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IntroductionIn a series of four papers which appeared during the period 1906{1914, AxelThue considered several combinatorial problems which arise in the study ofsequences of symbols. Two of these papers [47, 49] deal with word problemsfor �nitely presented semigroups (these papers contain the de�nition of what isnow called a \Thue system"). He was able to solve the word problem in specialcases. It was only in 1947 that the general case was shown to be unsolvableindependently by E. L. Post [31] and A. A. Markov [27].The other two papers [46, 48] deal with repetitions in �nite and in�nite words.Perhaps because these papers were published in a journal with restricted avail-ability (this is guessed by G. A. Hedlund [21]), this work of Thue was widelyignored during a long time, and consequently some of his results have beenrediscovered again and again. Axel Thue's papers on sequences are now moreeasily accessible since they are included in the \Selected Papers" [50] which wereedited in 1977.It is the purpose of the present text to give a translation of Axel Thue's paperson repetitions in sequences, both in more recent terminology and in relationwith new results and directions of research.It appears that there is a noticeable di�erence, both in style and in amountof results, between the 1906 paper (22 pages) and the 1912 paper (67 pages).The �rst of these papers mainly contains the construction of an in�nite square-free word over three letters. Thue gives also an in�nite square-free word overfour letters obtained by what is now called an iterated morphism, whilst thethree letter word is constructed in a slightly more complicated way (a uniformtag-system, in the terminology of Cobham [13]).The second paper attacks the more general problem of what Thue calls irre-ducible words. He devotes special attention to the case of two and three letters.In particular, he introduces what is now called the Thue-Morse sequence, andshows that all twosided in�nite overlap-free words are derived from this se-quence. There are several aspects he did not consider: �rst, many combinatorialproperties of the Thue-Morse sequence (such as the number of factors, the recur-rence index, and so on) were only investigated by M. Morse [28] or later; next,



Introduction 3the characterization of all onesided in�nite overlap-free words | which is muchmore di�cult than that of twosided words | was only given later by Fife [16].However, Thue gives a complete description of circular overlap-free words.Axel Thue's investigation of square-free words over three letters is even moredetailed. He gives, in this paper, another construction of an in�nite square-freeword, by iterated morphism, and then initiates, in a 30 pages development, atentative to describe all square-free words over three letters. He observes thatevery in�nite square-free word is an in�nite product of words chosen in a setof six words, and classi�es those in�nite square-free words that are products offour among these six words. His classi�cation, he observes, is similar both instatement and in proof technique to what is found in diophantine equations: thesolutions are parametrized by some variables which are easier to manage.This text is organized as follows: in the �rst chapter, we give some preliminaryde�nitions and notation. We introduce the notions of square-free, overlap-freewords, avoidable pattern, morphisms and codes. These are useful to presentThue's results in a somewhat more concise manner. As an example, we givesome combinatorial properties of the Thue-Morse sequence.The two following chapters contain a translation of Thue's papers. We havetried to formulate Thue's results as faithfully as possible. For the proofs, someeasy parts have been simpli�ed, and more frequently some di�cult steps havebeen developed. In these chapters, footnotes only concern technical details. Alonger chapter of notes contains more general remarks and developments bothabout the contents of Thue's papers and about the actual state of the art.



Chapter 1PreliminariesIn this preliminary chapter, we �rst introduce some de�nitions and notation andthen present the so-called Thue-Morse sequence and some of its properties.1.1 NotationAn alphabet is a �nite set (of symbols or letters). A word over some alphabetA is a (�nite) sequence of elements in A. The length of a word w is denotedby jwj. The empty word of length 0 is denoted by ". We denote by alph(w)the set of letters that occur at least once in the word w. An in�nite word is amapping from N into A, and a twosided in�nite word is a mapping from ZintoA. A circular word or necklace is the equivalence class of a �nite word underconjugacy (or circular permutation). We shall write u ' w if u and w de�nethe same circular word. Sometimes, we identify a circular word with one of itsrepresentatives.A factor of a word w is any word u that occurs in w, i. e. such that there existwords x, y with w = xuy. A square is a nonempty word of the form uu. A wordis square-free if none of its factors is a square. Similarly, an overlap is a wordof the form xuxux, where x is nonempty. The terminology is justi�ed by thefact that xux has two occurrences in xuxux, one as a pre�x (initial factor) oneas a su�x (�nal factor) and that these occurrences have a common part (thecentral x). As before, a word is overlap-free if none of its factors is an overlap.The reversal of a word u = a1 � � �an, where a1; : : : ; an are letters, is the word~u = an � � �a1. If u = ~u, then u is a palindrome. The reversal of an in�nite wordto the right is an in�nite word to the left.The set of words over A is the free monoid generated by A and is denoted by A�.The set of nonempty words over A is denoted by A+. It is the free semigroupgenerated by A. A function h : A� ! B� is a morphism if h(uv) = h(u)h(v) for



1.2. Codes and encodings 5all words u, v. If jh(w)j � jwj for all words w, then h is nonerasing or lengthincreasing. It is equivalent to say that h(w) 6= " for w 6= ". If there is a letter asuch that h(a) starts with the letter a, then hn(a) starts with the word hn�1(a)for all n > 0. If the set of words fhn(a) j n � 0g is in�nite, the morphism de�nesa unique in�nite word say x by the requirement that all hn(a) are pre�xesof x. The word x is said to be obtained by iterating h on a and is called amorphic word. Sometimes, x is also denoted by h!(a). Clearly, x is a �xedpoint of h. The Thue-Morse sequence of section 1.4 is an example of a morphicword. A morphism h : A� ! B� easily extends to onesided in�nite words. Ifx = a0a1 � � �an � � � is an in�nite word, then h(x) = h(a0)h(a1) � � �h(an) � � �. Theresulting word is in�nite i� the set of indices n such that h(an) 6= " is in�nite.This holds in particular if h is nonerasing. The extension to twosided in�nitewords is similar. The only ambiguity is in the convention adopted to �x theorigin of the image. We agree that any origin is convenient. In other words, weconsider, insofar as homomorphic images are concerned, the equivalence classunder the shift operator T that is de�ned by T (x)(n) = x(n+ 1). If u is a �niteword, then the in�nite periodic word u! = uuu � � � veri�es u! = T juj(u!).1.2 Codes and encodingsA code over A is a set X of nonempty words such that each word over A admitsat most one factorization as a product of words in X . In other words, for alln;m � 1, x1; : : : ; xn; y1; : : : ; ym 2 X ,x1 � � �xn = y1 � � �ym; ) n = m and xi = yi (1 � i � n) :It is equivalent to say that the submonoid X� generated by X is free and thatX is its base.A set X is pre�x if no word in X is a pre�x of any other word in X ; thusx; xu 2 X implies u = ". Su�x sets are de�ned symmetrically. Pre�x and su�xsets are codes. A bipre�x code is a code that is both pre�x and su�x.An encoding is a morphism h : A� ! B� that is injective. If h is an encoding,then the set X = h(A) is a code. Conversely, if X is a code over an alphabet B,then an encoding of X is obtained by taking a bijection h from an alphabet AontoX . This extends to an injective morphism from A� into B�. It is convenientto implicitly transfer terminology between codes and encodings. Thus, we mayspeak about pre�x encodings, or about composition of codes.Several special properties of codes are useful, and will be introduced when theyare needed.



6 Preliminaries1.3 The Thue-Morse sequenceIn this section, we recall some basic properties concerning the Thue-Morse se-quence. Other properties and proofs can be found in Lothaire [25] and Salo-maa [37], and of course in Thue's second paper.Let A = fa; bg be a two letter alphabet. Consider the morphism � from the freemonoid A� into itself de�ned by�(a) = ab; �(b) = ba :Setting, for n � 0, un = �n(a); vn = �n(b)one gets u0 = a v0 = bu1 = ab v1 = bau2 = abba v2 = baabu3 = abbabaab v3 = baababba� � �and more generally un+1 = unvn; vn+1 = vnunand un = vn; vn = unwhere w is obtained from w by exchanging a and b. Words un and vn arefrequently called Morse blocks. It is easily seen that u2n and v2n are palindromes,and that u2n+1 = v�2n+1, where w� is the reversal of w. The morphism � can beextended to in�nite words; it has two �xed pointst = abbabaabbaababbabaab � � �= �(t)t = baababbaabbabaababba � � �= �(t)and un (resp. vn) is the pre�x of length 2n of t (resp. of t). It is equivalent tosay that t is the limit of the sequence (un)n�0 (for the usual topology on �niteand in�nite words), obtained by iterating the morphism �.The Thue-Morse sequence is the word t. There are several other characteriza-tions of this word. Let tn be the n-th symbol in t, starting with n = 0. Then itis easily shown by induction thattn = � a if d1(n) � 0 (mod 2)b if d1(n) � 1 (mod 2)where d1(n) is the number of bits equal to 1 in the binary expansion bin(n) ofn. For instance, bin(19) = 10011, consequently d1(19) = 3, and indeed t19 = a.



1.4. Symbolic dynamical systems 7As a consequence, there is a �nite automaton computing the values tn as afunction of bin(n). This automaton has two states 0 and 1. It reads the stringbin(n) from left to right, starting in state 0. At the end, the state reached is 0 or1 according to tn = b or tn = a. In fact, the automaton computes d1(n) modulo2. For a general discussion along these lines, see Cobham [13] and Allouche [2].Another description is given by Christol, Kamae, Mendes France, Rauzy in [12].There are many generalizations of the Thue-Morse sequence, motivated by itssimplicity, and by its numerous properties. One quite general de�nition was infact already given by Prouhet in 1851 ! (see [32, 1].)As we shall see, the Thue-Morse sequence is overlap-free. What Thue actuallyshowed, is that a word w over the two letter alphabet A = fa; bg is overlap-freei� �(w) is overlap-free.1.4 Symbolic dynamical systemsAlthough the notion of (symbolic) dynamical system is not essential for under-standing the papers of Thue, it gives some insight into what Thue perhaps hadin mind when he tried to \parametrize" the square-free words.A symbolic dynamical system or subshift is a set X of in�nite words over somealphabet A that is closed for the shift operator, de�ned by T (x)(n) = x(n+ 1),and that is closed for the usual topology on in�nite words. The language of Xis the set L(X) (or Fact(X)) of �nite words that are factors of some elementin X . It is not di�cult to show that x is in X i� L(x) � L(X). A dynamicalsystem X is minimal if it does not contain strictly any other dynamical system.This means that X is equal to the dynamical system generated by any of itselements, and also that L(x) = L(X) for any x 2 X . It has been shown thata dynamical system is minimal i� each of its elements is uniformly recurrent inthe following sense. A word x is uniformly recurrent if there exists a function� : N! N such that for all u; w 2 L(x), if jwj � �(juj), then u is a factor of w.Other people say that factors appear with \bounded gaps". M. Morse [28] sayssimply recurrent. The property that the dynamical system generated by the(twosided) Thue-Morse sequence is minimal was explicitly proved by Gottschalkand Hedlund [17]. Axel Thue only mentions that every factor appears in�nitelyoften.



Chapter 2Thue's First Paper : About in�nitesequences of symbolsLet u be a word over some alphabet A, and let w be a word over some alphabetB. We consider the question whether, given u and w, there always exists anonerasing morphism h : A� ! B� such that h(u) is a factor of w. We shallprove that this does not hold, as a consequence of a theorem which answers thequestion for a large class of problems.In the sequel, we call irreducible1 a word without two adjacent equal factors.x1Theorem 1.1. (Satz 1) There exist arbitrarily long square-free words over fourletters.In order to prove this result, we show that, given any square-free word of lengthk over four letters, one can always build a longer square-free word over the samealphabet.Let p be any word over three letters | for instance a, b and c | of length atleast 4, and such that p2 contains no other square than itself. By inserting anew letter, say d, between two letters in p at four di�erent places, we obtainfour words x, y, z, t which all contain a single d, and which reduce to p whenthis letter is erased.As an example, starting with p = abacbc1we shall write square-free.



Thue's First Paper 9we can set for instance x = adbacbc y = abdacbcz = abadcbc t = abacdbcand de�ne a morphism h : fa; b; c; dg�! fa; b; c; dg�by h(a) = x; h(b) = y; h(c) = z; h(d) = t :We shall prove that h is a square-free morphism, i.e. that h(u) is a square-freeword whenever u is square-free. In order to do this, we need two lemmas.Lemma 1.2. A word that contains an overlap also contains a square.Proof2. Let w be a word that has two overlapping occurrences of some nonemptyword u. Then w = xuy = x0uy0for some words x; x0; y; y0. We may assume that x is shorter than x0, and sincethe occurrences overlap, one has jxj < jx0j < jxuj < jx0uj. Thus, setting xs = x0and x0q = xu, one gets xu = x0q = xsq, whence u = sq, andw = x0uy0 = xssqy0showing that w contains a square, namely ss.Lemma 1.3. Let p be a word such that p2 contains no other square than itself.For all n � 2, if pn contains a square u2, then juj � 0 mod jpj.3Proof. Let u2 be a factor of pn. We �rst show that there exist pre�xes x and x0of p, and words y; y0 and an integer k such thatpk = xuy = x0uy0Indeed, assume jxj < jx0j. If xu is shorter than x0, this means that the �rstoccurrence of u is a factor of p. But then u2 is a factor of p2. Thus, the twooccurrences of u in pk overlap.Thus, setting xs = x0, the (proof of the) preceding lemma shows that s2 is afactor of p2. Thus s = p.Observe that the preceding lemma also holds for any two distinct occurrencesof u in a power of p, provided that 2juj � jpj.2For the relationship between overlaps and squares, see the introductory chapter.3and consequently, u is a conjugate of a power of p.



10 Thue's First PaperWe now come back to the theorem. Let u be a square-free word., Set w = h(u),where h is the morphism de�ned above, and assume, arguing by contradiction,that w contains a square, say v2. Thenw = h(u) = �v2�for some words �, �. Let v0 be obtained from v by erasing all occurrences of theletter d.First, v contains at least one occurrence of the letter d. Indeed, otherwise v = v0,and v02 is a factor of w, and consequently v02 is a proper factor of p2, contraryto the assumption on p. Next, by the preceding lemma, v0 is the conjugate ofsome power of p, i. e. v0 = p2p`p1; ` � 0; p = p1p2thus v contains exactly 1 + ` occurrences of the letter d. We setv = sr1 � � �r`�s = s0r01 � � �r0̀ �s0where r1; : : : ; r`; r01; : : : ; r0̀ ; �ss0 are all in the set X = fx; y; z; tg. If s 6= s0, then itis easily seen that p2 contains a proper square. Thus s = s0, ri = r0i for 1 � i � `,and �s = �s0. Since �ss0 contains one d, either s (and s0) or �s (and �s0) containsthe letter d. But a su�x or a pre�x of a word in X containing the letter ddetermines the word in X . This means that u contains a square.We observe that the argument also holds for p of length 4. Thus, we may aswell consider p = abcband x = adbcb y = abdcbz = abcdb t = abcbd :The previous theorem can be generalized to the following statement:Fact. Let X be a code of four nonempty words over a 4-letter alphabetsatisfying(1) if x 2 X and uxv 2 X�, then u; v 2 X�4;(2) if x; y; z 2 X , and x 6= y 6= z, then xyz is square-free;(3) if ��; �
; �� 2 X , then � = � or � = 
.5and de�ne a morphism h by assigning the four words in X to the four letters inthe alphabet. Then h(u) is square-free if u is square-free. (See Notes 4.1.)The proof is by contradiction: let u be a word, and assume h(u) contains a squaress. By (2), ss is not a factor of a product of three words in X . Consequently,4This is the de�nition of a comma-free code; see the next chapter.5As we shall see, this condition is super
uous.



