathbf{F} = abaababaabaabaababaababa \dots = \phi(\mathbf{F})$$

For any $w \in A^{\infty}$, Fact(w) denotes the set of finite factors of w. Setting, for any $u, v \in A^*$ such that |u| = |v|, $\delta(u, v) = \left| |u|_a - |v|_a \right|$, we call balanced a word $w \in A^{\infty}$ such that $\delta(u, v) \le 1$ for any $u, v \in Fact(w)$ with |u| = |v|.

A word $x \in A^{\omega}$ is *Sturmian* if it is a non ultimately periodic balanced word. It is a well-known property that

Property 1. The word F is Sturmian.

Sturmian words are intimately related to cutting sequences in the plane (also known as Beatty sequences). Let α, ρ be real numbers with $0 \le \alpha < 1$. Then the infinite word $\mathbf{f}_{\alpha,\rho} = a_0 a_1 \cdots a_n \cdots$ defined by

$$a_n = \left\{ egin{array}{ll} a & ext{if } \left\lfloor lpha(n+1) +
ho
ight
floor = \left\lfloor lpha n +
ho
ight
floor \\ b & ext{otherwise} \end{array} \right.$$

is Sturmian. The special case $\rho = \alpha$ has additional properties. In this case, we write \mathbf{s}_{α} for $\mathbf{f}_{\alpha,\alpha}$. The word \mathbf{s}_{α} is the *characteristic sequence* of α . Those words \mathbf{s}_{α} that are fixed points of morphisms have been characterized by Crisp *et al.* [5].

A morphism h is called Sturmian if $h(\mathbf{x})$ is Sturmian for every Sturmian word \mathbf{x} . The morphism Id_A and the morphism E that exchanges the letters a and b are obviously Sturmian. Let $\tilde{\phi}$ be the morphism defined by

$$\tilde{\phi}(a) = ba$$
 $\tilde{\phi}(b) = a$

It is well-known (see e.g. Séébold [19]) that

Property 2. The morphisms ϕ and $\tilde{\phi}$ are Sturmian.

A morphism h is called weakly Sturmian if there exists at least one Sturmian word $\mathbf{x} \in A^{\omega}$ such that $h(\mathbf{x})$ is Sturmian. Obviously every Sturmian morphism is weakly Sturmian. As we shall see, in fact the converse also holds.

3 Results

Notation

Let $m \ge 1$ and $r \ge 1$ be two integers. In the rest of this paper, the following notation will be used:

$$\begin{array}{l} w_{m,r} = b(a^{m+1}b)^{r+1}a^mb(a^{m+1}b)^ra^mb\\ w_{m,r}' = ab(a^mb)^{r+1}a^{m+1}b(a^mb)^ra^{m+1}b \end{array}$$

These words are balanced and primitive. Conversely, every Sturmian word contains as a factor a word $w_{m,r}$ or $w'_{m,r}$ (resp. $E(w_{m,r})$ or $E(w'_{m,r})$) for some $m,r \geq 1$.

The main result of this paper is the following theorem:

Theorem 3. Let f be a morphism. For every integers m and r with $m, r \ge 1$, the following three conditions are equivalent:

- (i) f is a composition of the morphisms E, ϕ and $\tilde{\phi}$;
- (ii) $f(w_{m,r})$ is a primitive balanced word;
- (iii) $f(w'_{m,r})$ is a primitive balanced word.

This result shows that in order to test whether a morphism is Sturmian, it suffices to check the image of $w_{m,r}$ for any arbitrary m and r, the shortest being $w_{1,1} = ba^2ba^2baba^2bab$. Thus, we obtain

Corollary 4. A morphism f is Sturmian iff the word $f(ba^2ba^2baba^2bab)$ is primitive and balanced. In particular, it is decidable whether a morphism is Sturmian.

Another direct consequence of this result is the following

Theorem 5. Let f be a morphism. The following conditions are equivalent:

- (i) f is a composition of the morphisms E, ϕ and $\hat{\phi}$;
- (ii) f is Sturmian;
- (iii) f is weakly Sturmian.

This result plays a major role in the characterization of morphisms of characteristic sequences associated to irrational numbers.

