
A Character izat ion  of Sturmian Morphisms  * 

Jean Berstel 1 and Patrice S&!bold 2 

1 LITP, Institut Blaise Pascal, Paris 
2 LAMIFA, Amiens 

France 

Abs t rac t .  A morphism is called Sturmian if it preserves all Sturmian 
(infinite) words. It is weakly Sturmian if it preserves at least one Sturmian 
word. We prove that a morphism is Sturmian if and only if it keeps 
the word ba2ba2baba 2 bab balanced. As a consequence, weakly Sturmian 
morphisms are Sturmian. An application to infinite words associated to  
irrational numbers is given. 

1 I n t r o d u c t i o n  

A one-sided infinite word is balanced if the difference of the number of occurrences 
of a letter in two factors of the same length never exceeds one. It is Sturmian if 
it is balanced and not ultimately periodic. 

Sturmian words have a long history. A clear exposition of early work by 
J. Bernoulli, Christoffel, and A. A. Markov is given in the book by Venkov [22]. 
The term "Sturmian" has been used by Hedlund and Morse in their develop- 
ment of symbolic dynamics [9, 10, 11]. These words are also known as Beatty 
sequences, cutting sequences, or characteristic sequences. There is a large liter- 
ature about  properties of these sequences (see for example Coven, Hedlund [6], 
Series [20], Fraenkel et al. [8], Stolarsky [21]). Prom a combinatorial point of 
view, they have been considered by S. Dulucq and D. Gouyou-Beauchamps [7], 
Rauzy [16, 17, 18], Brown [3], Ito, Yasutomi [12], Crisp et al. [5] in particular in 
relation with iterated morphisms, and by Sddbold [19], Mignosi [13]. Sturmian 
words appear in ergodic theory [15], in computer graphics [2], in crystallogra- 
phy [1], and in pattern recognition. 

A morphism is Sturmiau if the image of every Sturmian word is a Sturmian 
word. Sturmian morphisms appear in number theory in connection with the 
so-called substitutions of characteristic sequences. A recent account of results in 
this direction is given by T. C. Brown in [4]. In this paper, we show that in order 
to test whether a morphism f is Sturmian, it suffices to check whether the single 
word f(ba2ba2baba2bab) is balanced. This is in fact a strengthening of a result 
by Mignosi, Sddbold [14]. The decidability is an immediate consequence. We also 
get a simpler proof of a theorem by Crisp et al. [5] characterizing those irrational 
numbers for which the characteristic sequence is a fixed point of a (Sturmian) 
morphism. 

* Partially supported by the PRC "Math~matiques et Informatique'. 
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2 Definit ions 

Let A = {a, b} be a two letter alphabet. A* is the set of (finite) words on A and 
is the empty word. A ~ is the set of infinite words on A and A ~ = A* U A ~. 

A word w E A* is primitive if it is not a power of another word, i.e. if w = up 
for u E A* and p E IN implies w = u. 

For any u E A*, I u] denotes the length of u and [ul~ denotes the number of 
occurrences of the letter x in the word u. 

A morphism h is a mapping from A* into itself such that  h(uv) = h(u)h(v) 
for all words u, v. A morphism is nonerasing if neither h(a) nor h(b) is the empty 
word. For any morphism f ,  Iifll denotes the length of f which is If(a)l + If(b)l. 
In the sequel, all morphisms f will be supposed to be distinct from the null 
morphism which maps all letters into the empty word (thus Ilfll _> 1). Consider 
the morphism r defined by 

r = ab, r = a 

Setting, for n > 1, 
u .  = r  v .  = r  

it is easily seen that  u,~+l = u,u,~_l, vn+l = u,~. The morphism r can be 
extended to infinite words ; it has a unique fixed point 

�9 F = abaababaabaababaababa... = r  

For any w E A ~ ,  Fact(w) denotes the set of finite factors of w. Setting, for any 

u,v E A* such that  lul = Ivh 6(u,v) = I l u l a -  [vial, we call balanced a 
i I 

word 

w E A ~ such that  6(u, v) < 1 for any u, v E Fact(w) with lul -- Ivl. 
i i 

A word x E A w is Sturmian if it is a non ultimately periodic balanced word. 
It is a well-known property that  

P r o p e r t y l .  The word F is Sturmian. 