Thue's First Paper 11ss contains a product xy, with x; y 2 X . Thus one of the occurrences of s (andby (1) also the other one), contains an occurrence of a word of X . This implies,again by (1), that ss = �x1 � � �xn��x1 � � �xn�with �� 2 X . It follows that u contains a factor avbvc, withh(a) = p�; h(b) = ��; h(c) = �p0; h(v) = x1 � � �xnfor some p; p0, whence h(abc) = p����p0and by (2), a = b or b = c. But then u contains a square.6Theorem 1.4. (Satz 2) There exists an in�nite square-free word over four let-ters. More precisely, there exists a sequence (wn)n�0 of square-free words suchthat wn is a pre�x of wn+1.Indeed, it su�ces to choose the morphism h such that h(a), say, starts withthe letter a. Then, there is an in�nite word x that is a �xpoint of h, i.e. suchthat x = h(x). As an example, if we use the second set of words, we obtain thefollowing in�nite square-free word:(adbcb)(abcbd)(abdcb)(abcdb)(abdcb)(adbcb)(abdcb) � � �In a very similar way, one may construct twosided in�nite square-free words, orcircular square-free words of arbitrary length.x2Theorem 2.1. (Satz 3) There exist arbitrarily long square-free words over threeletters.We will prove the following more general result:Theorem 2.2. (Satz 4) Over a three-letter alphabet fa; b; cg, there exist arbi-trarily long square-free words without factors aca or bcb.6This should be compared with Satz 17 of the next paper.



12 Thue's First PaperThese words can be obtained from the periodic wordababababababababababababababab � � �by inserting the letter c at well chosen places between a's and b's.Proof. The construction is in several steps7. Let u be a square-free word over a,b, c without factors aca or bcb.(1) In the �rst step, we replace each occurrence of c preceded by a by the word��, and each occurrence of c preceded by b by ��. In other words, a factor acis replaced by a�� and bc is replaced by b��. Denote the resulting word by u0.For instance, if u = acb, then u0 = a��b. Observe that we get u back from u0by erasing all �'s and replacing each � by c.We prove that u0 is square-free and has no factor of the form s�s or s�s. Indeed,if u0 contains a square ss, then, erasing all �'s and replacing each � by c, oneobtains a square contained in u. Thus, u0 is square-free. Next, assume that u0contains a factor s�s. The central � is preceded or followed by an �. Thus, e.g.s = �t, and s�� = �t��t�. Thus, erasing �'s and replacing �'s by c gives afactor of the form xcxc of u. This proves the claim.(2) In the second step, a letter 
 is inserted after any letter of the word u0. Denotethe resulting word by u00. For example, if u0 = a��b then u00 = a
�
�
b
.Clearly, the word u00 has no factor of the form ss (since otherwise u0 wouldcontain a square).(3) In the last step, we replace each a in u00 by ���, and each b by ���.Denote the resulting word by w. Thus, for the word u00 of the example, we getw = ���
�
�
���
.We claim that the word w is square-free and has no factors of the form �
� and�
�. To prove the second fact, observe that in u0, letters a or � alternate withletters b or �. Thus, the factors of length 3 with a central 
 in u00 are a
b, a
�,�
b, �
� and their reversals. Consequently, the corresponding factors in w are�
� and �
�.Assume next that w contains a square ss. Since, between two consecutive 
's,the only factors are �, �, ��� and ���, the word ss and consequently s containsat least one 
. If s contains only one 
 and this letter is not, say, the last letterof s, then it is followed by � (or by � and the argument is the same). Thismeans that ss contains the factor 
�
� or 
���
�, and thus w contains afactor �
�, contradiction. Thus s contains at least two occurrences of the letter
. Consequently, setting X = f�; �; ���; ���g, one getss = p
x1
 � � �
xm
q7The next Satz contains a more compact construction.



Thue's First Paper 13for some integer m � 1, where x1; : : : ; xm 2 X , qp 2 X , and p0p, qq0 2 X forsome p0, q0.If q = ", then p 2 X , and replacing in p
x1
 � � �
xm
 each ��� by a and each��� by b, one gets a square contained in u00. The same conclusion holds if p = ".Thus p 6= ", q 6= " and qp = ��� or qp = ���. It su�ces to consider the �rstalternative. Then (q; p) = (�; ��) or (q; p) = (��; �). These are symmetric.Consider the �rst case. The word w cannot start with p
 = ��
. Thus, thereis at least a letter � preceding this factor, and consequently qp
x1
 � � �
xm
 isa factor of w. But then u00 contains a square. This proves the claim.The construction shows that, starting with a square-free word u over three lettersa, b and c without factors aca and bcb, we get a longer square-free word w overthe three letter �, � and 
 without the factors �
� and �
�. This concludesthe proof.Theorem 2.3. (Satz 5) There exists an in�nite square-free word over threeletters. More precisely, there exists a sequence (wn)n�0 of square-free wordsover three letters such that wn is a pre�x of wn+1.Proof. Let u be a square-free word over the letters a, b and c with no factor acaor bcb and starting with a or b. We obtain a new word by applying to u thefunction � de�ned by� : a 7! abacb 7! babcc 7! bcac if c is preceded by ac 7! acbc if c is preceded by bIt is easily seen that the word �(u) is the same as the word w deduced fromu in the preceding proof, when �; �; 
 are replaced by a; b; c respectively. Thus�(u) is square-free and has no factor aca or bcb. Consequently, starting withw0 = a, one gets a sequence wn = �n(w0) of square-free words with the requiredproperty.As an example, one gets the in�nite square-free wordabacjbabcjabacjbcacjbabcjabacjbabcjacbcj : : :If the letters a, b and c are replaced by vertical sticks of unequal length in thisin�nite word, one gets an in�nite palisade without two equal consecutive parts:



14 Thue's First PaperWe now give another construction of in�nite square-free words over three lettersa, b and c. For this, consider three �xed wordsp = acab; r = acb; q = abcband the two sets of wordsA1 = p�r�q A = prqB1 = p�0r�q B = pcrqC1 = p�r�0q C = prcqD1 = p�0r�0q D = pcrcqHere �; �; �0; �0 are new letters. The second column of words is obtained fromthe �rst by applying the morphism � de�ned by:�(�) = �(�) = ";�(�0) = �(�0) = c :Set X1 = fA1; B1; C1; D1g and X = fA;B;C;Dg. It is easy to check that theproduct of two distinct words in X is square-free. Observe also that exchanginga and b converts A and D into their reversals.The construction is in three steps, and starts with an in�nite square-free word sover the letters �, �0 and �0 without factors �0��0 and �0��0. We have alreadyseen that such a word exists. As an example, considers = �0�0�0��0�0�0��0 � � �(1) In the �rst step, we insert a letter � between any two consecutive occurrencesof � and �0 in the word s. Denote by u the resulting word. In our example,u = �0�0�0���0�0�0���0 � � �If � is the projection that erases �, then �(u) = s. Clearly, u is square-free.Also, it has no factor of the form w�w, because s is square-free. We also showthat u has no factor of the form w�w. For this, observe that every � in s ispreceded or followed by a letter �0. Indeed, otherwise, there would be a �0��0.Thus, every � in u is also preceded or followed by a �. This implies that, if wede�ne a morphism � by � : � 7! "� 7! ��0 7! �0�0 7! �0then �(u) = s. Thus, if u contains a factor w�w, then s contains a square.



Thue's First Paper 15(2) In the second step, we replace every factor ��, �0�, ��0, �0�0 in u respectivelyby A1, B1, C1, D1, and denote the resulting word by w1. In our example, weget w1 = D1B1C1D1A1 � � �Formally, if � denotes the projection of fa; b; c; �; �0; �; �0g� onto the monoidf�; �0; �; �0g�, then �(w1) = u. The word w1 is square-free, and contains nofactor of the form w�w or w�w, since otherwise u would contain such a factor.(3) Finally, let w be the word w = �(w1), where � was de�ned above. We showthat w is square-free. Assume the contrary. Then w contains a square, say uu.We have already seen that uu is not a factor of a product of two words in X .Consequently, uu contains as a factor at least one word in X . This implies thatu itself contains one of the words p or q as a factor, and also, setting t = qp,that u contains r or t as a factor. Two consecutive occurrences of r and t in ware either adjacent or separated by the letter c. Thus, u can be factorized intou = ws1d1s2 � � �dm�1smvfor some m � 1, where s1; : : :sm are in fr; tg, d1; : : : ; dm�1 2 f"; cg, and vw 2f"; cg or vw = dsd0, with d; d0 2 f"; cg and s 2 fr; tg. There are two adjacentfactors U1 and U2 in w such that �(U1) = �(U2) = u. We may assume that U1does not start with � or � and U2 does not end with � or �. This implies thatU1 = w1s1�1s2�2 � � ��m�1smv1U2 = w2s1�1s2�2 � � ��m�1smv2where �i is entirely determined by sidisi+1. Now, v1w2 is neither � nor �, sinceotherwise w1 would have a factor of the form v�v or v�v. Also, v1w2 is neither�0 nor �0, since otherwise U1 = U2. Thus �(v1w2) = dsd0, with s = r or s = t.However, this determines d and d0, and implies that U1 = U2. The proof iscomplete.Theorem 2.4. (Satz 6) There exists an in�nite cube-free word over two letters.As we shall see, we obtain such a cube-free word over a and b by replacing, inany in�nite square-free word over the letters x, y and z, every x by a, every yby ab, and every z by abb8. In other terms, the cube-free in�nite word is theimage of a square-free in�nite word under the morphism f : fx; y; zg� ! fa; bg�de�ned by f : x 7! ay 7! abz 7! abbLet X = fa; ab; abbg. This set is a su�x code9.8See also the 1912 paper.9As we shall see, this observation basically su�ces to prove the following elementary lemmas.



16 Thue's First PaperLemma 2.5. (H�ulfssatz 1) If u and v are words over the letters x and y suchthat f(u) = f(v), then u = v.Lemma 2.6. (H�ulfssatz 2) The morphism f is injective.Proof. This holds because X is a code.Let x be an in�nite square-free word over the letters x, y and z, and set y = f(x).Lemma 2.7. (H�ulfssatz 3) If y contains a factor uuu, then u does not start withthe letter a.Proof. If u starts with the letter a, then there is a (unique) factor v of x suchthat f(v) = u. But then y contains the square vv.Lemma 2.8. (H�ulfssatz 4) If y contains a factor uuu, then u does not start withthe word bb.Proof. If u does not begin with the word bb, then any occurrence of u is precededby the letter a, and also u ends with an a. Thus, setting u = u0a, the word yhas a factor au0au0au0, contrary to the preceding lemma.Lemma 2.9. (H�ulfssatz 5) If y contains a factor uuu, then u does not end withthe letter b.Proof. In view of the preceding lemmas, u must start with ba. Thus, assumingthe contrary and setting u = bau0b, one obtains in y the factor bbau0bbau0bbau0b.But then y contains the factor au0bbau0bb, showing that x contains a square.We now can prove the theorem. Assume that y contains a cube uuu. Then ustarts with ba and ends with a. If u = ba, then x contains the square yy. Ifu = bau0a for some word u0, then uuu = bau0abau0abau0a and y contains thefactor abau0abau0, showing that x contains a square.It is easily veri�ed that a word f(x), where x is square-free, may have overlaps,but if xuxux is an overlap, then x is a letter.1010Compare with square-free words of type (I) in the 1912 paper.



Chapter 3Thue's Second Paper : On the relativeposition of equal parts in certain sequencesof symbolsFor the development of logical sciences it will be important, without consid-eration for possible applications, to �nd large domains for speculation aboutdi�cult problems. In this paper, we present some investigations in the theory ofsequences of symbols, a theory that has some connections with number theory.3.1 Introductory Remarks1.| A word over an alphabetA = fa1; a2; : : : ; angof n letters (symbols) may have several meanings. For instance, a book can beviewed as a sequence of typographic symbols. The letters of the alphabet A canalso be interpreted as mathematical entities or as substitutions for example. Letp be a positive integer. Then it is straightforward that any word w 2 A� of lengthm � np + p has two identical factors of length p. Observe that if w is viewedas a book, these unavoidable repetitions may not be meaningless. Withoutconsidering the meaning of words, it is of interest to investigate whether �niteor in�nite words can be constructed that have prescribed properties concerningthe apparition of symbols. We expect that the results of such investigations haveapplications to usual mathematical problems. As an example, the existence ofnonperiodic decimal developments proves that irrational numbers exist. Thefollowing is a general problem of this kind concerning the existence of identicalfactors in a word.Let A and B be �nite disjoint alphabets. A morphism h : (A [ B)� ! A� iscalled an extension if h(a) = a for all a 2 A. The problem is: given n words



18 Thue's Second Paperw1; : : : ; wn over A[B, does there exist an in�nite word x over A such that, forany extension h, the word x has no factor in the set fh(w1); : : : ; h(wn)g ? (Seealso Notes 4.3)In the sequel, we will consider onesided in�nite words, twosided in�nite words,circular words, and ordinary �nite words. Finite and onesided in�nite words arecalled open words, twosided in�nite and circular words are said to be closed.2.| We are concerned with the construction of words with the property thatany two occurences of the same factor are as far as possible one from each other.In any word w of length at least n + 2 over an alphabet of size n, two equalfactors cannot always be separated by a word of length greater than n�2. Moreprecisely, if jwj � n+2, then w admits a factor of the form uvu, with u 6= " andjvj � n� 2:Indeed, assume on the contrary that there is a word w = a1 � � �anan+1an+2without a factor of this kind. Then the letters a1; : : : ; an are all distinct, andmoreover a1 = an+1 and a2 = an+2. But then w = a1a2va1a2 with jvj = n� 2.We shall see later how to construct, for n > 1, arbitrarily long closed words, andin�nite words, such that any two equal factors are always separated by at leastn� 3 symbols.A word over an n-letter alphabet is called irreducible if two occurences of afactor are always separated by at least n�2 letters. The word is called reducibleotherwise1. Formally, w is irreducible if for any factorz = xu = uy (x; y; u 6= ")one has jzj � 2juj = jxj � juj � n� 2:zx uu yOne reason for this terminology is the following. Say that two words are equiv-alent if one word is obtained from the other by deleting or replacing factors ofa given form by some �xed shorter words. Then, if factors of this prescribedclass are unavoidable in su�ciently long words, this implies that there exist only�nitely many classes for this equivalence relation.1Examples : For n = 3, a word w is irreducible i� it is square-free ; for n = 2, it isirreducible i� it is overlap-free. Observe that the de�nition given in the previous paper appliesin this context only for a three letter alphabet.