Proposition 6. Let f be a morphism, and let α, β be two irrational numbers with $0 < \alpha, \beta < 1$ such that

$$\mathbf{s}_{\alpha} = f(\mathbf{s}_{\beta}).$$

Then f is a product of E and ϕ .

Observe that there is no occurrence of the morphism $\tilde{\phi}$ in the factorization given by this proposition. This is due to the following property of the words s_{α} :

Property 7. Let $0 < \alpha < 1$ be an irrational number. Then the word as_{α} is lexicographically less than all its proper suffixes. Symmetrically, the word bs α is lexicographically greater than all its proper suffixes.

From these results, one can obtain rather easily the following characterization of those irrational numbers α whose characteristic sequence s_{α} is a fixed point of a morphism (which necessarily is Sturmian). This characterization is due to Crisp et al. [5]:

Theorem 8. Let $0 < \alpha < 1$ be an irrational number. The word s_{α} is a fixed point of a morphism which is not the identity iff the continued fraction development of α has one of the following three forms:

- $\begin{array}{lll} (i) & [0; r_0, \overline{r_1, \dots r_n}], & r_n \geq r_0 \geq 1; \\ (ii) & [0; 1 + r_0, \overline{r_1, \dots r_n}], & r_n = r_0 \geq 1; \\ (iii) & [0; 1, r_0, \overline{r_1, \dots r_n}], & r_n > r_0 \geq 1. \end{array}$

Proofs 4

The most involved part of the paper is the proof of theorem 3. The proof is through three lemmas. We start with a definition. A morphism f is called (m, r)balanced if $f(w_{m,r})$ is balanced or $f(w'_{m,r})$ is balanced. By Theorem 3, these two words are either both balanced or not. The morphism f is balanced if it is (m, r)balanced for some integers m, r > 1.

Lemma 9. Let f be a balanced morphism. If f(a) = a and $f(b) \in bA^* \cap A^*b$, then f(b) = b.

Lemma 10. Let f be a balanced morphism. If $f(a) \in aA^*a$, then $f(b) \in aA^* \cup A^*a$ A^*a .

Lemma 11. Let f and g be two morphism such that $f = \phi \circ g$ or $f = \tilde{\phi} \circ g$, and let $m, r \geq 1$. Then f is (m, r)-balanced iff g is (m, r)-balanced.

Proof of Theorem 3: Let f be a morphism. Since E, ϕ and $\tilde{\phi}$ are Sturmian (see e.g. Séébold [19]), it is easily seen that (i) \Rightarrow (ii) and (i) \Rightarrow (iii). By symmetry, it is enough to prove the implication (ii) \Rightarrow (i).

Let f be a morphism such that the word $f(w_{m,r})$ is a primitive balanced word. Since $f(w_{m,r})$ is primitive, f(a) and f(b) are not the empty word ε thus $||f|| \geq 2$ and the result holds for $f = Id_A$ and f = E.

Consequently, let us suppose $||f|| \geq 3$. We observe first that f(a) and f(b)start or end with the same letter. Assume indeed that f(a) starts with a and f(b) starts with b (if f(a) starts with b and f(b) starts with a, then consider $E \circ f$). From Lemmas 9 and 10 it follows that if f(a) and f(b) do not end with the same letter, then f(a) ends with b and f(b) ends with a. But in this case, f(ab) contains the factor bb and f(ba) contains the factor aa, which contradicts the hypothesis $f(w_{m,r})$ balanced. Consequently, let us suppose that f(a) and f(b) both start with the letter a (if it is the letter b then consider the morphism $E \circ f$ and if f(a) and f(b) end with the same letter, ϕ is replaced in what follows by $\tilde{\phi}$). Furthermore, let us suppose that f(a) and f(b) do not contain the factor bb. Then $f(a), f(b) \in \{a, ab\}^*$, thus there exist two words a and a such that a (a) a (b) a (c) a (c) a (d) a (d) a (d) a (d) a (d) a (e) a (d) a (d) a (e) a (e) a (f) a (

$$g(a) = x$$
 $g(b) = y$

one obtains $f = \phi \circ g$ (if f(a) or f(b) contains the factor bb then $f = E \circ \tilde{\phi} \circ g$). Now, Lemma 11 implies that $g(w_{m,r})$ is balanced. Furthermore, $g(w_{m,r})$ is primitive (since $f(w_{m,r})$ is so) thus $|g(ab)|_a \neq 0$. Consequently, ||f|| > ||g|| and the result follows by induction.