Sturmian words are intimately related to cutting sequences in the plane (also 
known as Beatty sequences). Let a,  p be real numbers with 0 < a < 1. Then the 
infinite word fa,a = aoal . . ,  a , . . .  defined by 

{ a  i f L a ( n + l ) + p ]  = [ a n + p J  
an = b otherwise 

is Sturmian. The special case p = a has additional properties. In this case, we 
write so for fa,a. The word so is the characteristic sequence of a.  Those words 
so that  are fixed points of morphisms have been characterized by Crisp et hi. [5]. 

A morphism h is called Sturmian if h(x) is Sturmian for every Sturmian word 
x. The morphism Ida and the morphism E that  exchanges the letters a and b 
are obviously Sturmian. Let r be the morphism defined by 

r  = ba r  = a 

It is well-known (see e.g. Sddbold [19]) that  
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P r o p e r t y 2 .  The morphisms r and r are Sturmian. 

A morphism h is called weakly Sturmian if there exists at least one Sturmian 
word x E A ~ such that  h(x) is Sturmian. Obviously every Sturmian morphism 
is weakly Sturmian. As we shall see, in fact the converse also holds. 

3 R e s u l t s  

N o t a t i o n  

Let m >_ 1 and r _> 1 be two integers. In the rest of this paper, the following 
notat ion will be used: 

wra,r = b(am+lb)r+lamb(am+lb)r amb 
' = ab(a~b)r+lam+lb(amb)ram+lb Wrll~r 

These words are balanced and primitive. Conversely, every Sturmian word con- 
' (resp. E(wm,~) or E ( w ' ~ ) )  for some tains as a factor a word win,, or win, ~ 

re, r >  1. 
The main result of this paper is the following theorem: 

T h e o r e m 3 .  Let f be a morphism. For every integers m and r with m,r  >_ 1, 
the following three conditions are equivalent: 

(i) f is a composition of the morphisms E, r and r 
(it) f(wm,r) is a primitive balanced word; 

I (iii) f(wm,r) is a primitive balanced word. 

This result shows that  in order to test whether a morphism is Sturmian, it 
suffices to check the image of Wm,r for any arbitrary m and r, the shortest being 
w1,1 = ba2ba~baba2bab. Thus, we obtain 

C o r o l l a r y 4 .  A morphism f is Sturmian iff the word f(ba~ba~baba2bab) is prim- 
itive and balanced. In particular, it is decidable whether a morphism is Sturmian. 

Another direct consequence of this result is the following 

T h e o r e m  5. Let f be a morphism. The following conditions are equivalent: 
(i) f is a composition of the morphisms E, r and r 

(it) f is Stnrmian; 
( iii) f is weakly Sturmian. 

This result plays a major  role in the characterization of morphisms of char- 
acteristic sequences associated to irrational numbers. 

P r o p o s i t i o n 6 .  Let f be a morphism, and let a, fl be two irrational numbers 
with 0 < a, fl < 1 such that 

sa = f(st~ ). 

Then f is a product of E and r 
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Observe that there is no occurrence of the morphism ~ in the factorization 
given by this proposition. This is due to the following property of the words sa: 

P r o p e r t y  T. Let 0 < a < 1 be an irrational number. Then the word asa is 
lexicographically less than all its proper suffixes. Symmetrically, the word bsa is 
lezicographically greater than all its proper suffixes. 

From these results, one can obtain rather easily the following characterization 
of those irrational numbers a whose characteristic sequence sa is a fixed point 
of a morphism (which necessarily is Sturmian). This characterization is due to 
Crisp el al. [5]: 

T h e o r e m  8. Let 0 < a < 1 be an irrational number. The word s~ is a fixed point 
of a morphism which is not the identity iff the continued fraction development 
of a has one of the following three forms: 

(/) [0; to, rl,...--~,], r,  > ro > 1; 
(i 0 [0; 1 + r0, rl , . . .~'~], r n - r o > _ l ;  

(iii) [0;1, r0, rl,...V~,], rn > r0 _> 1. 