3.1. Introductory Remarks 19As an example, consider words that are composed of numbers which are alter-natively positive and negative. Assume now that such a word u has two factorsx and y which are the same up to the signs of the numbers, and which areseparated by a factor z of odd length if x and y have even length, and with z ofeven length if x and y have odd length. Then u has the same algebraic value2after removing both x and y. Moreover, the resulting sequence is still formed ofnumbers with alternating signs.Another example is the following. Consider a sequence u of parallel glass prismsarranged in such a way that a perdendicular light ray passes through all prisms.Let v be a similar sequence of prisms with the additional property that outcom-ing rays are always parallel to ingoing ones. If u contains v as a factor, thismeans that the deletion of v does not modify the angle of the lightrays.Let us list some simple facts. We consider alphabets with n letters, assumingn � 2. Let u be a word of length r = d + n � 3, where d � 2 if n = 2 andd � n� 2 otherwise. In other terms, r + 1 = d if n = 2, and r � d if n � 3.Fact. Any factor of length k � r + d in the in�nite word u! is reducible.Indeed, such a factor has the form w = u0v, where u0 is some conjugate of u,and v is a pre�x of u0!. If jvj > juj, then w is an overlap. Otherwise, u0 = vyfor some word y, and w = vyv, withjyj = juj � jvj � r � d = n� 3Fact. If all factors of length d of u2 are irreducible, then any reducible factorof u3 or of u! has length at least r + d.Proof. Let z be a reducible factor of u3 of minimal length. If jzj � d, thenjzj � 1 + r and z is a factor of u2, contrary to the assumption. Thus jzj > d.Assume, arguing by contradiction, thatd < jzj < r + d :Since z is reducible, there are nonempty words x, y, t such thatz = xt = tyand moreover jzj � 2jtj = jxj � jtj � n � 3 :We show �rst3 that jxj � jtj = n� 3 :2Thue means of course the sum of the numbers composing u.3This is not done in the original paper.



20 Thue's Second PaperIndeed, consider �rst the case where n � 3. If, contrary to the claim, jxj < jtj,then xs = t for some nonempty word s. Thus z = xxs, showing that xx isa reducible factor which is shorter than z. Thus jxj � jtj, which proves theequality for n = 3. Assume now n > 3. Since jxj � jtj, we have x = ts for someword s, whence y = st and z = tst. zx tt yt0 a s t0 aIf jsj � n � 4, let a be the last letter of t, and let t = t0a, s0 = as. Thenz0 = t0s0t0 is a shorter reducible factor than z, except for the case where t0 = ".Thus jtj = 1. This implies that jzj = 2 + jsj � n� 2 � d, again a contradiction.We thus have proved that jsj = n� 3.Consider now the (easier) case n = 2. Then jxj < jtj, and consequently xs = t =sy for some nonempty word s. Let a be the �rst letter of t (and of x and of s),and let x = ax0. Then z = xxs starts with ax0ax0a which is a reducible pre�x.Thus this word is equal to z, showing that jsj = 1. This completes the proof.We now come back to our initial claim. Since jxj = jtj+ n � 3, andjzj = 2jtj+ n� 3 < r + d = 2d+ n� 3one has 2jtj < 2d, whence jtj < d, jxj < r. Let p be the word of length r � jtjsuch that pt = u0 is a conjugate of u, and let s be the word of length r� jyj > 0such that u0 = ys. zu0 u0p t y sx t sh tThen u0u0 = ptpt = pzs = ptys = pxts = pxhtwhere h is some word of same the length as s. Consequently ts = ht. This wordclearly is reducible, and has length r � n + 3 = d, a contradiction.A closed word of length r over an n-letter alphabet is called irreducible if r >2n� 6 and if every open factor of length r�n+3 is irreducible. Otherwise, theword is reducible.For n > 2 and arbitrary r, a closed word of length r is a closed irreducible wordif any two disjoint occurrences of the same factor are separated by at least n� 2



3.1. Introductory Remarks 21symbols. The word is reducible if it contains two disjoint occurences of the samefactor separated by fewer than n� 2 symbols4.3.| To each set S of words which all start with the same letter, say a, oneassociates a tree that represents the set in a simple way : the root is a vertexlabelled with the common initial letter a of the words in S. Next, let T =a�1S = fw j aw 2 Sg and setT = [b2ATb; Tb = T \ bA� :For each b 2 A with Tb 6= ;, the root of the tree of S is connected to the rootof the tree associated with Tb. As an example, Fig. 1 shows an initial part ofthe tree of words over the n-letter alphabet fa; b; : : : ; h; kg (n � 8) starting withabcdef : : :h and which are irreducible.Figure No. 14.| Let A be an alphabet with n letters. We observe the following immediatefacts. In an open irreducible word w over A, any n � 1 consecutive letters aredistinct.Next, if w and wa, with a a letter, are irreducible words and jwj � n � 2, thena is distinct from the n� 2 rightmost letters in w.Let w be an irreducible word. The word wa, with a a letter, is called a rightextension of w if wa is irreducible. If jwj � n� 2, then w has at most two rightextensions.Let w be an irreducible word of length � n, and assume that it has two rightextensions wa and wb. Then setting w = w0cdu with juj = n � 2, one hasfc; dg = fa; bg.Consider a tree containing all irreducible words starting with a given letter a,and let b be an arbitrary letter. If the path starting at the root and ending in4There seems to be a third case, namely where the two occurrences are overlapping. Butthis also implies that the word is reducible.



22 Thue's Second Papera vertex labelled with b is composed of at least n � 2 symbols, then the vertexlabelled b has at most two sons.Fact. An irreducible word w has at most one right extension if and only if ithas a su�x of the form upu, with u 6= " and jpj = n � 2.Proof. If w has at most one right extension, then wa is reducible for all letters awith at most one exception. Take such a letter a which is distinct from the n�2last letters of w. Then wa = w0upuw00 for some words w0; w00; u; p, with u 6= "and jpj � n� 3. Since w is irreducible, the word w00 is empty and thus the lastletter of u is an a. Set u = va. Then w = w0vapv. If v is not empty, then sincew is irreducible, one gets japj � n�2, which, combined with the �rst inequality,gives japj = n � 2 and the announced su�x. Assume �nally that v = ". Thenw = w0ap, and since a was chosen in an appropriate way, jpj � n� 2.Conversely, assume that w = qupu for some word q. Then w has at most tworight extensions wa and wb, and a; b are di�erent from the last n � 2 letters ofpu. They are also di�erent from the �rst letter of p. This shows the result ifjuj � n, and also if u is a single letter. Thus the claim follows from the nextfact.Fact. Any word of the form upu with 2 < juj < n and jpj = n� 2 is reducible.Assuming the contrary, let c be the �rst letter of p and let A� alph(p) = fa; bg.Then by considering the word pu, the �rst letter of u must be either a or b, andthe second letter is either b or a ; it cannot be c since otherwise up would bereducible. Thus upu = abu0pabu0for u0 de�ned by u = abu0, and 1 � ju0j � n� 3. The last letter u0 is none of theletters in alph(p), and is neither a nor b, a contradiction.Fact. If a word qvq is a proper su�x of an irreducible word pup and juj =jvj = n� 2, then qvq is a su�x of p.Indeed, q is a su�x of p, and consequently qvq is a su�x of qup. But the leftoccurences of q in these two words must be separated by at least n � 2 = jujsymbols. The claim follows.Thus p = tqvq for some word t. This implies that u and v start with di�erentsymbols. Indeed, if u = au0, v = av0, thenpup = tqav0qau0phas the reducible factor qav0qa. Observe also that any word with su�x pupcannot be extended to the right into an irreducible word. By a previous remark,we know that the n� 2 last symbols of q are all di�erent ; they are also distinctfrom the �rst letter of u and from the �rst letter of v. Thus these letters



3.1. Introductory Remarks 23altogether form the alphabet. Assume now that pup can be extended by a letterc. Then c can be neither one of the n � 2 last letters of q, nor the �rst letter ofu or of v. Thus c cannot exist.As a consequence, an irreducible word cannot have three distinct su�xes pup,qvq, rwr, with juj = jvj = jwj. Indeed, otherwise, and assuming jrj < jqj < jpj,the �rst occurence of p in pup has as su�xes both qvq, rwv, and is extensibleto the right.Fact. If x is an in�nite irreducible word, then for each integer m, there existsan irreducible word w of length m that admits at least two right extensions.Indeed, otherwise there is an integer m such that any extensible word has onlyone right extension. This would hold also for words longer than m, since eachsuch word has a su�x of length m. However, this means that the in�nite wordx, which then is completely characterized by its �rst m letters, is ultimatelyperiodic, which is contrary to the assumption that it is irreducible.5.| Again, we consider a �xed alphabet A with n letters; we �rst assume n � 3.Fact. Let u and p be words, with jpj = n � 3, and such that up and pu areirreducible. If the (reducible) word upu has a (reducible) proper factor of theform wqw, with jqj = n � 3, then jwqwj � juj+ jpj (i.e. jwj � juj=2).Proof. Since wqw is a proper factor of upu, there exist words x, z, with jxj+jzj >0 such that upu = xwqwz :We may assume that xw is a pre�x of u (otherwise wz is a su�x of u). Let t besuch that u = xwt.In order to prove the claim, assume now, arguing by contradiction, that jwqwj >jupj. Then jxzj < juj. Therefore, there is a nonempty word y such that u = xyz.From this, it follows that wqw = yzpxy :Since jqj = jpj, one gets jyj � jwj, and equality cannot hold because otherwisejxzj = 0. Thus y is a proper pre�x and a proper su�x of w. Since w is a factorof the irreducible word u, there is a factorizationw = ysywith jsj � n � 2. Let t be such that wt = yz. Recall that u = xwt. Thus,qys = tpx :



24 Thue's Second Paperx w tu p ux w q w zx y zy s y t p xq y sIf jtpj � jqyj, then jxj � jsj, and consequently x = x0s for some x0. But thenpu = pxyz = px0swt = px0sysytis reducible. Consequently jtpj > jqyj, and tp = qyy0 for some y0. But thenup = xyzp = xwtp = xysyqyy0has the reducible factor yqy, again a contradiction.Fact. Let w be an irreducible circular word, let p be a factor of length n � 3of w, and let u be the rest of w, i.e. such that w = up. Then upu has noproper irreducible factor. If furthermore juj � 2, let u = ha, with a in A, andlet k = ap. Then hkh is irreducible.Indeed, if there is an irreducible factor in upu, then we may assume, by a previousremark, that it has the form vqv for some v, and some q with jqj = n� 3. Butthen jvqvj � jupj = jwj, and vqv is a factor of w. This proves the �rst part.Next hkha = hapha = upuand therefore hkh is an irreducible factor of upu.Fact. Let w be a circular irreducible word, and suppose that w has a factor ofthe form vqv with jqj = n� 2. Suppose further that w ' vqvr with jrj � n� 2.Then, there is a word u ' w which has no right extension.Indeed, let r = pas with jpj = n � 2 and a 2 A. Then svqvqasvqv has no rightextension.Two words x;y 2 AZare called congruent5 if there exists k 2 Z such thatx(i) = y(i+ k) for all i 2 Z. A word x 2 AZis simply recurrent if every factorof x has in�nitely many occurences in x. A word has only h-bounded overlapsif for every factor of the form xuxux with u 6= ", one has jxj � h. We say thatthe word has bounded overlaps if it has h-bounded overlaps for some h. Finally,we say that x avoids a �nite set X � (A [ B)�, where A \ B = ; if there is noextension h : (a[ B)� ! A� such that all words h(x), (x 2 X) are factors of x.5Morse, Hedlund call them similar.



3.1. Introductory Remarks 25Theorem 1.1. (Satz 1) Let x 2 AZbe an in�nite word that satis�es the follow-ing conditions:(i) x is simply recurrent;(ii) x has bounded overlap;(iii) x avoids a �xed set X � (A [B)�.Then there exist in�nitely many twosided in�nite words with the same threeproperties.Proof. We construct a sequence (uk)k�0 of factors of x as follows :(i) u0 is an arbitrary nonempty factor of x.(ii) assume uk is constructed. Then to a given occurence of uk, there is anotheroccurence of uk, to the right or to the left. Suppose it is to the right. Thus thereis a word vk such that ukvkukis a factor of x. Consider one occurence of this word, and consider any factor�k that extends the occurence to the left, and a factor wk+1 that extends theoccurence to the right and that, furthermore, has the property that wk+1 is nota pre�x of ukwk+16. We thus have obtained a factoruk+1 = �kukvkukwk+1 = w�(k+1)ukwk+1with w�(k+1) = �kukvk . A symmetric de�nition holds in the symmetric case. Itis not very di�cult to check that the in�nite wordy = : : :w�3w�2w�1u0w1w2w3 : : :is not congruent to x but has the same factors as x and therefore has theproperties claimed.The construction can be used for deriving similar results on in�nite words. Weconsider the following problem. Let h : A� ! A� be a �xed nonerasing mor-phism. Does there exist a twosided in�nite word x0 2 AZsuch that there is asequence x1; : : : ;xm; : : :of twosided in�nite words over A withh(xm+1) = xm :If this holds, and if furthermore alph(h(a)) = A for a 2 A then every factor ofx0 appears in�nitely often in x0.Let u0 be a nonempty word, and assume thath(u0) = v0u0w06This is possible because x has bounded overlaps.



26 Thue's Second Paperfor nonempty words v0; w0. Then setting, for m � 0,um+1 = h(um); vm+1 = h(vm); wm+1 = h(wm);we get um+1 = vmumwm = vmvm�1 � � �v0u0w0 � � �wm :Therefore, the twosided in�nite word x de�ned byx = � � �v2v1v0u0w0w1w2 � � �is a �xed point for h, i.e. h(x) = x.After these introductory remarks, we will consider in more detail irreduciblewords for special values of n, the number of letters. As we shall see, closed ortwosided in�nite irreducible words have some analogy with Diophantine equa-tions.3.2 Sequences over two symbols7.| We now consider a �xed alphabet A = fa; bg. A �nite or in�nite word wover A is irreducible if it has no overlap; in the sequel, we7 call it overlap-free.A circular word w is overlap-free i� the open word ww is overlap-free. For any�nite or in�nite word w, we denote by �w the word obtained by exchanging thea's and b's in w.Example. The circular words aa and abab have overlaps. The circular wordaab is overlap-free.It is not di�cult to verify that a circular word of length r is overlap-free i� all7the translator



3.2. Sequences over two symbols 27factors of length 1 + r of the open word ww are overlap-free.8
Figure No. 2

Figure 2 shows all overlap-free words of length at most 12 starting with theletter a. The �nal letters of words which cannot be extended are marked witha circle.Through a sequence of statements we will in particular prove the existence ofin�nite overlap-free words. We begin with some lemmas.Lemma 2.1. (Satz 2) Let X = fab; bag. For any x 2 X�, one has axa =2 X� andbxb =2 X�.Proof. By induction on jxj , the case jxj = 0 being trivial. Let x 2 X�, x 6= ",and assume that u = axa is in X� (the case bxb 2 X� is similar). Then the�rst and the last letters of x must be b. Thus x = byb for some word, andconsequently u = abyba:Since u 2 X�, one has y 2 X�, and by induction u = byb is not in X�, contraryto the assumption.We consider the two morphisms� : a 7! abb 7! ba �� : a 7! bab 7! ab8For, assume that ww = ycxcxcz with c 2 A, x of minimal length, and jcxcxcj > 1 + jwj.Then either ycxc is a pre�x of w or, symmetrically, cxcz is a su�x of w. In the �rst case,the word cxcz has another occurrence of cxc, and the length condition implies that theseoccurrences overlap.