Proof of theorem 5: The implications (i) \Rightarrow (ii) and (ii) \Rightarrow (iii) are clear and we have only to prove (iii) \Rightarrow (i). So let f be a weakly Sturmian morphism and \mathbf{x} a Sturmian word such that $f(\mathbf{x})$ is Sturmian. Furthermore, let us suppose that \mathbf{x} contains the factor aa. In this case, there exist some integers m and r, m, $r \geq 1$, such that \mathbf{x} contains $w_{m,r}$ or $w'_{m,r}$ as a factor. It follows, from theorem 3, that f can be obtained by composition of E, ϕ and $\tilde{\phi}$. If \mathbf{x} contains the factor bb, then the above proof holds for $g = f \circ E$ and, consequently, $f = g \circ E$ has the required property.

Proof of Lemma 9: Let f be a morphism such that f(a) = a and $f(b) \in bA^* \cap A^*b$, and let m and r be two integers, $m, r \ge 1$ such that $f(w_{m,r})$ or $f(w'_{m,r})$ is a balanced word. Since f(a) = a, both $f(w_{m,r})$ and $f(w'_{m,r})$ contain the factors a^m and a^{m+1} , $m \ge 1$, thus f(b) does not contain bb and if $f(b) \ne b$ then f(b) starts (resp. ends) with ba^mb or $ba^{m+1}b$.

For all integers $p \geq 0, p' \geq 1$, define

$$u_{p,p'} = b(a^{m+1}b)^{p+1}(a^mb)^{p'}a^{m+1}, \quad v_{p,p'} = b(a^mb)^{p'}(a^{m+1}b)^pa^mb$$

The word $w_{m,r}$ contains both $u_{r,1}$ and $v_{r,1}$, and $w'_{m,r}$ contains both $u_{0,r}$ and $v_{0,r}$. If f(b) starts with ba^mb then $f(u_{p,p'})$ contains the factor

$$z = a^{m+1} f(b(a^{m+1}b)^p (a^m b)^{p'}) a^{m+1}$$

and $f(v_{p,p'})$ contains the factor $z' = f(b(a^m b)^{p'}(a^{m+1}b)^p)a^m ba^m b$.

Otherwise, $f(b) = ba^{m+1}bv$ for some word v. But in this case $f(u_{p,p'})$ contains the factor $z = a^{m+1}bv f((a^{m+1}b)^p)a^{m+1}ba^{m+1}$ and, since $p' \ge 1$, $f(v_{p,p'})$ contains the factor $z' = ba^mba^{m+1}bv f((a^{m+1}b)^p)a^mb$.

In both cases, $\delta(z, z') = 2$ which contradicts the hypothesis that f is (m, r)-balanced. Thus f(b) = b and the lemma is proved.

Proof of Lemma 10: Let f be a morphism such that $f(a) \in aA^*a$ and let m and r be two integers, $m, r \geq 1$ such that $f(w_{m,r})$ or $f(w'_{m,r})$ is a balanced word. We set, for $k \in \mathbb{N}$,

$$u_k = a^{m+1}b(a^mb)^ka^{m+1}, \quad v_k = ab(a^mb)^ka^mba$$

$$x_k = b(a^{m+1}b)^{k+1}, \quad y_k = ba^m b(a^{m+1}b)^k a^m b.$$

By construction, $w_{m,r}$ both contains u_0 , v_0 , and x_r , y_r . Symmetrically, $w'_{m,r}$ both contains u_r , v_r , and x_0 , y_0 .

Assume, by way of contradiction, that $f(b) \in bA^* \cap A^*b$. If f(a) = uaav then $f(a^{m+1})$ contains the factor $z = aavf(a^{m-1})uaa$ and $f(ba^mb)$ contains the factor $z' = buaavf(a^{m-1})b$. Then $\delta(z, z') = 2$ which contradicts the hypothesis. Thus f(a) does not contain aa and, since $f(a) \neq a$, there exists an integer $n \geq 0$ such that

$$f(a) = (ab)^n aba$$

But, in this case, f(ab) contains bab and f(aa) contains baab. Thus f(b) does not contain bb nor a^3 , which implies that either f(b) = b or f(b) starts with bab or baab.