4 P r o o f s  

The most involved part of the paper is the proof of theorem 3. The proof is 
through three lemmas. We start with a definition. A morphism f is called (m, r)- 

t balanced if f(wm,,.) is balanced or f(wm,,. ) is balanced. By Theorem 3, these two 
words are either both balanced or not. The morphism f is balanced if it is (m, r)- 
balanced for some integers m, r > 1. 

L e m m a  9. Let f be a balanced morphism. I f  f(a) -- a and f(b) E bA* f3 A'b, 
then f(b) = b. 

L e m m a l 0 .  Let f be a balanced morphism. I f  f(a) E hA*a, then f(b) E hA* U 
A*a. 

L e m m a 1 1 .  Let f and g be two mo,Thism such that f = O o g or f = r o g, 
and let m, r >_ 1. Then f is (m, r)-balanced iff g is (m, r)-balanced. 

P r o o f  of Theorem 3: Let f be a morphism. Since E, r and ~ are Sturmian (see 
e.g. S~bo ld  [19]), it is easily seen that (i) =~ (ii) and (i) ~ (iii). By symmetry, 
it is enough to prove the implication (ii) ::~ (i). 

Let f be a morphism such that the word f(w,,,r) is a primitive balanced 
word. Since f(wm,,) is primitive, f(a) and f(b) are not the empty word e thus 
[Ifll > 2 and the result holds for f -- Ida and f "- E. 

Consequently, let us suppose Ilfll -> 3. We observe first that f(a) and f(b) 
start or end with the same letter. Assume indeed that f(a) starts with a and 
f(b) starts with b (if f(a) starts with b and f(b) starts with a, then consider 
E o f ) .  From Lemmas 9 and 10 it follows that if f(a) and f(b) do not end with 
the same letter, then f(a) ends with b and f(b) ends with a. But in this case, 
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f(ab) contains the factor bb and f(ba) contains the factor aa, which contradicts 
the hypothesis f (wmx)  balanced. Consequently, let us suppose that  f(a) and 
f(b) both start  with the letter a (if it is the letter b then consider the morphism 
E o f and if f(a) and f(b) end with the same letter, ~b is replaced in what follows 
by r Furthermore, let us suppose that  f(a) and f(b) do not contain the factor 
bb. Then f (a) ,  f(b) E {a, ab}*, thus there exist two words z and y such that  
f(a) -- r f(b) -- r Denoting by g the morphism defined by 

g(a )  = = g(b)  = y 

one obtains f = r o g (if f(a) or f(b) contains the hc to r  bb then f = E o r o 
g). Now, Lemma 11 implies that  g(wm,r) is balanced. Furthermore, g(Wm,r) is 
primitive (since f(w,~,r) is so) thus Ig(ab)lo # O. Consequently, I]/ll > I]gll and 
the result follows by induction. [] 

P r o o f  of theorem 5: The implications (i) =r (ii) and (ii) =~ (iii) are clear and we 
have only to prove (iii) =~ (i). So let f be a weakly Sturmian morphism and x a 
Sturmian word such that  f (x)  is Sturmian. Furthermore, let us suppose that  x 
contains the factor aa. In this case, there exist some integers m and r, m, r > 1, 

! such that  x contains wm,r or wm,r as a factor. It follows, from theorem 3, that  

f can be obtained by composition of E, r and r If x contains the factor bb, 
then the above proof holds for g = f o E and, consequently, f = g o E has the 
required property. 13 

P r o o f  of Lemma 9: Let f be a morphism such that  f (a )  = a and f(b) E 
bA*N A'b, and let m and r be two integers, m , r  > 1 such that  f(wm,r) or 

W t f ( , ,~ ,~)  is a balanced word. Since f(a) = a, both f(w,n,r) and f ( w ' , ~ )  contain 
the factors a m and a 'n+l , m >_ 1, thus f(b) does not contain bb and if f(b) 5s b 
then f(b) starts (resp. ends) with bamb or barn+lb. 