28 Thue's Second PaperLemma 2.2. (Satz 3) If w is an overlap-free word, then �(w) and ��(w) areoverlap-free.Proof. Assume that �(w) has an overlap. Then�(w) = xcvcvcyfor some words x, v, y and a letter c. Since j�(w)j is even and jcvcvcj is odd, itfollows that jxyj is odd and therefore one of jxj or jyj is even and the other isodd. By symmetry, we may assume that jxj is odd and jyj is even.SetX = fab; bag. Then y 2 X�, and furthermore jvj is odd. Indeed, since vcvc 2X�, the contrary would imply that both v and cvc are in X�, in contradiction tothe previous lemma. It follows that vc is in X�, and xc is in X�. Thus w = rsstwith �(r) = xc, �(s) = vc, �(t) = y. But r and s have the same �nal letter,showing that w has an overlap.A similar proof gives the following lemma.Lemma 2.3. (Satz 4) If w is an overlap-free circular word, then �(w) and ��(w)are overlap-free.By induction, �p(w) is overlap-free for any overlap-free word w and for anypositive integer p. Set for n � 0un = �n(a); vn = �n(b):Theorem 2.4. (Satz 5) There exists an overlap-free in�nite word over two let-ters.Proof. Let t = av0v1v2:::vn:::By induction on n, un+1 = av0v1:::vn for n � 0. Thus�(t) = tand t is overlap-free.Corollary 2.5. (Satz 6) Let x and y be in�nite words with x = �(y). Thenx is overlap-free i� y is overlap-free.Proof. It is easily seen that if x is overlap-free, then y is overlap-free. Theconverse follows from Satz 3.Observe that u2n and v2n are palindromes and that ~u2n+1 = v2n+1 for n >= 0.Indeed, by induction,u2n+2 = �2(u2n) = u2nv2nv2nu2n = ~u2n~v2n~v2n~u2n = ~u2n+2:The other veri�cations are similar.



3.2. Sequences over two symbols 29Theorem 2.6. (Satz 7) Let wn = ~vn for n � 0. The twosided in�nite wordu = � � �wn � � �w2w1w0aav0v1 � � �vn � � �is overlap-free.Proof. Of course, u = ~t t. From the relations above, it follows thatwn � � �w1w0aav0 � � �vn = � vn+2 n evenun+1un+1 n odd.This holds indeed for n = 0; 1; next, if n is even, then wn = vn andwn � � �w1w0aav0 � � �vn = vnununvn = vn+2 :If n is odd, then wn = un andwn � � �un = unvn+1vn = unvnvnun = u2n+1 :The result follows.Observe that �(~t)t = ~�ttis also an overlap-free twosided in�nite word.8. | Let w be an overlap-free word over A. If jwj � 5, then w has at least onefactor in the set Y = faa; bbg. Consequently , if jwj � 9, then w has at leasttwo occurrences of factors in Y .If w is an overlap-free word circular with at least 4 letters, then w has at leasttwo occurrences of factors in Y .Proposition 2.7. (Satz 8) Let w be a word over A of the formw = cddxeefwhere c, d, e, f are letters and x is a word. If w is overlap-free, then w and dxeare in X�, where X = fab; bag.9Proof. By induction on the length of x. Without loss of generality, we mayassume that c = a, whence d = b. If x = ", then c 6= d 6= e 6= f and w = abbaabwhich is in X�.Assume that x 6= ". Then x = ay for some y 6= ", andw = abbayeef:9This means that (a; a) and (b; b) are synchronizing pairs.



30 Thue's Second PaperIf y starts with the letter a the result holds by induction. Thus assume thaty = bz for some z. If z = ", then w = abbabeef , whence e = a and f = b andw is in X�. If z 6= ", and z starts with b, the result again follows by induction.Finally, we assume that z = at, and thusw = abbabateef :Observe that t 6= " since otherwise w contains an overlap. Thus t starts with ab. The result follows by induction.Proposition 2.8. (Satz 9) If w is a twosided in�nite overlap-free word, thenw = �(u) for some in�nite overlap-free word u.Proof. Let w be a twosided in�nite overlap-free word. As observed above, anylong enough factor has two distinct occurrences of a factor aa or bb. The resultfollows then from the previous proposition.Proposition 2.9. (Satz 9) For any overlap-free circular word w of length atleast 4, there exists a unique circular word u such that w = �(u).Proposition 2.10. (Satz 10) If w is a twosided in�nite overlap-free word, thenfor any integer k � 1, there is a unique in�nite overlap-free word u such thatw = �k(u).In taking k su�ciently large in the previous proposition, one gets:Corollary 2.11. (Satz 11) Let w be a twosided in�nite overlap-free word.Every factor of w appears in�nitely often in w.Observe that, according to Satz 1, this shows that there exist in�nitely manycongruence classes of overlap-free words. (See Notes 4.2)Another consequence is the following:Theorem 2.12. (Satz 12) Let x, y and z be (onesided) in�nite words over A,and consider the twosided in�nite wordsu = ~xy; v = ~xz :Assume that y and z start with di�erent letters. If u and v are both overlap-free, then y = �z and furthermore either x = �(x) or x = ��(x) and z = �(z) orz = ��(z) and thus x, y and z are equal to t or �t.



3.2. Sequences over two symbols 31Proof. It su�ces to observe that for any k � 0, the in�nite words x, y, z have�k(a) or �k(b) as pre�xes.Proposition 2.13. (Satz 13) Every circular overlap-free word with length atleast 2 is of the form �n(aab), �n(bba), �n(ab) for some integer n � 0.Proof. If w has length at least 4, then w = �(u) for some overlap-free circularword u, and of course jwj = 2juj. Thus, it su�ces to consider the overlap-freecircular words of length 2 or 3.Corollary 2.14. (Satz 14) Any circular overlap-free word has length 2n or3� 2n for some n � 0.Let w be an overlap-free word of length at least 10. Then there exist lettersx; y; z; u and words p; s; t such thatw = pyxxtzzuswith x 6= y, z 6= u, andp 2 f"; x; y; yx; xx; yyxg; s 2 f"; z; u; zu; zz; zuugand xtz 2 fab; bag�:This observation is useful in the proof of the following theorem:Theorem 2.15. (Satz 15) Let n � 1 and let w be an overlap-free word of lengthn. If there exist words u, v of length at least 8n such that uwv is overlap-free,then any overlap-free word of length at least 26n contains w as a factor.Proof. Let uwv be overlap-free, with jwj = n and juj; jvj � 8n. Let k =1+ blog2 nc. We construct a decreasing sequence of wordssh = uhwhvh (0 � h � k)with u0 = u, w0 = w, v0 = v, such that �(sh+1) is a factor of sh and wh is afactor of �(wh+1): �(uh+1) �(wh+1) �(vh+1)uh wh vhAssume that jwhj > 10. Then, according to the preceding observation, thereis a factor s0 of wh of length at least jwhj � 6 in fab; bag�. De�ne sh+1 =



32 Thue's Second Paperuh+1wh+1vh+1 in such a way that s0 = �(sh+1) and furthermore wh is a factorof �(wh+1). Clearly 2juh+1j � juhj � 3; 2jvh+1j � jvhj � 3jwhj � 2jwh+1j � jwhj+ 2whence by inductionjuh+1j > juj2h+1 � 3; jwj2h+1 � jwh+1j < jwj2h+1 + 2 :Since juj � 8n � 8 � 2k�1, it follows thatjuk�1j > juj2k�1 � 3 > 5 :Thus sk�1 has length greater than 10, and consequently the word sk exists. Itfollows that w is a factor of �k(a) or of �k(b).Consider now a word f of length 26n. By the observation above, if f is overlap-free, then there are words p, s, and a word g such thatf = p�(g)sand jpj; jqj � 2. Thus there is a sequence of words f0; f1; : : : such that fh is afactor of �(fh+1) and 2jfh+1j � jfhj � 4 :This implies that jfh+1j > jf j2h+1 � 4 :Since jf j � 26n � 13 � 2k, one hasjfk j > jf j2k � 4 � 9 :Thus fk contains also sk. This proves the result.Observe that since the word w of the preceding theorem is a factor of some �k(a)or �k(b), this means that w is extensible to a twosided in�nite word.A morphism h is called overlap-free if h(w) is overlap-free for all overlap-freewords w. The next result gives a characterisation of overlap-free morphisms.(See Notes 4.2)Theorem 2.16. (Satz 16) For any overlap-free morphism h over two letters,there is an integer k � 0 such that h(a) = �k(a), h(b) = �k(b) or h(a) = �k(b),h(b) = �k(a).



3.2. Sequences over two symbols 33Proof. Set h(a) = u, h(b) = v. The result holds if juj = jvj = 1.We prove �rst that if juj > 1, then juj is even. Indeed, assume �rst that juj = 3.If u = aab or u = baa, that vuuv has a factor b(aab)(aab) or (baa)(baa)b.Similarly, if u = aba, then vvuuvv or vuv have an overlap, according to the �rstand the last letter of v. Thus juj > 3. If juj > 4, then u has the formu = paas or u = pbbsfor some nonempty words p; s. Assume the former. The wordvuuv = vpaaspaasful�lls the requirements of Satz 8. Thus the central factor aspa has even length,showing that u has even length. This proves the claim.Next we show that juj = 1 implies jvj = 1. Indeed, if say u = a, and jvj > 1,then v has even length. Moreover, since vuuv is overlap-free, v = bwb for someword w, and w 6= " because vv must be overlap-free. But then, invvuuv = bwbbwbaabwbthe central factor bwba has even length, again by Satz 8. Thus jvj is odd, acontradiction. This shows the second claim.We now prove the result by induction on juj + jvj, assuming juj > 1, jvj > 1.We already know that u and v have even length. Without loss of generality, wemay assume that u starts with the letter a.If u = awa, then w is not empty. Thus w = bzb for some word z, since otherwiseuu contains an overlap. Moreover, w contains a factor aa or bb. Indeed, otherwisew = (ba)nb for some n, which is impossible because jwj is even. Thus w has theform w = xddy for some letter d and some words x; y, anduu = axddyaaxddyshowing that dya and axd are in X�, with X = fab; bag. Thus, u also is in X�.If u = awb, then v = bza for some z. The wordvuvu = awbbzaawbbzais overlap-free, and as above, this shows that u is in X�. Similarly, v is in X�.It follows that u = �(u0), v = �(v0) for some words u0, v0, and that the morphismh0 de�ned by h0(a) = u0, h0(b) = v0 also is overlap-free. Since h = � � h0, theresult follows.10.| We now give some results about the tree of overlap-free words over twoletters a and b. We set X = fab; bag.



34 Thue's Second PaperLemma 2.17. Let ux, uy be two overlap-free words, with jxj, jyj � 2, andassume that x and y start with di�erent letters. If u is of the form u = abbu0for some word u0, then u 2 X�. If furthermore,x = x0eefy = y0gghwhere e; f; g; h are letters and x0; y0 are words, then x; y 2 X�.Proof. Since ux and uy are overlap-free and x and y start with di�erent letters,the word u0 is not empty. Set u0 = vc where c is a letter. Then either ux or uyis of the form u = abbvccdwfor some letter d and some word w. By Satz 8, the word bvc is in X�. Thusu 2 X�.Since ux = abbu0x0eef , the same proposition shows that bu0x0e is in X�. Itfollows that bu0 is in X� and �nally x 2 X�.Lemma 2.18. Let u be a pre�x of t of length m = juj � 3, and set t = ux. If uyis a �nite overlap-free word with jyj � m� 2, and if x and y start with di�erentletters, then m is a power of 2.Proof. If m = abb then y starts with b and uy contains a cube. Thus, m � 4.By the lemma above, u is in X�. Furthermore, and still by the lemma, thereis a pre�x z of y which di�ers from y by at most 2 letters and which is in X�.Consider now the wordsu0 = ��1(u); x0 = ��1(x); z0 = ��1(z):Again u0x0 = t, u0z0 is overlap-free, and x0 and z0 start with di�erent letters.Since jz0j � (m� 2)=2, the lemma follows by induction.Lemma 2.19. Let u be a word of length at least 4 such that auuc is overlap-free,with c a letter. Then u 2 X�.Proof. We �rst observe that u cannot end with an a, and that the �rst letter ofu is not c. We shall see that in fact u starts with baa or abb or with babaa orwith ababb.We �rst show that bb is not a pre�x of u. Indeed, otherwise u = bbu0b for someword u0 and uu contains a cube. Clearly, aa is not a pre�x of u.Next, we show that babb is not a pre�x of u. Indeed, otherwise u = babbu0 forsome u0, and since uu is overlap-free, u0 is not empty. More precisely, u0 startswith a and ends with ab, thus u0 = avab or u0 = ab. In the �rst case, uu =



3.3. Sequences over three symbols 35babbavabbabbavab contains the factor avabbabbava which contains an overlap. Inthe second case, uu = babbabbabbab contains an overlap.Next, if u = abaau0, then u0 is not empty and u0 = vb for some v. Thusuuc = abaavbabaavbb. Clearly, v is not empty, and ends neither with a nor b.It follows from this that if the �rst letter of u is b, then u starts either with baaor with babaa. Similarly if u starts with a, it starts with abb or ababb. In the�rst case, uu = baavbaav = ba(avba)avshowing (even if v = ") that avba 2 X�. In the second case,uu = babaavbabaav = baba(avbaba)avshowing that avbaba 2 X�.Finally, let x = a0a1 � � �an � � �be an in�nite overlap-free word. Then not every su�x anan+1 � � � starts witha square. In other words, there exists an integer p such that, setting y =apap+1 � � �, both ay and by are overlap-free. Indeed, x has in�nitely many oc-currences of the word ababbaab, and contains no square that starts with babbaab.3.3 Sequences over three symbols11.| A word w over a three-letter alphabet is irreducible if it is square-free.Clearly, if w contains an overlap, it also contains a square. A circular word w of



36 Thue's Second Paperlength r is square-free i� it contains no square of length less than r.
Figure No. 3

Figure 3 shows all square-free words of length at most 12. Again, a small circlearound a letter means that the corresponding branch in the tree cannot beextended. A morphism h is called square-free if h(w) is a square-free word forevery square-free word w.It is convenient10 to call a morphism h over some alphabet A a factor-freemorphism if, whenever h(a) is a factor of h(b) for some letters a and b, thena = b. This implies of course that h is injective, and in fact that h(A) is abipre�x code. The set X = h(A) itself will be called factor-free. Next, a setX = h(A), and by extension the morphism h, is comma-free if, whenever x 2 Xand uxv 2 X� for some words u; v, then u; v 2 X�. Clearly, a comma-freemorphism is factor-free (the converse is false, consider fa; babg).11Theorem 3.1. (Satz 17) Let A be a three-letter alphabet, and let h : A� ! A�be a nonerasing factor-free morphism. If h(w) is square-free for all square-freewords of length 3, then h is a square-free morphism.For the proof, we �rst give a lemma of independent interest:10for the translator. Sometimes, such a code is called in�x.11Observe that the two statements that follow are true for arbitrary �nite alphabets.