We shall now prove that $f(b) = (ba)^{n'}b$, for some $n' \geq 0$. This holds if f(b) = b. Thus, assume by way of contradiction that f(b) = uaav for some u and v.

Observe first that f(b) starts and ends with baab. Indeed, if f(b) starts with bab then $f(ba^{m+1})$ contains the factor $z = aavf(a^m)a$ and $f(ba^mb)$ contains the factor $z' = vf(a^m)bab$. If f(b) ends with bab then $f(a^{m+1}b)$ contains the factor $z = af(a^m)uaa$ and $f(ba^mb)$ contains the factor $z' = babf(a^m)u$. In both cases, $\delta(z, z') = 2$ which contradicts the assumption.

Thus f(b) starts and ends with baab. If m = 1 then let f(b) = baabv' for some v'. In this case, $f(x_k)$ contains the factor

$$z = a^2bv'f((a^{m+1}b)^ka^{m+1})ba^2$$

and $f(y_k)$ contains the factor

$$z' = bf(a^m)ba^2bv'f((a^{m+1}b)^ka^m)b.$$

Then $\delta(z, z') = 2$ which contradicts the hypothesis.

Otherwise m > 1. In this case, both $f(w_{m,r})$ and $f(w'_{m,r})$ contain both of the words $f(a^3)$ and $f(a^2b)$. But $f(a^3)$ contains the factor $baa(ba)^nbaab$ and $f(a^2b)$ contains the factor $baa(ba)^{n+1}baab$. Consequently, if f(b) contains as a factor a power of ba, then this power is $(ba)^n$ or $(ba)^{n+1}$. Thus there exist two integers $p, p' \geq 0$, such that f(b) starts with $(baa(ba)^n)^p(baa(ba)^{n+1})^{p'}baab$ (remark that, if p' = 0 then $f(b) = (baa(ba)^n)^pbaab$).

If p < m-1 then $f(u_k)$ contains the factor

$$z = a(ab)^n aba(ab)^n aba((ab)^n aba)^p f(b(a^m b)^k a^m)a$$

and $f(v_k)$ contains the factor

$$z' = ba(ba)^n f(b(a^m b)^k a^m)(baa(ba)^n)^p baa(ba)^n bab.$$

If $p \ge m-1$ then f(b) starts with $(baa(ba)^n)^{m-1}baa$ and we denote by v' the word such that f(b) = bv'. In this case, $f(x_k)$ contains the factor

$$z = v' f((a^{m+1}b)^k a^m) f(a) (baa(ba)^n)^{m-1} baa$$

and $f(y_k)$ contains the factor

$$z' = bf(a^m(ba^{m+1})^k)bv'f(a^m)b$$

and $\delta(f(a^m), f(a)(baa(ba)^n)^{m-1}) = 0$. Thus, in both cases, $\delta(z, z') = 2$ which contradicts the hypothesis.

Consequently f(b) does not contain aa, thus $f(b) = (ba)^{n'}b$, for some $n' \ge 0$. But in this case, since $m \ne 0$, the word $f(u_k)$ contains the factor

$$z = af((a^m b)^{k+1})(ab)^n abaa$$

and $f(v_k)$ contains the factor

$$z' = babf((a^m b)^{k+1})(ab)^n ab.$$

Again, $\delta(z, z') = 2$ which contradicts the hypothesis, thus $f(b) \in aA^* \cup A^*a$ and the lemma is proved.

Proof of Lemma 11: The "only if" part is straightforward. For the "if" part, assume $f = \phi \circ g$ (the case $f = \tilde{\phi} \circ g$ could be done exactly in the same way). If $g(w_{m,r})$ is not balanced then there exist two words u and v such that $g(w_{m,r}) = u_1uu_2 = v_1vv_2$ with |u| = |v| and $\delta(u,v) = 2$. Furthermore, u can be choosen of minimal length, which implies that there exist $x, y \in A$, $x \neq y$ and $t, t' \in A^*$ such that u = xtx, v = yt'y and $\delta(t,t') = 0$. Let us assume x = a and y = b (the other case is exactly the same). Then $g(w_{m,r}) = u_1atau_2 = v_1bt'bv_2$ and $f(w_{m,r}) = \phi(u_1)ab\phi(t)ab\phi(u_2) = \phi(v_1)a\phi(t')a\phi(v_2)$.