For all integers p > 0,p I > 1, define 

up,p, = b(am+lb)P+l(amb)P'a '~+l, vp,p, = b(amb)P' (a'~+lb~' amb 

The word w,n,~ contains both u~,l and v~,l, and w,,,~' contains both u0,~ and 
v0,r. If f(b) starts with bamb then f(up,v, ) contains the factor 

z = a m + l / ( b ( a  b)P(a m b)r  

and f(vp,p, ) contains the factor z' = f(b(a m b)p' (am+ 1 b)P)a tuba 'nb. 
Otherwise, f(b) = bam+lbv for some word v. But in this case f(up,p,) contains 

the factor z = a"~+%vf((a m+l b)V)a"+lba m+l and, since p'>_ 1, jr(vp,p,)contains 
the factor z' = bamba "~+1 bvf((a "~+~ b)P)amb. 

In both cases, ~(z, z') = 2 which contradicts the hypothesis that  f is (m, r)- 
balanced. Thus f(b) = b and the lemma is proved. [] 

P r o o f  of Lemma 10 : Let f be a morphism such that  f(a) E aA*a and let m and 
! 

r be two integers, m, r > 1 such that  f (wmx) or f(wm,r) is a balanced word. 
We set, for k E IN, 

ulc = am+lb(amb)ka re+l, vk = ab(amb)kamba 
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xk = b(am+lb)k+l, yk = bamb(am+lb)kamb. 

By construction, wm,r both contains u0, v0, and xr, yr. Symmetrically, w,~,~' 
both contains ur, vr, and x0, y0. 

Assume, by way of contradiction, that  f(b) E bA* f'l A*b. If f (a)  = uaav 
then f (a  re+l) contains the factor z = aavf (am-1)uaa and f(bamb) contains the 
factor z' = buaavf(am-1)b.  Then 6(z, z') = 2 which contradicts the hypothesis. 
Thus f (a)  does not contain aa and, since f (a)  ~ a, there exists an integer n > 0 
such that  

f (a)  -- (ab)naba 

But, in this case, f(ab) contains bah and f (aa)  contains baab. Thus f(b) does 
not contain bb nor a 3, which implies that  either f(b) = b or f(b) starts with bab 
or baab. 

We shall now prove that  f(b) = (ba)'r for some n' > 0. This holds if 
f(b) = b. Thus, assume by way of contradiction that  f(b) = uaav for some u 
and v. 

Observe first that  f(b) starts and ends with baab. Indeed, if y(b) starts with 
bab then f (ba rn+l) contains the factor z = aavf (am)a and f(bamb) contains the 
factor z' = vf(a"*)bab. If f(b) ends with bab then f(a'n+lb) contains the factor 
z = af(a'~)uaa and f(ba'~b) contains the factor z' = babf(am)u. In both cases, 
~(z, z') = 2 which contradicts the assumption. 

Thus f(b) starts and ends with baab. If m = 1 then let f(b) = baabv' for 
some v'. In this case, f ( z k )  contains the factor 

z = a2bv'f((a m+l b)l~am+l)ba 2 

and f(Yk) contains the factor 

z' = b f(am)ba2bv' f (  (a m+l b )k am)b. 

Then ~(z, z') = 2 which contradicts the hypothesis. 
! Otherwise m > 1. In this case, both f (wm,r)  and f(Wm,r) contain both of the 

words f(a 3) and f(a2b). But f(a 3) contains the factor baa(ba)'*baab and f(a2b) 
contains the factor baa(ba)n+lbaab. Consequently, if f(b)  contains as a factor a 
power of ba, then this power is (ba)" or (ba) n+~. Thus there exist two integers 
p, p' > 0, such that  f(b) starts with (baa(ba)'~)P(baa(ba)n+l) f baab (remark that,  
i f p ' =  0 then f(b) = (baa(ba)n)Pbaab). 

I f p  < m - 1 then f (uk)  contains the factor 

z = a(ab)'~aba(ab)'~aba((ab)naba)Pf(b(amb)kam)a 

and f (vk)  contains the factor 

n rrt  k r n  n p n z ' =  ba(ba) f(b(a b) a )(baa(ba) ) baa(ba) bab. 

If p > m - 1 then f(b) starts with (baa(ba)n)m-lbaa and we denote by v ~ the 
word such that  f(b) - by ~. In this case, f ( zk )  contains the factor 

z = v I f ( (a  m+l b) k a m)f(a)(baa(ba) n)m-  1 bah 
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and f ( y k )  contains the factor 

z ' = b f ( a m ( b a m + t ) k ) b v ' f ( a m ) b  

and ~f(f(am),  f (a ) (baa(ba)n)  m - l )  = 0. Thus, in both cases, g(z, z') = 2 which 
contradicts the hypothesis. 