3.3. Sequences over three symbols 37Lemma 3.2. Let A be a three-letter alphabet, and let h : A� ! A� be a non-erasing factor-free morphism. If h(w) is square-free for all square-free words oflength 2, then h is comma-free.Proof. Set X = h(A). Assume that X is not comma-free. Then there is ashortest word uxv 2 X� with x 2 X and u or v not in X�. Since X is abipre�x code, the minimality condition implies that u is the proper pre�x ofsome word in X and similarly for v. Moreover, h being factor-free, the wordx has no factor in X . Thus uxv = yz for two elements y; z in X , and thereare three letters a1; a2; a such that h(a1a2) = uh(a)v. Since the occurrences ofx = h(a), and z = h(a2) overlap, the word xz contains a square and thereforea1 = a. Similarly, a2 = a. But then x is a nontrivial factor of x2 and thus, xitself contains a square, a contradiction.Proof of the theorem. Set X = h(A). Assume now that the conclusion of thetheorem is false. Then there is a shortest square-free word w = a1a2 � � �an,where a1; : : : ; an are letters, such that h(w) contains a square, sayh(w) = yuuz = x1x2 � � �xnwhere xi = h(ai) for 1 � i � n. By the hypotheses, n � 4, and by the minimalityof w, y is a proper pre�x of x1 and z is a proper su�x of xn. Thus, there arewords s0 6= " and p0 6= " withx1 = ys0; xn = p0z:Next, u is not a pre�x of s0, since otherwise x2 � � �xn�1 is a factor of u, thus alsoof x1, contrary to the assumption that h is factor-free. Thus, there exists anindex j with 1 < j < n and a factorization xj = ps such thatyu = x1 � � �xj�1p; uz = sxj+1 � � �xnor, also, u = s0x2 � � �xj�1p = sxj+1 � � �xn�1p0 :Since n � 4, one has j � 3 or n� j � 2, i.e. at least one of the two occurrencesof u contains one of the xk's. By symmetry, we may assume j � 3. Thuspuz = ps0x2 � � �xj�1pz = xjxj+1 � � �xn :Since X is comma-free and x2 � � �xj�1 6= ", this implies that ps0 is in X�, andsince no element in X is a pre�x of p nor a su�x of s0, in fact ps0 is in X . Thusps0 = xj and s = s0. It follows that x2 � � �xj�1p = xj+1 � � �xn�1p0, which in turnimplies x2 � � �xj�1 = xj+1 � � �xn�1 and p = p0. Altogether, we have obtainedthat x1 = ys; xj = ps; ; xn = pz;a2 � � �aj�1 = aj+1 � � �an�1 :



38 Thue's Second PaperNow h(a1ajan) = yspspzcontains a square, and thus a1 = aj or aj = an. But then w contains a square,a contradiction.Every square-free word over three letters a, b, c that starts with the letter a andends with b or c can be factorized into a product of words A, B, C, D, E, F ,where A = ab; C = abc; E = abcbB = ac; D = acb; F = acbc :The words AC, AE, BD, BF , CE, DF , CBa, DAa, EAa, EDa, FBa,FCa allcontain squares. The same holds for the words ADB, BCA, CFD, DEC. Onthe contrary, the 18 words in the following diagramA B!!DFaa B A!!CEaa C A!!DFaaD B!!CEaa E B!!CFaa F A!!DEaaall are square-free.We observe also that in a twosided in�nite square-free word, the words ABAand BAB do not appear as factors. Any occurrence of AFA, FAF , BEB,EBE, CDC, DCD is always an occurrence as a factor of respectively BAFAB,CFAFD, ABEBA, DEBEC, BCDCA, ADCDB.These considerations lead to the morphisms h and g de�ned byh(a) = CA = abcabh(b) = BE = acabcbh(c) = FD = acbcacband g(a) = AD = abacbg(b) = EB = abcbacg(c) = CF = abcacbcIt is immediately seen 12 that these morphisms have the properties required bythe theorem. This proves that there exist arbitrarily long square-free words, andin�nite square-free words over three letters.12A. Thue says.



3.3. Sequences over three symbols 39Corollary 3.3. (Satz 18) Letx = (abcab)(acabcb)(acbcacb)(abcab)(acabcb)(abcab) � � �be the in�nite word over a, b, c such that h(x) = x, where h is the morphismgiven above. Then x is square-free.As we shall see, square-free words frequently are almost completely de�ned bythe requirement that they do no contain factors in a certain set. We make someobservations. First, every square-free word w over a, b, c of length at least 4contains all three letters. If jwj > 13, then w contains each of the six possibletwo letter words ab, ac, ba, bc, ca, cb as factor. If jwj > 30, then each of thewords abc, acb, bca, bac, cab and cba obtained by permuting the three letters isa factor of w.12.| We now investigate in more detail those square-free words which contain 4of the 6 words A, B, C, D, E, F given above in their decomposition. Thus, eachsquare-free word should lack one pair of factors among the following 15 pairs:1) aba; aca 6) aca; abca 10) abca; acba2) aba; abca 7) aca; acba 11) abca; abcba3) aba; acba 8) aca; abcba 12) abca; acbca4) aba; abcba 9) aca; acbca 13) acba; abcba5) aba; acbca 14) acba; acbca15) abcba; acbcaThe pairs of words (6), (7), (8), (9), (13) and (14) transform into the pairs (3),(2), (5), (4), (12) and (11) respectively by exchanging b and c. Thus, we do notneed to consider the �rst group. Next, any square-free word w of length jwj > 32necessarily contains one of the factors abca or abcba of group (11). Indeed, thepre�x of length 31 of w contains abc which is followed by a or by ba. Similarly,one of the factors abca or acbca of group (12) must appear in w.Also, any square-free word of length at least 60 13 contains one of the words abaor abca of group (2) as a factor, and the same holds for the words aba and acbaof group (3).Finally, a square-free word of length more than 47 contains aba or abcba as afactor. Indeed, the pre�x of length 31 contains an occurrence of abc, and thenext factor of length 16 must contain aba or abcba.Thus, our investigation is reduced to the 4 cases (1), (5), (10) and (15). Now, wereduce case (10) to case (5). If a square-free word w does not have abca or acbaas a factor, then w has no factor of the form �bab� or 
cac�, where �; �; 
; � arewords of length at least 314. Conversely, if w contains no factor of the form bab13I found 41.14Indeed, consider for instance �bab�. Then � ends with c, thus with bc, thus with abc andsymmetrically, � starts with cba. But then abcbabcba contains a square.



40 Thue's Second Paperand cac, then it contains no factor of the form �abca� nor 
acba�, where �, �,
, � are letters. This reduces case (10) to case (5).Thus, we restrict our investigation to square-free words over three letters a; b; c,where the pair of factors aca and bcb (I)or aba and aca (II)or aba and bab (III)is missing.3.4 First Case : aca and bcb are missing13.| We shall call a word over a, b, c that both is square-free and has no factorof the form aca and bcb a word of type (I). Every in�nite word x of type (I) isobtained from the periodic word� � �ababababa � � �by interleaving it with the letter c15. Any factor of length at least 11 containsthe word caba or cbab. Let p denote a or b and q denote the other letter. Thenwe get the following rami�cation starting with cpqp:Figure No. 4This shows that every twosided in�nite word of type (I) can be factorized intoa product of words x = cabay = cbabz = cacbu = cbca15See also Thue's �rst paper.



3.4. First Case : aca and bcb are missing 41The same holds for circular words of type (I) of length at most 12. Next,the words xz, ux, yu, zy, zu, uz contain squares. Therefore, one obtains thefollowing rami�cation (starting with zx):Figure No. 5Every twosided in�nite word (or circular word of length at least 32) of type (I)is a product of the three wordsA = z = cacbB = xuy = cabacbcacbabC = xy = cabacbabDe�ne a morphism h from fa; b; cg� into itself by:h : a 7! Ab 7! Bc 7! CProposition 4.1. If x is a twosided in�nite word of type (I), then y = h�1(x)is also of type (I). The same holds for circular words of length at least 32.Proof. It su�ces to check that neither ACA nor BCB are factors of x. Indeed,BCB = xuyxuxuy contains a square, and if ACA is a factor of x, then alsoBACAB, and therefore yACAx = yzxyzx.Observe that the morphism h is not factor-free because A is a factor of B. How-ever, any occurrence of A, B or C in a word h(w) coincides with an occurrenceof h(a), h(b) or h(c). Furthermore, the six words AB, AC, BC, BA, CA, CBare easily checked to be square-free.Theorem 4.2. (Satz 19) If x is a twosided in�nite word of type (I), then so ish(x).Proof. A simple veri�cation shows that h(w) is square-free for all square-freewords of length 3 excepted aca and bcb.Assume that h(x) contains a square tt. Then tt is not a factor of a word h(v),where v is a factor of length 3 of x. Thus there are words p; q; s 2 fA;B;Cgand r 2 fA;B;Cg� such thatp = 
�; s = ��; q = ��; t = �r�; prsrq = 
tt�



42 Thue's Second Paperand prsrq is a factor of h(x) :p r s r q
 t t �� r � � r �Since x is square-free, one has p 6= s 6= q. Next, psq = 
����� has a square.Consequently, psq = ACA or psq = BCB. If p = A, then either r = B or rstarts and ends with B, and x contains BCB, which is a contradiction. Similarly,p 6= B. This proves the proposition.This result gives a method for constructing words of type (I). However, there isa relation between words of type (I) and overlap-free words which gives a moredirect construction. For this, we consider a morphism� : fa; b; cg�! f�; �g�where � and � are two letters, de�ned by:� : a 7! �b 7! ���c 7! ��Theorem 4.3. (Satz 20 & 21) Let x be a twosided in�nite overlap-free wordover the two letters �; �. Then there exists a unique in�nite word y over thethree letters a; b; c such that �(y) = x, and moreover y is of type (I). Conversely,if y is of type (I), then �(y) is overlap-free.Proof. Le x be an in�nite overlap-free word over � and �. Clearly, there exists aunique word y such that �(y) = x. Assume that y contains a square uu. Then�(u) starts with the letter �, and �(uu)� is an overlapping factor of x. Thus, yis square-free.Next, �(bcb) = �������� contains an overlap, so bcb is not a factor of y. Ifaca is a factor of y, then so is bacab. But �(bacab) = ���������� containsan overlap, a contradiction. This proves that y is of type (I).Assume conversely that y is of type (I), and set x = �(y). If x contains someoverlap s, then s cannot be of the form �v�v�, because y is square-free; thuss = �v�v� for some nonempty word v. If v starts with a �, then it ends with�, and v = �w� for some w. But then �s is a factor of x, and since�s = ���w���w��the word y contains a square.



3.5. Second Case : aba and aca are missing 43We show now that similarly, v does not start with the letter �. Indeed, if v = �,then s = ����� and since y is square-free, bcb is a factor of y. Thus v = �w
with 
 = � or 
 = �. If 
 = �, thens = ��w���w��and y contains the square ��1(�w��)2. Thus 
 = � and v = �w�, whences = ��w���w��Neither �s nor s� is a factor of x since otherwise y contains a square. Thus �s�and even ��s� is a factor of x. Since��s� = ����w���w���the word y has a factor bzczb, with �(z) = �w. Since z 6= ", it starts and endswith the letter a. But then aca is a factor of y, again a contradiction.3.5 Second Case : aba and aca are missing
Figure No. 6

14.| Since circular words can be treated in a way similar to twosided in�nitewords, it su�ces to consider only words of the second kind. We shall call a wordover a, b, c that both is square-free and has no factor of the form aba and aca aword of type (II).



44 Thue's Second PaperIn the present situation, we obtain the rami�cation:Figure No. 7Thus, a twosided in�nite word x of type (II) is the product of wordsx = abcy = acbz = abcbu = acbcNext, x has no factor of the formxyx; yxy; xux; yzx;wxwz; wywu; uwxw; zwywwhere w is in fx; y; z; ug�. Indeed, the wordsxyxu = xy xy cyxyz = yx yx bxuy = ab cy cyyzx = ac bx bxwxwz = wxwx bwywu = wywy buwxwa = ac bcwa bcwazwywa = ab cbwa cbwaall contain a square. Furthermore, xwuwy and ywzwx are not factors of x sincexwuwy = a bcwac bcwac bywzwx = a cbwab cbwab chave squares.Set X = fx; y; z; ug. Of course, X is a (su�x) code. Since every word in Xstarts with the letter a and the letter a appears nowhere else in words in X , anytwosided in�nite word x of type (II) admits a unique factorization into words inX .Lemma 5.1. Let p and q be two nonempty words in X�, with p 6= uz, q 6= zu.Then neither pxp nor qyq are factors of an in�nite word x of type (II).



3.5. Second Case : aba and aca are missing 45Proof. We prove the �rst claim, the second is shown in the same manner byexchanging b and c.Assume on the contrary that pxp is a factor of a twosided in�nite word x oftype (II). Since neither pxpx nor pxpz are factors of x, the factor pxp can onlybe followed by y or u. Similarly, it can only be preceded by y or z.We �rst show that p = rxuz for some nonempty r 2 X�. The last factor in Xof p is neither x nor u (because ux is not a factor of x), and it is not y sinceevery occurrence of y is followed by x, which would imply that pxpx is a factorof x. Thus p = p0zfor some p0 2 X�, and p0 is not empty because xz is not a factor of x. Nextp = p0z = p00uzbecause neither xz nor yzx are factors of x. By assumption, p00 6= ". The lastfactor of p00 in X is not y, because yu is not a factor of x. Next, the code wordfollowing pxp is u, because p ends with z and zy is not a factor of x. This impliesthat the last code word of p00 is not z. Thus p00 = rx for some word r, and r 6= "since otherwise pxp contains the square xx.The �rst word in X of p is u: indeed, it is neither x (since otherwise pxpcontains the square xx) nor z (since otherwise pxp contains the factor uzxz),and it cannot be y since otherwise pxp must be preceded by z, and zy must bea factor of x, which is impossible. Putting all together, we have p = usxuz forsome word s 2 X� which is nonempty, and consequently pxp admits the factorxuzxusBut s neither starts with u nor with x (because ux is not a factor of x) norwith y (because xuy is not a factor). Thus pxp contains the square (xuz)2, acontradiction.We now change slightly the notation: we consider the set T = fx; y; z; ug as anew alphabet and we introduce a morphism f from T � into fa; b; cg� de�ned byf : x 7! abcy 7! acbz 7! abcbu 7! acbcDe�ne a set of words over T byF = fwxwz; wywu; zwyz; uwxw j w 2 T �g [ fxyx; yxy; xuy; yzxgand denote by T the set of twosided in�nite words over T that are square-freeand that have no factor in F .