If $v_2 \neq \varepsilon$, then $\phi(v_2)$ starts with a and $f(w_{m,r})$ is not balanced, contradiction. If $v_2 = \varepsilon$, then bt'b is a suffix of $g(w_{m,r})$. Two cases arise:

- If $|bt'b| \leq |g(a^mb(a^{m+1}b)^ra^mb)|$ then $g(a^mb(a^{m+1}b)^ra^mb) = v_1'bt'b$ and $g(w_{m,r}) = g(ba)v_1'bt'bg((a^{m+1}b)^ra^mb)$ which is the same case as $v_2 \neq \varepsilon$.
- If $|bt'b| > |g(a^mb(a^{m+1}b)^ra^mb)|$ then, since $m \ge 1$, one has $|ata| > |g(b(a^{m+1}b)^{r+1})|$. Consequently, there exist three words z, z', z'' with $z \ne \varepsilon$ and |z'| = |z''| such that ata = z'z and bt'b = zz''. But $\delta(z', z'') = \delta(u, v) = 2$, and since $z \ne \varepsilon$, one has |z'| < |u| which contradicts the minimality of |u|.

If $g(w'_{m,r})$ is not balanced then the same contradiction holds when we compare |bt'b| and $|g(a^mb(a^mb)^ra^{m+1}b)|$, thus the lemma is proved.

We now turn to the proofs of the number-theoretic applications. Given two infinite words $\mathbf{x} = a_0 a_1 \cdots$ and $\mathbf{y} = b_0 b_1 \cdots$ over the alphabet $A = \{a, b\}$, ordered by a < b, we write $\mathbf{x} < \mathbf{y}$ when \mathbf{x} is lexicographically less then \mathbf{y} , that is when there exists an integer n such that $a_n < b_n$ and $a_i = b_i$ for $0 \le i < n$. Property 7 is a consequence of the more general

Lemma 12. Let $0 \le \rho, \rho' < 1$ and $0 < \alpha < 1$, with α irrational. Then

$$\mathbf{f}_{\alpha,\rho} < \mathbf{f}_{\alpha,\rho'} \iff \rho < \rho'.$$

Proof. Since α is irrational, one has $\rho < \rho'$ if and only if there exists an integer n such that $\lfloor \alpha n + \rho' \rfloor = 1 + \lfloor \alpha n + \rho \rfloor$ Let m be the smallest integer n satisfying this relation, and set k = m - 1. Then, setting $\mathbf{f}_{\alpha,\rho} = a_0 a_1 \cdots$ and $\mathbf{f}_{\alpha,\rho'} = a'_0 a'_1 \cdots$, one gets $a_j = a'_j$ for $0 \le j < k$ and $a_k < a'_k$. This proves the lemma. \square

Proof of Property 7. Let us prove the first inequality, namely that $a\mathbf{s}_{\alpha} < \mathbf{x}$ for any proper suffix \mathbf{x} of $a\mathbf{s}_{\alpha}$. For this, observe that $a\mathbf{s}_{\alpha} = \mathbf{f}_{\alpha,0}$, and that $\mathbf{x} = \mathbf{f}_{\alpha,n\alpha-\lfloor n\alpha\rfloor}$ for some integer n > 0. Since α is irrational, the conclusion follows from the preceding lemma. The other inequality is shown symmetrically.

Before proceeding to the proof of Proposition 6, recall the following relations which are well-known (see e.g. [3]):

$$E(\mathbf{s}_{\beta}) = \mathbf{s}_{1-\beta}, \quad \phi(\mathbf{s}_{\beta}) = \mathbf{s}_{(1-\beta)/(2-\beta)}$$

Proof of Proposition 6. By induction on the length ||f|| of f. We may assume that \mathbf{s}_{β} contains the factor aa. Otherwise we replace \mathbf{s}_{β} by $\mathbf{s}_{1-\beta} = E(\mathbf{s}_{\beta})$ and f by $f \circ E$. We also can suppose that \mathbf{s}_{α} contains the factor aa. Otherwise, we replace f by $E \circ f$ and \mathbf{s}_{α} by $\mathbf{s}_{1-\alpha}$. These normalisations do not increase the length of f. Since $b\mathbf{s}_{\beta}$ is Sturmian, the word \mathbf{s}_{β} starts with the letter a. Similarly, \mathbf{s}_{α} starts with the letter a. In particular, f(a) starts with an a, and neither f(a) nor f(b) contain a factor bb.