Consequently f (b )  does not contain ha, thus f (b )  = (ba)n'b, for some n' > 0. 
But in this case, since m ~ 0, the word f (uk)  contains the factor 

z = a f ( (amb)k+l ) (ab)nabaa  

and f ( v k )  contains the factor 

z' = babf ( (amb)k+l) (ab)"  ab. 

Again, 6(z, z') -- 2 which contradicts the hypothesis, thus f(b) E a A * U  A*a and 
the lemma is proved. [] 

P r o o f  of Lemma 11: The "only if '  part  is straightforward. For the "if '  part,  
assume f -- r o g (the case f = r o g could be done exactly in the same way). If 
g(wm,r)  is not balanced then there exist two words u and v such that  g(wm,r)  = 
u luu2  -- vlvv2 with ]u[ = Iv I and 6(u, v) = 2. Furthermore, u can be choosen of 
minimal length, which implies that  there exist x , y  E A , �9 r y and t , t  ~ E A* 
such that  u = x tz  , v = yt~y and 6(t , t  ~) = 0. Let us assume x = a and y = b 
(the other case is exactly the same). Then g(wm,r) = ula tau2  = vlbt'bv2 and 
f (wm,~ ) = r162162  -- r  )ar 

If v2 # c, then r starts with a and f ( w m , r )  is not balanced, contradiction. 
If v2 = e, then bt'b is a suffix of g(wm, , ) .  Two cases arise: 
- If tbt'b] <_ Ig(amb(a'~+%)ramb)l then g(amb(a'~+lb)ramb) = v[bt'b and 

g(wm,r)  = g(ba)v~bt 'bg((am+lb) 'amb) which is the same case as v2 # c. 
- If ]bt'b I > Ig(amb(am+lb)ramb)] then, since m > 1, one has late I > 

]g(b(am+lb)r+l)]. Consequently, there exist three words z, z', z" with z # ~ and 
Iz'l = Iz"[ such that  ata = z ' z  and bt'b = zz" .  But 6(z',  z" )  = 6(u, v) = 2, and 
since z # c, one has [z'] < lul which contradicts the minimality of lul. 

If g(w~m r) is not balanced then the same contradiction holds when we com- 
pare bt'b and g(amb(amb)ram+lb)],  thus the l emmais  proved. [] 

We now turn to the proofs of the number-theoretic applications. Given two 
infinite words x = aoal . . .  and y = bobl . . .  over the alphabet A = {a, b}, ordered 
by a < b, we write x < y when x is lexicographically less then y,  that  is when 
there exists an integer n such that  an < bn and al = bi for 0 _< i < n. Property 7 
is a consequence of the more general 

L e m m a 1 2 .  Let 0 <_ p, p~ < 1 and 0 < r < 1, with ~ irrational. Then 

fo~,p<fo~,p, ~ t, p<p~. 
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Proof .  Since a is irrational, one has p < p' if and only if there exists an integer n 
such that  La. +p'J = 1 + Lan +pJ Let m be the smallest integer n satisfying this 
relation, and set k = m -  1. Then, setting fa,p = aoal  �9 �9 �9 and fa,p' = aoal~ ~ �9 �9 ", 

' for 0 < j < k and a~ < a~. This proves the lemma. [] one gets aj = a~ 

P r o o f  of Property 7. Let us prove the first inequality, namely that  asa  < x 
for any proper suffix x of as~. For this, observe that  as~ = f~,0, and that  
x = f~,n~-[naJ for some intege r n > 0. Since a is irrational, the conclusion 
follows from the preceding lemma. The other inequality is shown symmetrically. 