46 Thue's Second PaperThe discussion at the beginning of this section can be rephrased as: Everytwosided in�nite word x of type (II) is of the form x = f(y) for some y 2 T .We now prove the converse:Theorem 5.2. (Satz 22) If y is a word in T , then f(y) is of type (II).Proof. Set X = ff(x); f(y); f(z); f(u)g. Clearly, neither aba nor aca is a factorof f(y). In order to show that x = f(y) is square-free, assume the contrary,and let ww be the shortest square in x. Clearly, w contains at least one a. Ifw contains only one a, then ww is a factor of some word in X3. However, it iseasily checked that f preserves square-freeness of the factors of y of length 3.Thus jwja � 2, and consequently there are words h; �; �; t; k such thath�t��t�kis a factor of x, and further h�; ��; �k 2 X , and t 2 X�, t 6= " and w = �t�.h� t �� t �kw wIf � = ", then h = " because X is a su�x code, and y contains a square. Thus� 6= ". Let s = f�1(t). We prove now the contradiction by showing that ��cannot be the image of some letter in fx; y; z; ug. Assume �rst �� = f(x) =abc. Then there are three cases, namely (�; �) = (abc; "), (�; �) = (ab; c) and(�; �) = (a; bc). In all cases, y contains one of the words xsxs, usxs, sxsz, sxsx,but none of them appears as a factor in y.Consider now the case �� = f(z) = abcb. Then, arguing as before, y containsas factor one of the words szsz, yszsx, zszs, which is impossible.The two cases �� = f(y) and �� = f(u) are handled by exchanging b and c.The proof is complete.We now go one step further. Consider a twosided in�nite word y over the lettersx; y; z; u that is in the set T . The letters following some occurrence of z in ygive rise to the following rami�cationFigure No. 8



3.5. Second Case : aba and aca are missing 47This shows that a word y 2 T can be factorized into a product of wordszuyxu = Azu = Bzuy = Czxu = Dzxy = EAgain, the set Z = fA;B;C;D;Eg is a code, and the factorization of y is unique.The word y has no factor in the setG = fAB;AD;BA;BC;CA;CD;CE;DB;DE;EC;ED;BEB;EBE;DAC;DCBD;CBDCg:Also, y has no square of the form tt, with t in Z�. Indeed,ABz = zuyxuzuzADz = zuyxuzxuzBA = BByxuBC = BByCA = CCxuCD = zuyzxuCE = zuyzxyDBz = zxuzuzuDE = uzxuzxyECzu = zxyzuyzuED = zxyzxuyBEBzx = yzuzxyzuzxuEBEz = uzxyzuzxyzDAC = zxuzuyxuzuyBDCBDA = BDzuyBDzuyxuACBDCBE = zuyxuCBzxuCBzxyWe also observe that the word y has no factor of the form tAt with t 2 Z�, t 6= ",t 6= E, and no factor of the form tBt with t 2 Z�, t 6= ". Furthermore, any factory of the form tCt or tDt, with t 2 Z�, t 6= ", can be preceded and followed onlyby a E, and any factor of the form tEt can be preceded and followed only by aC.



48 Thue's Second PaperNext, the word y has at least one occurrence of B, which implies the rami�cationFigure No. 9This shows that the word y is a product of the wordsBDAEAC = A0BDC = B0BDAE = C 0BEAC = D0BEAE = E 0In other words, this leads to consider a new alphabet Y = fA;B;C;D;Eg anda morphism ! : Y � ! Y �de�ned by ! : A 7! BDAEACB 7! BDCC 7! BDAED 7! BEACE 7! BEAEand a second morphism h : Y � ! T � de�ned byh : A 7! zuyxuB 7! zuC 7! zuyD 7! zxuE 7! zxy(Remember also the morphism f : T � ! fa; b; cg� de�ned at page 45 byf : x 7! abcy 7! acbz 7! abcbu 7! acbcand which is intended to give words of type (II)!)



3.5. Second Case : aba and aca are missing 49De�ne a set Y of twosided in�nite words over the alphabet Y by the conditionsthat they are square-free, and that they have no factor in the setG = fAB;AD;BA;BC;CA;CD;CE;DB;DE;EC;ED;BEB;EBE;DAC;DCBD;CBDCg:We can restate the observation made above by saying that any in�nite word xin T is of the form x = h(y) for some word in Y . The following statement isconcerned with Y :Proposition 5.3. (Satz 23) For any word y in Y , there is a word z in Y suchthat y = !(z).Proof. We have seen already that there is an in�nite word z over the alphabetY such that y = !(z). Clearly, z is square-free. Next,A0B0 = BDAEACBDCA0D0B = BDAEACBEACBB0A0 = BDCBDAEACB0C0 = BDCBDAEC0A0 = BDAEBDAEACC0D0 = BDAEBEACC0E0 = BDAEBEAED0B0 = BEACBDCED0E = EBEACBEAECD0E0 = CBEACBEAEE 0C0BD = BEAEBDAEBDE0C0BE = BEAEBDAEBEE0D0 = BEAEBEACEB0E0B0BEA = EB0BEAEB0BEACE 0B0E0BD = CE 0BDCE 0BDD0A0C0 = BEACBDAEACBDAEB0D0C0B0D0A0 = B0D0BDAEB0D0BDAEACA0C0B0D0C 0B0E0 = BDAEACC 0B0BEACC 0B0BEAEThis proves the claim16.The converse of the preceding proposition is more involved:Theorem 5.4. (Satz 24) If z is a word in Y , then y = !(z) is in Y .16A. Thue says. In fact, one must check that the words in the right column cannot appear asfactors in z. For instance, the �rst of these words ends with CBDC which is in the forbiddenset G.



50 Thue's Second PaperProof. The proof is by contradiction. It is easily seen that y has no factor inthe set G. It remains to prove that y is square-free. Assume the contrary, andlet ww be a square in y. Then w contains at least one occurrence of the letterB. In fact, w contains at least two occurrences of the letter B, since otherwiseww contains only two B's, which means that ww is a factor of a word !(u)where u is a factor of length 3 of z. Now, since z is in Y , the factors of length 3are ACB, AEA, AEB, BDA, BDC, BEA, CBD, CBE, DAE, DCB, EAC,EAE, EBD. It is easily checked that none of the images, by !, of these wordscontain a square.Thus w is of the form w = �t�, where t = !(s) for some nonempty factor s ofz, and where � and � are such that �� = !(N) for some letter N in Y , andfurthermore there exist letters M , P in Y and words 
, � such that 
� = !(M),�� = !(P ). In other words, settingu = MsNsPone has !(u) = 
ww�; w = �!(s)�:Since u is square-free, one has M 6= N 6= P . A last notation: we set U = !(Y ).The set U is a su�x code.We �rst rule out the cases where � = " or � = ". If � = ", then !(N) is a su�xof !(M). Since the code U is a su�x code, this implies M = N , a contradiction.Thus � 6= ". If � = ", then N = C and P = A because only !(C) is a pre�xof !(A). The only letter which can precede both C and A is D, and the onlyletter which can follow C is B. Thus s starts with B and ends with D, and thesecond letter of s (which is either D or E) is E since otherwise u contains thefactor DCBD. Since s starts with BE, the initial letter M of u (which is eitherC or E) cannot be the letter E. Thus M = C, and M = N , a contradiction.We now examine the possibilities for the letter N , and show that they all leadto a contradiction.(i) N = A. Then �� = BDAEAC. Since � is a su�x of another word in U ,and � is a pre�x of another word in U , the only factorizations are(�; �) = (BDA;EAC); (�; �) = (BDAE;AC)which both lead to M = D, P = C. But this implies that s starts with C andends with D. Thus, u contains the factor DAC which is in G, contradiction.(ii) N = B. Here �� = BDC, and in fact � = BD, � = C since DC is not asu�x of another word in U . Thus M = A or M = D (and P = A or P = C).If M = A, then v = AsBs is a factor of z. The �rst letter of s is E, and sinceEBE is not a factor, the last letter of s is C. Since C is only followed by B,this implies that P = B, which is impossible.



3.5. Second Case : aba and aca are missing 51If M = D, then v = DsBs is a factor of z. However, there is no letter that canfollow both D and B in a factor of z, thus this case is impossible.(iii) N = C. Here �� = BDAE. It follows that M = E and P = A or P = B.The second case is ruled out by the fact that there is no letter preceding bothB and C. Thus u = EsCsA. The �rst letter of s is B, and the last letter of sis D (the only letter that can precede both C and A). This shows that s haslength at least 2. The second letter of s is not E, because EBE is not a factor,thus it is D. But this shows that DCBD is a factor of u, and this is impossiblesince DCBD 2 G.(iv) N = D. Here �� = BEAC. The possible factorizations are (�; �) =(B;EAC), or = (BE;AC), in which case M = A, and (�; �) = (BEA;C), inwhich case M = A or M = B and P = E.Assume �rst that M = A, whence u = AsDsP . The �rst letter of s is C, andthe last letter of s is B. Thus s has length at least 2. The second to last letter ofs is either C or E. It cannot be C since otherwise u contains the factor CBDC.Thus s ends with EB, and this implies that P = D, because EBE is not afactor. But then u contains a square, contradiction.Assume now u = BsDsE. This is impossible because there is no letter that canfollow both a B and a D in z.(v) N = E. Since �� = BEAC, the possible factorizations are (�; �) =(BE;AE) or = (BEA;E) and both lead to M = C and P = D. Thusu = CsEsD. Since D is preceded only by B, the last letter of s is B. Since C isonly followed by B, the �rst letter of s is B. Thus u contains the factor BEB,a contradiction.The proof is complete.For the characterization of words of type (II), there remains to prove that if yis an in�nite word in Y , then h(y) is in T . For this, we need a lemma.Lemma 5.5. (Satz 25) A word y in Y has no factor of the form wAwC, DwAw,wEwD, CwEw, wDw, wCw, wBw, with w a nonempty word.17Proof. We argue by induction on the length of w, and show that if a word y inY has a factor wAwC, then there is a word y0 in Y that has a factor DvAv withv shorter than w. The other proofs are similar.Assume there is a word y in Y that has a factor wAwC with w 6= ". Then wends with a D, and since AD is not a factor, w = w1D with w1 6= ". SinceDA can only be followed by the letter E, the word w1 starts with E; thusw1 = Ew2, and w2 6= " because ED is not a factor. Now the letter preceding17The factor wBw is added here by the translator. It is implicit in the proof of the nextSatz.



52 Thue's Second PaperD in wAwC = Ew2DAEw2DC is B, whence w2 = w3B. If w3 = ", thenwAwC = EBDAEBDC, and there is no letter that can precede this word in y.If w3 6= ", we observe that the letter preceding the leftmost E cannot be A sincethis gives a square, and therefore is a B. Moreover, this initial BE can only befollowed by A. Thus w3 = Aw4 for some w4, and we get a factorBwAwC = BEAw4BDAEAw4BDCNow, recall that U = !(Y ) = fA0; B0; C0; D0; E 0g. The decomposition showsthat w4 starts with the letter C, and since CBDC is not a factor, w4 6= C, sothat BwAwC = D0w0A0w0B0for some w0 in U�, and w0 6= ". Thus w0 = !(v) for some v, and DvAv is a factorof some word in Y .The argument is similar in the other cases, and we18 only give the basic steps.Assume that y contains a factor DwAw for some nonempty word w. Then itcontains also the following factors:DCw1ACw1DCBw2ACBw2DCBw3EACBw3EBThis shows that y contains a factor of the form B0w0A0w0C0, for some w0 2 U�.Thus some word in Y contains a factor of the form BvAvC, and since BA is nota factor, v 6= ".Assume now that y contains a factorCwEwfor some nonempty word w. Then it contains also the following factors.CBw1EBw1CBw2AEBw2ACBw2AEBw2ACBThis shows that y contains a factor of the form w0E 0w0D0, for some w0 2 U�.Thus some word in Y contains a factor of the form vEvD, and since ED is nota factor, v 6= ".Symmetrically, assume that y contains a factorwEwD18and Axel Thue



3.5. Second Case : aba and aca are missing 53for some nonempty word w. Then it contains also the following factors:w1BEw1BDAw2BEAw2BDBDAw2BEAw2BDThis shows that y contains a factor of the form C 0w0E 0w0, for some w0 2 U�.Thus some word in Y contains a factor of the form CvEv, and since CE is nota factor, v 6= ".Assume now that y contains a factorwDwfor some nonempty word w. Then it contains also the following factors.w1BDw1BEw2CBDw2CBEAw3CBDAw3CBEEAEw4CBDAEw4CBEThis shows that y contains a factor of the form E 0w0C0w0, for some nonemptyw0 2 U�. Thus some word in Y contains a factor of the form EvCv, for somev 6= ".Assume next that y contains a factorwCwfor some nonempty word w. Then it contains also the following factors.EBw1CBw1EBDw2CBDw2EBDw3ACBDw3AEThis shows that y contains a factor of the form w0D0w0E 0, for some nonemptyw0 2 U�. Thus some word in Y contains a factor of the form vDvE, for somev 6= ".Assume �nally that y contains a factorwBwfor some nonempty word w. Then it contains also the following factors.w1EBw1EADw2EBDw2EAand since a letter D can only be preceded by a B, the word y contains a square,contradiction. The proof is complete.



54 Thue's Second PaperTheorem 5.6. (Satz 26) For all y 2 Y , the word h(y) is in T .Proof. Let y 2 Y . It is easily seen that the word t = h(y) has no factors of theform xz; yu; zy; ux; xyx; yxy; xuy; yzx(the last because CE is not a factor of y). It remains to show t has no factorsof the form wxwz; wywu; zwyw; uwxwfor w 6= ", and that it is square-free.Recall that the set Z = fzuyxu; zu; zuy; zxu; zxyg= h(Y ) is a su�x code, andsince every word in Z starts with the letter z, it has deciphering delay 1.Assume �rst that t contains a factorwxwzfor some nonempty word w. Then it containsw1yxw1yzbecause the only letter in T that can precede both x and z is y. Inspection ofZ shows that the factor yx appears only in zuyxu = h(A). Thus w1 starts withu, and t contains the factor uw2yxuw2yzMoreover, w2 is nonempty because xu is only followed by z. Thus t containsuw3h(A)w3h(C)zwhere w3 = h(W ) for some word W 2 Y �. If W 6= ", this contradicts thepreceding lemma, and if W = ", the word t contains uh(AC), which impliesthat y contains AAC, BAC or DAC. All these cases are impossible.Assume now that t contains a factorwywufor some nonempty word w. Then it containsw1xyw1xuwith w1 6= ", and also zw2xyzw2xuand w 6= " since otherwise t contains a factor h(ED). By inspecting Z, one seesthat a factor xy is preceded by a z. Thus t contains a factorzw3zxyzw3zxu



3.5. Second Case : aba and aca are missing 55Thus zw3 = h(W ) for some nonempty word W 2 Y �, and WEWD is a factorof y, contradiction.Assume next that t contains a factorq = zwywfor some nonempty word w. Then it containszxw1yxw1with w1 6= " because xyx is not a factor. But w1 starts with u, and zxw1 endswith zu. Thus w1 = uw2zu for some w2, and the factor q iszxuw2zuyxuw2zu = h(DWAWN)for some word W 2 Y � and some letter N 2 fA;B;Cg. In view of the lemma,W = ". But y is square-free and has neither AB nor DAC as a factor. Contra-diction.Assume next that t contains a factorq = uwxwfor some nonempty word w. Then it containsuyw1xyw1and w1 ends with a letter z. Thusq = uyw2zxyw2zshowing that t contains a factor CWEW for some word W 2 Y �, which isimpossible.We now prove that t is square-free, arguing by contradiction. Assume that wwis a square factor of t. Clearly, w contains at least one occurrence of the letter z.In fact, it contains two occurrences of z, since otherwise ww would be a factor ofa word of the form h(s), where s 2 Y � has length 3. Now, the factors of length3 of y are ACB;AEA;AEB;BDA;BDC;BEA;CBD;CBE;DAE;DCB;EAC;EAE;EBDand their images are all easily checked to be square-free.It follows that, as in the proof of Satz 24, there is a factorizationw = �t�



56 Thue's Second Paperand words 
; � where t = h(s); s 2 Y �; s 6= ";�� = h(N); 
� = h(M); �� = h(P ); M;N; P 2 Yand 
ww� = h(MsNsP )Of course M 6= N 6= P . If � = " then as above M = N because Z is a su�xcode. Next, we observe that, by the lemma, the letter N is neither B, C, norD. If � = ", then h(N) is a pre�x of h(P ), and this would imply that N is B orC which just was ruled out. Let us consider the remaining cases.(i) N = A. The �� = zuyxu, and the only possibility is in fact (�; 
) =(zuy; xu). This implies that M = D, in contradiction with the fact that y hasno factor of the form DsAs.(ii) N = E. Either (�; �) = (z; uy) and M = E or (�; �) = (zu; y) and P = D.The �rst case yields a square, and the second contradicts the lemma.3.6 Third Case : aba and bab are missing15.| We shall call a word over a, b, c that both is square-free and has no factorof the form aba and bab a word of type (III).In this case, we obtain the rami�cation:Figure No. 10As in the second case, we consider an alphabet T = fx; y; z; ug, a set of wordsF over T de�ned byF = fwxwz; wywu; zwyz; uwxw j w 2 T �g [ fxyx; yxy; xuy; yzxgand we denote by T the set of twosided in�nite words over T that are square-freeand that have no factor in F .Here, we introduce a morphism g from T � into fa; b; cg� de�ned byg : x 7! cay 7! cbz 7! cabu 7! cba



3.6. Third Case : aba and bab are missing 57In view of the rami�cation given above, every word x of type (III) admits aunique inverse image by g: i. e. there is a unique in�nite word t over T suchthat g(t) = x. We observe the followingFact. If x = g(t) is of type (III), then t is in T .Proof. It su�ces to show that t is square-free (this is clear) and that it has nofactor in the set F . And indeed, since g(z) = g(x)b and g(u) = g(y)a, the wordsg(wxwz) and g(wywu) contain squares. Next,g(zwyw)c = cabg(w)cbg(w)cg(uwxw)c = cbag(w)cag(w)cg(xyx)cb = cacbcacbg(yxy)ca = cbcacbcag(yzx) = cbcabcag(xuy) = cacbacbThis proves the claim.Recall that, for in�nite words of type (II), we considered above (page 45) themorphism f from T � into fa; b; cg� de�ned byf : x 7! abcy 7! acbz 7! abcbu 7! acbcIn view of Satz 22, we obtain directly:Theorem 6.1. (Satz 27) If x is a word of type (III), then f(g�1(x)) is a wordof type (II).The converse also holds. For the proof, we give an alternative construction.Introduce a new morphism �f from T � into fa; b; cg� de�ned by�f : x 7! cbay 7! cabz 7! cbabu 7! cabaobtained from f by exchanging the letters a and c. Then for y of type (II) (i.e.without factors cbc and cac), the wordx = g( �f�1(y))is obtained from y by deleting each letter that follows immediately an occurrenceof c in y.



58 Thue's Second PaperTheorem 6.2. (Satz 28) If y is a word of type (II), (i. e. is square-free andwithout factors cbc and cac), then g( �f�1(y)) is a word of type (III).Proof. Set x = g( �f�1(y)). It is straighforward that x has no factor of the formaba and bab. Assume that x contains a square ww. Clearly, w contains at leastone occurrence of the letter c. Setting X = fca; cb; cab; cbag, we may decomposew = 
vc�with v 2 X� and 
; � 2 fa; bg�. Thenww = 
vc�
vc�and c�
 2 X . If � 6= ", we may assume that � starts with the letter b. Thenthere is in y a factor 
uca�
uca�with u mapping on v. But this factor contains a square, contradiction. Thus� = ". Again, we may assume that 
 starts with b, so 
 = b or 
 = ba. Thenww = bvcbvc or ww = bavcbavcThus y contains a factor of the formbucabuc or abaucabaucwith u mapping on v. In the second case, we obtain a square. In the �rst case,the initial letter is preceded, in y, by the letter a, so again there is a square.This completes the proof.16.| Finally, we observe:Theorem 6.3. (Satz 29) Let x = x0x1x2 � � �be an in�nite square-free word over three letters. Then there exists a factoriza-tion x = uysuch that y has no pre�x of the form waw, where a is a letter and w is anonempty word.For the proof, it will be convenient to set xi = xixi+1 � � � for i � 0. We argue bycontradiction, and assume that any xi admits a pre�x of the form waw, with aa letter and w a nonempty word.



3.6. Third Case : aba and bab are missing 59Lemma 6.4. Let u be a nonempty factor of x1, and let a be a letter such thatau is not a factorof x. If uz = wdwyis a factor of x for some words z, w 6= ", y and some letter d, then d = a andjwj < juj.Proof. Let c be the �rst letter of u. Since u is a factor of x1, there is a letter bsuch that bu is a factor of x, and b 6= c, b 6= a. By assumptionbuz = bwdwy:Since x is square-free, d 6= b, and since u (hence w) starts with the letter c, onehas d 6= c. Thus d = a. Next, if jwj � juj, then dw starts with au and au is afactor of x, a contradiction.The proof of the theorem is by repeated application of the lemma. We �rst provethat a speci�c word cannot be a factor, and then, slicing the initial letters, reducethis word to a short word that must appear in x.(i) The word u = abcacbabca is not a factor of x2.Indeed, observe �rst that u = vcbv with v = abca. Thus cbu is not a factor ofx. This implies that bu is not a factor of x1 because bu can be preceded neitherby a nor by b. Since u is a factor and bu is not, the assumptions of the theoremand the lemma show that there are words z, w 6= ", y such thatuz = wbwySince u has 3 occurrences of the letter b and jwj < juj, one has w = a, w = abcac,or w = abcacba. The �rst and the last case are immediately ruled out. In thesecond case, wbw = uc = vcbvc, and since this factor is always followed by a b,this also is impossible.(ii) Set u1 = cacbabca (i.e. u = abu1). Then u1b is not a factor of x4.We show that bu1b is not a factor of x3. The result follows because any occur-rence of u1 is preceded by a b. Assume bu1b is a factor. Since abu1b is not afactor, we may apply the lemma. A factorizationbu1bz = wawywith jwj < jbu1bj implies w = bcacbabc (the two other cases are clearly impossi-ble). But then waw contains the square abcabc.(iii) Set u2 = acbabca (i.e. u1 = cu2). Then u2b is not a factor of x5.Indeed, since cu2b is not a factor, the equationu2bz = wcwyimplies w = a or w = acbab, and both are impossible.



60 Thue's Second Paper(iv) Set u3 = cbabca (i.e. u2 = au3.) Then u3b is not a factor of x6.Indeed, since au3b is not a factor, we obtain the equation u3bz = wawy withjwj < ju3bj which clearly is impossible.(v) Set u4 = babca (i.e. u3 = cu4.) Then u4b is not a factor of x7.Indeed, otherwise we get the equation u4bz = wcwy, whence w = bab, a contra-diction.(vi) Set u5 = abca (i.e. u4 = bu5.) Then u5b is not a factor of x8.Indeed, otherwise we get the equation u5bz = wbwy, whence w = a, a contra-diction.(vii) Set u6 = bca (i.e. u5 = au6.) Then u6b is not a factor of x9.Indeed, otherwise we get the equation u6bz = wawy, whence w = bc, a contra-diction.(viii) Set u7 = ca (i.e. u6 = bu7.) Then u7b is not a factor of x10.Indeed, otherwise we get the equation u7bz = wbw which has no solution.Thus, we have shown that cab is not a factor of x10. But we have seen earlier thatevery square-free word of length at least 31 over three letters contains any factorof length 3 compose of the three letters. This leads to the desired contradictionand proves the theorem.3.7 Irreducible words over four letters17.| According to our general de�nition, a word w over a four letter alphabetis called irreducible if any two distinct occurrences of a same factor in w areseparated by at least two letters. For simplicity, we consider here only twosidedin�nite words.Let A = fa; b; c; dg be a four-letter alphabet, and let B = fx; y; z; u; v;wg be asix-letter alphabet. Consider a morphism f : A� ! B� de�ned byf : x 7! abcady 7! acbadz 7! bacbdu 7! bcabdv 7! cabcdw 7! cbacdThe set X = ff(x); f(y); f(z); f(u); f(v); f(w)g is a comma-free code, becausethe letter d occurs only at the end of each codeword. Moreover, the code hasanother interesting property19. A word � is called a characteristic pre�x ofx 2 X if � is a pre�x of x and if no other codeword in X has � as a pre�x.19See also earlier.



3.7. Irreducible words over four letters 61A symmetric de�nition holds for characteristic su�xes. The code X has theproperty that, for any x 2 X and any factorization x = �h�, with h 2 A, either� or � is characteristic for x.Set H = fxz; xw; yu; yv; zx; zv; uy; uw; vy; vz;wx;wugand H = f(H) = ff(h) j h 2 HgWrite the letters of the alphabet on the vertices of a polygon as follows:xwlll z,,,u v,,, lllyThen the set H is composed of pairs of adjacent letters. It is easily veri�ed thatall words in H are irreducible.Theorem 7.1. (Satz 30) Let x be a twosided in�nite word over B such that allits factors of length 2 are in H. If x is square-free, then f(x) is irreducible.Proof. Assume that the word y = f(x) is reducible. Then y contains a factortkt, where jkj � 1. Assume �rst that t has a factor that is in the code X .Then there are words �; � and s 2 X�, s 6= " such that t = �s�, and moreover�k� 2 X , i.e. setting q = �k�,tkt = �s�k�s� = �sqs�:Since � or � is characteristic for q, either the pre�x � of tkt is the su�x of anoccurrence of q, or the su�x � of tkt is the pre�x of an occurrence of q. Thus,either qsqs or sqsq is a factor if y and x contains a square.Since tkt is not a factor of a word of H, it remains to consider the case wheretkt is a factor of some word q1q2q3 in X3. As before, one has �k� = q2 for somewords � and �, and t = ��. Thus q1 = 
� and q3 = ��, and since � or � ischaracteristic for q2, it follows that q1 = q2 or q2 = q3. This is impossible andproves the theorem.We now show how to construct twosided in�nite words of the kind described inthe theorem, i.e. that are square-free and have all their factors of length two inthe set H . We shall see that even �ve letters are su�cient. It is immediatelyseen that at least �ve letters are required.



62 Thue's Second PaperAssume that the letter w does not appear in a twosided in�nite word x that bothis square-free and has all its factors of length two in the setH . Then, in followingthe cycle in the picture, one sees that any two consecutive occurrences of theletter y are separated by u, v, vzv or vzxzv. Thus x is a product of the words yu,yv, yvzv and yvzxzv. In fact, x cannot contain the factor yvy, since otherwise itwould also contain vyuyvyuy which is a square. Thus, x is a product of the threewords yu, yvzv and yvzxzv. De�ne a morphism � : fa; b; cg� ! fx; y; z; u; vg�by � : a 7! yub 7! yvzvc 7! yvzxzvThe word x has no factor of the form �(aba) or �(cbc), since�(cabac) = yvzxz(vyuyvz)(vyuyvz)xzvand �(cbc) = yvzx(zvyv)(zvyv)zxzvboth contain squares.Theorem 7.2. (Satz 31) Let z be a twosided in�nite word over a, b, c that issquare-free and has no factor aba and cbc20. Then �(z) is a square-free wordwith all its factors of length 2 in the set H .This of course implies that f(�(z)) is irreducible for every in�nite word z of type(I).Proof. Set y = �(z). By construction, the factors of length two of y are all inH . It remains to show that y is square-free. It is easily checked that the image,by �, of any factor of length 3 of z is square-free. Thus, if y contains a squarett, then the shortest factor p of z such that tt is a factor of �(p) has length atleast 4. Thus, there are letters M;N; P in fa; b; cg, a word s 2 fa; b; cg� andwords �, �, 
, � in fx; y; z; u; vg� such that�(M) = 
�; �(N) = ��; �(P ) = ��; t = ��(s)�and 
tt� = �(MsNsP )M s N s P20It is of type (I).



3.8. Irreducible words over more than four letters 63
� �(s) �� �(s) ��t tIf N = a or N = c, then either � or � is characteristic for N . Indeed, if N = a,then either � or � contains the letter u which appears nowhere else in the wordsf�(a); �(b); �(c)g. In the second case, the same holds with the letter x. Inthese cases, N = M or N = P and z contains a square. Thus N = b, whence�� = yvzv. If � or � is empty, the word x contains a square. If � = y, thenM = b, again impossible. In the two remaining cases, a square is avoided only ifM = P = c. Thus x contains the factor csbsc. This implies that s is not empty,and that it starts and ends with the letter a. But this in turn shows that aba isa factor of x. This proves the claim.Similar arguments show how to construct arbitrarily long circular words whichare irreducible.3.8 Irreducible words over more than four lettersWe show here how to contruct, for any integer n > 4, arbitrarily long words overan alphabet with n letters such that any two occurrences of a same factor areseparated by at least n � 2 symbols.We consider �rst the case where n is even, and set n = 2h. We consider an alpha-bet fa1; a2; : : :ang. Our purpose is to build a morphism that maps a square-freeword over three letters into an irreducible word over fa1; a2; : : :ang. For this, weconstruct three sequences of words of special form. First, consider a sequenceu = u0; u1; : : : ; uh of words of length n + 1 de�ned byu = u0 = a1a2 � � �an�1a1anobtained by inserting the letter a1 in a1 � � �an between an�1 and an. Nextuk = �(uk�1) 1 � k < hwhere � is the permutation de�ned by21�(ai) = � ai if i is evenai+2 modn if i is oddThus u0 = a1a2a3a4a5 � � �an�1a1anu1 = a3a2a5a4a7 � � �a1a3anu2 = a5a2a7a4a9 � � �a3a5an� � �uh�1 = an�1a2a1a4a3 � � �an�3an�1anuh = u21We write improperly j mod n for 1 + (j � 1 mod n).