If the word f(b) also starts with the letter a, then both f(a) and f(b) are products of words in $\{ab, a\}$. Thus $f = \phi \circ g$ for some shorter morphism g, and an appropriate word s_{γ} . To conclude, it suffices to prove that f(b) cannot start with a letter b. Indeed, otherwise f(a) and f(b) finish with the same letter. If this letter is a b, then s_{α} contains the factor bb. Thus f(a) and f(b) finish by an a. Now let $r \geq 1$ by the integer such that $a^r b$ is a prefix of s_{β} . Then $a^{r+1}b$ is a factor of s_{β} . The word $af(a^r)b$ is a prefix of as_{α} , and $af(a^r)a$ is a factor of s_{α} . But this shows that as_{α} is lexicographically greater than one of its suffixes. Contradiction.

We conclude with a proof of Theorem 8. Our proof is shorter than, though not very different from [5]. It will be convenient to introduce the morphism $\gamma = \phi \circ E$. Thus $\gamma(a) = a$, $\gamma(b) = ab$. Clearly, a morphism is a composition of E and ϕ iff it is a composition of E and γ . The morphism γ is used in conjonction with the morphism $\theta_m = \gamma^m \circ E$. We observe that ([3, 22])

$$\mathbf{s}_{\beta/(1+\beta)} = \gamma(\mathbf{s}_{\beta}), \quad \mathbf{s}_{1/(m+\beta)} = \theta_m(\mathbf{s}_{\beta})$$

Proof of Theorem 8. Let

$$\alpha = [0; r_1, r_2, \ldots]$$

be the development into continued fraction of α . Let f be such that $\mathbf{s}_{\alpha} = f(\mathbf{s}_{\alpha})$. Then f is a product of the morphisms γ and E. Clearly $f \neq E$ and f is not a product of γ only. Consequently,

$$f = \gamma^{n_1} E \gamma^{n_2} \cdots E \gamma^{n_k} E \gamma^{n_{k+1}}$$

for some $k \ge 1$ and $n_1 \ge 0, n_2, \ldots, n_k \ge 1, n_{k+1} \ge 0$. We distinguish two cases. First case: $n_{k+1} \ge 1$. Then

$$f = \theta_{n_1+1}\theta_{n_2}\cdots\theta_{n_k}\gamma^{n_{k+1}-1}$$

Since s_{α} is a fixed point,

$$[0; r_1, r_2, \ldots] = [0; 1 + n_1, n_2, \ldots, n_k, n_{k+1} - 1 + r_1, r_2, \ldots]$$

whence $r_1 = 1 + n_1$, $r_2 = n_2, \ldots, r_k = n_k$, $r_{k+1} = n_{k+1} + n_1$ and $r_j = r_{j+k}$ for $j \geq 2$. Thus

$$\alpha = [0; r_1, \overline{r_2, \ldots, r_{k+1}}], \qquad r_{k+1} \ge r_1$$

which is case (i) of the theorem.

Second case: $n_{k+1} = 0$. Set f' = EfE. Since $\mathbf{s}_{\alpha} = f(\mathbf{s}_{\alpha})$, one has $f'(E\mathbf{s}_{\alpha}) = E\mathbf{s}_{\alpha}$ and $f(\mathbf{s}_{\beta}) = \mathbf{s}_{\beta}$ where $\beta = 1 - \alpha$. Now

$$f' = E\gamma^{n_1}E\gamma^{n_2}\cdots E\gamma^{n_k}$$
 and $n_k \ge 1$.