[] 

Before proceeding to the proof of Proposition 6, recall the following relations 
which are well-known (see e.g. [3]): 

E ( s ~ )  = s l - e ,  ~ ( s e )  = s0_~ ) / (2_~ )  

P r o o f  of Proposition 6. By induction on the length [If[[ of f .  We may assume 
that  s~ contains the factor aa. Otherwise we replace se by s l - e  = E(se) and 
f by f o E. We also can suppose that  so contains the factor aa. Otherwise, we 
replace f by E o f and sa by s l -~ .  These normalisations do not increase the 
length of f .  Since bs~ is Sturmian, the word s~ starts with the letter a. Similarly, 
s~ starts with the letter a. In particular, . f (a) starts with an a, and neither f ( a )  
nor .f(b) contain a factor bb. 

If the word f ( b )  also starts with the letter a, then both f ( a )  and f ( b )  are 
products of words in {ab, a} .  Thus f = ~ o g for some shorter morphism g, and 
an appropriate word s~. To conclude, it suffices to prove that  f ( b )  cannot start  
with a letter b. Indeed, otherwise f ( a )  and f ( b )  finish wi th  the same letter. If 
this letter is a b, then s~ contains the factor bb. Thus . f (a) and f ( b )  finish by 
an a. Now let r _> 1 by the integer such that  a"b is a prefix of sp. Then a"+lb  
is a factor of se. The word a f ( a " ) b  is a prefix of as~, and a f ( a " ) a  is a factor of 
s~. But this shows that  as~ is lexicographically greater than one of its suffixes. 
Contradiction. [] 

We conclude with a proof of Theorem 8. Our proof is shorter than, though not 
very different from [5]. It will be convenient to introduce the morphism 7 = r  
Thus 7(a) = a, 7(b) = ab. Clearly, a morphism is a composition of E and r iff 
it is a composition of E and 7. The morphism 7 is used in conjonction with the 
morphism ~m = 7 m o E. We observe that  ([3, 22]) 

s p / o + ~  ) = 7 (s~) ,  s~/(m+~) = 0m(s~)  

P r o o f  of Theorem 8. Let 
a = [0; rl ,  r2 , . . . ]  

be the development into continued fraction of a.  Let f be such that  sa = f ( sa ) .  
Then f is a product of the morphisms 7 and E. Clearly f ~ E and f is not a 
product of 7 only. Consequently, 

f = 7 nl E7"2 . . .  ET'~k ETnk+l 
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for some k > 1 and nl  _ 0, n 2 , . . . , n k  >_ 1, nk+l >_ 0. We distinguish two cases. 
First case: nk+l  > 1. T h e n  

f = 8nl+lOn2 "" "Snk~[ ns+a-1 

Since s~ is a fixed point, 

[0; r l ,  r 2 , . . . ]  = [0; 1 + nl ,  n 2 , . . . ,  nk, nk+l -- 1 + rl ,  r2, . . .]  

whence r l  = 1 +  n l ,  r2 = n2 , . . . ,  rk = nk, rk+l  = n~+l + n l  and  rj  = r j+~ for 
j _> 2. T h u s  

a = [0; rx,  r2 ,  �9 . . ,  r ~ + l ] ,  r ~ + l  > r l  

which is case (i) of the theorem. 
Second case: nk+l  = 0. Set f = E r E .  Since sa  = f ( s a ) ,  one has  f ' ( E s ~ )  = 

E s a  and  f ( s ~ )  = s~ where /3  = 1 - a .  Now 

f l  = ETnl ETn2 . . .  ETnk and nk >_ 1. 

Th i s  has  the  s a m e  fo rm as above,  excepted  when nl  = 0. Again,  we consider two 
cases: 

Firs t ,  a s sume  n l  = 0. T h e n  k > 3 and f = 8n2+lOns'" "Onk_~7 nk-1 whence,  
using the  first case, /3 = [1 + n2, n z , . . . ,  n ~ - l ,  n2 + nk] and  since n2 > 1, one 
gets for a = 1 - / 3  the  deve lopment  

Ot = [0; 1, n2, n3, �9 �9 nk-1 ,  n2 + n~J 

This  is case (iii) of the theorem. 
Finally, assume nl  > 0. Then f = Ono+18.~ ...Onk_~7 "k-1 with no = 0. 

App ly ing  the  first case, we ge t /3  = [0; 1 , ' n l , . . . ,  ntc] and consequent ly  

a = [0; 1 +  n l , n ~ , . . . , n ~ , n l ]  

which is precisely case (ii) of  the s t a t emen t .  [3 
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