This has the same form as above, excepted when $n_1 = 0$. Again, we consider two cases:

First, assume $n_1 = 0$. Then $k \ge 3$ and $f' = \theta_{n_2+1}\theta_{n_3}\cdots\theta_{n_{k-1}}\gamma^{n_k-1}$ whence, using the first case, $\beta = [1 + n_2, \overline{n_3, \ldots, n_{k-1}, n_2 + n_k}]$ and since $n_2 \ge 1$, one gets for $\alpha = 1 - \beta$ the development

$$\alpha = [0; 1, n_2, \overline{n_3, \ldots, n_{k-1}, n_2 + n_k}]$$

This is case (iii) of the theorem.

Finally, assume $n_1 > 0$. Then $f' = \theta_{n_0+1}\theta_{n_1}\cdots\theta_{n_{k-1}}\gamma^{n_k-1}$ with $n_0 = 0$. Applying the first case, we get $\beta = [0; 1, \overline{n_1, \ldots, n_k}]$ and consequently

$$\alpha = [0; 1 + n_1, \overline{n_2, \ldots, n_k, n_1}]$$

which is precisely case (ii) of the statement.

References

- 1. E. BOMBIERI, J. E. TAYLOR, Which distributions of matter diffract? An initial investigation, J. Phys. 47 (1986), Colloque C3, 19-28.
- J. E. BRESENHAM, Algorithm for computer control of a digital plotter, IBM Systems J. 4 (1965), 25-30.
- 3. T. C. Brown, A characterization of the quadratic irrationals, Canad. Math. Bull. 34 (1991), 36-41.
- T. C. Brown, Descriptions of the characteristic sequence of an irrational, Canad. Math. Bull. 36 (1993), 15-21.
- 5. D. CRISP, W. MORAN, A. POLLINGTON, P. SHIUE, Substitution invariant cutting sequences, Sémin. Théorie des Nombres, Bordeaux, 1993, to appear.
- 6. E. COVEN, G. HEDLUND, Sequences with minimal block growth, Math. Systems Theory 7 (1973), 138-153.

- S. DULUCQ, D. GOUYOU-BEAUCHAMPS, Sur les facteurs des suites de Sturm, Theoret. Comput. Sci. 71 (1990), 381-400.
- A. S. FRAENKEL, M. MUSHKIN, U. TASSA, Determination of [nθ] by its sequence of differences, Canad. Math. Bull. 21 (1978), 441-446.
- 9. G.A. HEDLUND, Sturmian minimal sets, Amer. J. Math 66 (1944), 605-620.
- G.A. HEDLUND, M. MORSE, Symbolic dynamics, Amer. J. Math 60 (1938), 815– 866.
- 11. G.A. HEDLUND, M. MORSE, Sturmian sequences, Amer. J. Math 61 (1940), 1-42.
- 12. S. Ito, S. Yasutomi, On continued fractions, substitutions and characteristic sequences, Japan. J. Math. 16 (1990), 287-306.
- F. MIGNOSI, On the number of factors of Sturmian words, Theoret. Comput. Sci. 82 (1991), 71-84.
- F. MIGNOSI, P. SÉÉBOLD, Morphismes sturmiens et règles de Rauzy, Techn. Rep. LITP-91-74, Paris, France.
- M. QUEFFÉLEC, Substitution Dynamical Systems Spectral Analysis, Lecture Notes Math., vol. 1294, Springer-Verlag, 1987.
- G. RAUZY, Suites à termes dans un alphabet fini, Sémin. Théorie des Nombres (1982-1983), 25-01,25-16, Bordeaux.
- 17. G. RAUZY, Mots infinis en arithmétique, in: Automata on infinite words (D. Perrin ed.), Lect. Notes Comp. Sci. 192 (1985), 165-171.
- 18. G. RAUZY, Sequences defined by iterated morphisms, in: Workshop on Sequences (R. Capocelli ed.), Lecture Notes Comput. Sci., to appear.
- 19. P. SÉÉBOLD, Fibonacci morphisms and Sturmian words, Theoret. Comput. Sci. 88 (1991), 367-384.
- C. SERIES, The geometry of Markoff numbers, The Mathematical Intelligencer 7 (1985), 20-29.
- 21. K. B. STOLARSKY, Beatty sequences, continued fractions, and certain shift operators, Cand. Math. Bull. 19 (1976), 473-482.
- 22. B. A. VENKOV, Elementary Number Theory, Wolters-Noordhoff, Groningen, 1970.