64 Thue's Second PaperWe �rst prove that u0u1 is irreducible. This implies that every word ukuk+1(0 � k < h) is irreducible over fa1; a2; : : :ang. Any factor of length at least 2has only one occurrence in u0u1. Indeed, this is clear for the factors an�1a1 anda1a3. All other factors of length two contain a letter with even index which ispreceded or followed by a di�erent letter of index in its two occurrences. Next,two occurrences of the same letter are separated by at least n� 2 letters.Set p = u0u1 � � �uh�1This is the �rst word we are looking for. The words p and pu are irreducible.Indeed, the same argument as before shows that only letters have more than oneoccurrence in p, and occurrences of the same factor of length greater than 1 inpu = uu1 � � �uh�1u are separated by at least (h� 1)(h+ 1) letters.A second sequence v0; v1; : : : ; vh; vh+1 of words of length n + 1 is de�ned byv0 = u and vk = �(vk�1) 1 � k � hwhere � is the permutation given by�(a1) = a2�(a2) = a3�(ai) = � ai if i is even, i > 2ai+2 modn if i is odd, i > 1Thus v0 = a1a2a3a4a5 � � �an�1a1anv1 = a2a3a5a4a7 � � �a1a2anv2 = a3a5a7a4a9 � � �a2a3anv3 = a5a7a9a4a11 � � �a3a5an� � �vh�1 = an�3an�1a1a4a2 � � �an�5an�3anvh = an�1a1a2a4a3 � � �an�3an�1anvh+1 = uObserve that vh and uh�1 are obtained one from each other by exchanging a1and a2. Next, v0v1 is irreducible. Indeed, two occurrences of the same letter areseparated by at least n � 2 letters, and the only two factors of length in v0v1,namely a2a3 and a1a2 are separated by words of length n� 2 and 2n� 3. Thusv0v1 and consequently all vkvk+1 for 0 � k � h are irreducible.Our second word is q = v0v1 � � �vhThis word is also irreducible. Assume indeed that q contains two distinct oc-currences of the same factor. If this factor has length greater than 3, then itcontains one of the letters a4; a6; : : : ; an. But two occurrences of these lettersare never followed or preceded by the same letter. Thus, the factor has length



3.8. Irreducible words over more than four letters 65at most 3, and contains none of a4; a; : : : ; an. Two occurrences of this type areeasily checked to be separated by a word of length at least n� 2.Finally, we consider the wordr = w0w1w2 � � �wh�1where each wk is obtained from uk by exchanging a1 and a2. Since p is irre-ducible, so is r. Moreover, one has vh = wh�1 and wh�1u = vhvh+1 is irreducible.It is convenient to write v = vh.De�ne a morphism h : fa; b; cg�! fa1; : : : ; ang� byf : a 7! p = uu1 � � �uh�1b 7! q = uv1 � � �vh�1vc 7! r = w0 � � �wh�2vThen the following result holdsTheorem 8.1. (Satz 32) For every twosided in�nite square-free word x overfa; b; cg, the word f(x) is irreducible.Proof. We observe �rst that the words uh�1u0, uh�1w0, vhu0, vhw0 are irre-ducible. Thus, in the word y = f(x), a reducible factor is not contained in theproduct of two of the ui's, vi's, wi's. Denote by S the setS = fu0; : : :uh�1; v1; : : : ; vh; w0; : : : ; wh�1gThis set is a uniform code. The fact that every codeword ends with the letter xnshows that S is a comma-free code. Moreover, every codeword is characterizedby its pre�x of length 3.Similarly, the set X = fp; q; rg is a comma-free code. Moreover, in any factor-ization �� of a word in x 2 X either � or � is characteristic for x. We �nallyobserve that if ss0, with s; s0 2 S is a factor of some word xx0, with x; x0 2 X ,then s 6= s0 and even s and s0 have di�erent su�xes of length 2. These su�xesare of the form aan and a0an for two letters a, a0 in fa1; : : :ang. If ss0 is a factorof p, q or r, then a 6= a0. Otherwise a = a2 or a = a3 and a0 = an�1. This provesthe claim.Assume now that y is reducible. Thus y contains a factor tgt with jgj � n � 3.First observe that we can assume equality, i.e. that jgj = n � 3. Indeed, ifjgj < n � 3, then t is not a letter, and thus, setting t = t0a and g0 = ag, with aa letter, one gets the reducible factor t0g0t0 with a longer central word g0. Theclaim follows by induction on jgj.We already mentioned that tgt cannot be contained in a factor of y which is aproduct of two words in S.



66 Thue's Second PaperIf tgt is contained in a factor of y which is a product s1s2s3 of three words inS, then t contains an occurrence of the letter xn, and consequentlys1s2s3 = 
��g���with t = ��, s1 = 
�, s2 = �g�, s3 = ��. Note that j��j = 4. Since s1 6= s2,one has j�j � 2, whence j�j � 2. But we have seen that two consecutive wordsin S cannot have the same su�x of length 2.If tgt is contained in a factor of y which is a product s1s2s3s4 of 4 words in S,then there are words �, �, 
, �, �0, �0 such that t = ��, g = �0�0, and s1 = 
�,s2 = ��0, s3 = �0�, s4 = ��.s1 s2 s3 s4
 � � �0 �0 � � �t g tSince n + 1 = j�j + j�0j � j�j + n � 3, one has j�j � 3, which implies s2 = s4.But this is impossible in a word in X�.Thus tgt is contained in a factor of length greater that 4, and this means thatt = �s1 � � �sm� for words s1; : : : ; sm 2 S. Let 
 and � be such that 
�, �� arein S. As before, there are two cases, namely either g is contained in some s, org is overlapping over two s 2 S. In the �rst case
tgt� = 
�s1 � � �sm�g�s1 � � �sm��with �g� 2 S, and in the second case,
tgt� = 
�s1 � � �sm��0�0�s1 � � �sm��with ��0, �0� 2 S, and g = �0�0.Consider the �rst case. The word 
�s1 � � �sm�g�s1 � � �sm�� is a product ofwords in X = fp; q; rg. The word x in X in this product containing �g� doesnot contain two equal words in S. Thusx = sj � � �sm�g�s1 � � �siwith i < j. If i > 1, then s1 � � �si is characteristic for x, and 
� = �g�. If j < m,then sj � � �sm determines x and �g� = ��. In both cases, we get a square. Ifi � 1 and j � m, then x = sm�g�s1. This implies also that m > 1. Next, sm��is a su�x of a word y in X and 
�s1 is a pre�x of a word z in X . If y = x orz = x, we get a square. Thus the only remaining possibility is, because x andy share the same pre�x sm = u, and x and z share the same su�x s1 = v, thatz = r, x = q, and y = p. However q is formed of at least 4 words in S and xcontains only 3. Contradiction.



3.8. Irreducible words over more than four letters 67The second case is very similar. Consider the word
�s1 � � �sm��0�0�s1 � � �sm��:Then n + 1 = j��0j � j�j+ jgj = j�j + n � 3, whence j�j � 4. Thus ��0 = ��.Setting sm+1 = ��, this yields
�s1 � � �smsm+1�0�s1 � � �smsm+1The rest of the proof is as before.Theorem 8.2. (Satz 33) If every letter an is erased in a word f(x) of thekind described in the previous theorem, the resulting word is irreducible overfa1; : : : ; an�1g.Proof. Denote by � the projection of fa1; : : : ; ang� onto fa1; : : : ; an�1g�, and lety = f(x), y0 = �(y). Let tgt be a reducible factor of y0. Observe �rst thatjtgtj � n � 1. Indeed, t contains a letter di�erent from an, and two occurrencesof this letter are separated by at least n � 3 letters. Next, by arguing like inthe preceding proof, we may assume that jgj = n � 4. This in fact implies thatjtgtj � n.The word t contains at least one ocurrence of the letter an�2. Indeed, twoconsecutive occurrences of an�2 in y0 are always separated by exactly n � 1letters, and if the claim is wrong, then jtgtj � n � 1.Let w, ` and w0 be words such that w`w0 is a factor of y and �(w`w0) = tgt, and�(w) = �(w0) = t, �(`) = g. There may be several choices for these words, andwe choose w and w0 of maximal length (i.e. including bordering an's). Sincethe letter an�2 occurs always at the same place in words in S, namely at theforth position from the right, the equality �(w) = �(w0) implies that w = w0.Moreover, ` contains at most one occurrence of the letter an. This proves theresult.These theorems show that, as claimed above, there exist in�nite irreduciblewords over n letters for all n > 4.



Chapter 4NotesIn this chapter are grouped several notes and comments about theorems inThue's papers. They mainly concern further results and later developments.4.1 Square-free morphismsAll morphisms considered are supposed nonerasing. A morphism h : A� ! B� issquare-free if it preserves square-free words, that is if h(w) is square-free for allsquare-free words w 2 A�. As we shall see, the square-freeness of a morphism isdecidable in general. Several conditions on a morphism ensure that it is square-free, and are easy to check. First, observe that one always can assume that h isinjective on the alphabet, since if h(a) = h(b) for a 6= b, then h(ab) is a square.We introduce some de�nitions on sets of words or on codes. These have a naturalextension to morphisms: a morphism h : A� ! B� is said to have a property Pif the set h(A) has this property.Let X be a set of words. A word p is a recognizing pre�x for X (Thue sayscharacteristic) if p is the pre�x of one and only one word in X . Recognizingsu�xes are de�ned symmetrically. As an example, a set X is a pre�x code i�every x 2 X is a recognizing pre�x for X .A set X is a recognizing code (Goral�cik, Vani�cek) or a ps-code (Ker�anen) if, forall x 2 X and for every factorization x = ps, either p or s is recognizing. Moreformally, this condition can be expressed as:ps; ps0; p0s 2 X ) p = p0 or s = s0As a consequence, the following fact is easily shown.Fact. A recognizing code is bipre�x.



4.1. Square-free morphisms 69A pip (or recognizing factor) for X is a word p that is a factor of exactly oneword x in X and that, moreover, has only one occurrence in x. A Melni�cuk codeis a set X such that every word x in X has at least one pip.Fact. A Melni�cuk code is in�x.(A set X is in�x if no word in X is a proper factor of another word in X .)A word p is a synchronizing pre�x (su�x) for X if upv 2 X+ implies u 2 X�(v 2 X�). A code is synchronizing if, for all x 2 X and for every factorizationx = ps, either p or s is synchronizing. A code X is bissective if it is bothrecognizing and synchronizing.Fact. A bissective code is comma-free.We now can state several results about morphisms that imply square-freeness.The �rst two are basically those of Thue. (Satz 17. Indeed, the restriction onthe size of the alphabets is not relevant, see also Bean, Ehrenfeucht, McNulty.)Let h : A� ! B� be a morphism.Proposition 1.1. If h is in�x and preserves square-free words of length 2, thenh is comma-free.Proposition 1.2. If h is comma-free and preserves square-free words of length3, then h is square-free.An immediate corollary is:Corollary 1.3. If h is a uniform morphism (i.e. jh(a)j = jh(b)j for a; b 2 A),and if h preserves square-free words of length 3, then h is square-free.Proposition 1.4. If h is a bissective morphism that preserves square-free wordsof length 2, then h is square-free.This result is due to Goral�cik and Vani�cek. As a (negative) example, considerthe morphism g : fa; b; cg�! fa; b; c; dg� de�ned byg : a 7! abb 7! cbc 7! cdgiven by Brandenburg. This morphism is uniform, thus in�x. It preservessquare-free words of length 2. It is also easily checked to be comma-free and tobe synchronizing. However, g is not recognizing since in h(b) = cb, neither c norb is recognizing, and g is not square-free since g(abc) contains a square.



70 NotesThere is a general criterion on morphisms that ensures square-freeness due toCrochemore. De�ne an integer K(h) as follows. SetM(h) = maxfjh(a)j j a 2 Ag; m(h) = minfjh(a)j j a 2 Ag:Then K(h) = max�3; 1 + �M(h)� 3m(h) ��Then one has:Theorem 1.5. If h preserves square-free words of length K(h), then h is square-free.The next two observations make it possible to build square-free morphismsover arbitrary alphabets. Examples are given in Bean, Ehrenfeucht, McNulty,Crochemore and Brandenburg (who introduced the parallel composition).Fact. The composition of two square-free morphisms is again square-free.Sometimes, the parallel composition h1 � h2 of morphisms may be useful. It isde�ned as follows. Let h1 : A�1 ! B�1 and h2 : A�2 ! B�2 be two morphisms,where A1 \A2 = ;. The parallel composition h1� h2 : (A1 [A2)� ! (B1 [B2)�is de�ned by h1 � h2(a) = � h1(a) if a 2 A1h2(a) if a 2 A2Fact. If B1\B2 = ; and if h1 and h2 are square-free, then h1�h2 is square-free.The most di�cult task is to �nd a square-free morphism from a four-letteralphabet into a three-letter alphabet. The example given by Bean, Ehrenfeucht,McNulty maps the letters into words of length greater than 200. Brandeburggives (implicitly) an example of a uniform morphism of length 44. The followingmorphism is due to Crochemore and has length 20:f : a 7! abcbacabcacbabcabacbb 7! abcbacbcabacbabcacbcc 7! abcbacbcacbabcabacbcd 7! abcbacbcacbacabcacbcThe word abcbac is a synchronizing pre�x for h, and the su�xes of length 14of the four words are synchronizing su�xes. Thus h is synchronizing. Next,the pre�xes of length 10 are recognizing, since they are distinct, and so are thesu�xes of length 8. Thus h is bissective, and it \su�ces" to check that the12 words of length 40 obtained as images of square-free words of length 2 aresquare-free.



4.2. Overlap-free words 714.2 Overlap-free wordsWhat Thue actually shows, is that a word w over the two letter alphabet A =fa; bg is overlap-free i� �(w) is overlap-free. Thue observes that the same resultholds for circular words. More precisely, he gives a complete characterization ofcircular overlap-free words (Satz 13).As a consequence of Satz 13, Thue characterizes overlap-free squares, a resultthat was discovered later also by [45]. T. Harju [20] gives a result which issimilar, but di�erent.The property that the dynamical system generated by the (twosided) Thue-Morse sequence is minimal was explicitly proved by Gottschalk and Hedlund[17]. As a consequence, every factor appears with bounded gaps (is recurrent,in the terminology of M. Morse [28]). Axel Thue (Satz 11) only mentions thatevery factor appears in�nitely many often.Recall (Satz 16) that Thue characterizes all overlap-free morphisms by show-ing basically that there is only one. This result has been completed by P.S�e�ebold [40], who shows that the Thue-Morse word is the only morphic overlap-free word. Thus, the in�nite words t and �t are the only in�nite overlap-freewords generated by iterated morphisms. There is now a simple proof of theseresults by Berstel and S�e�ebold [?]. They prove that for a morphism h to beoverlap-free, it su�ces that h(abbabaab) is overlap-free..The structure of onesided in�nite overlap-free words is more complicated. Anexplicit description of the tree of in�nite overlap-free words by means of a �niteautomaton was given by E. D. Fife and deserves a mention.Fife de�nes three operators on words, say �, �, 
, and he shows that everyoverlap-free in�nite words is the \value" of some in�nite word f in the threeoperators, provided the word f is in some rational set he gives explicitely. Tobe more precise, let Xn = fun; vng be the set of Morse blocs of index n and letX = Sn�0Xn. Any word w 2 A�X1 admits a canonical decomposition (z; y; �y)where y is the longest word in X such that w = zy�y. It is equivalent to saythat (z; y; �y) is the canonical decomposition of w if �yy is not a su�x of z. As anexample, the canonical decomposition of aabaabbabaab is(aaba; abba; baab)and the decomposition of abaabbaababbaabbabaab is(abaab; baababba; abbabaab)The three functions �; �; 
 : A�X1 ! A�X1, acting on the right, are de�ned asfollows for a word w 2 A�X1 with canonical decomposition (z; y; �y):w � � = zy�y � � = zy�yyy�y = wyy�yw � � = zy�y � � = zy�yy�y�yy = wy�y�yyw � 
 = zy�y � 
 = zy�y�yy = w�yy



72 NotesSince w is a pre�x of w � �, w � �, and of w � 
, it makes sense to de�ne w � fby induction for all \words" f in B�, with B = f�; �; 
g. By continuity, w � f isde�nde also for in�nite words f . Here are some examples:ab � � = abaabab � � = ababbaab � 
 = abbaab � 
! = taab � � = aabaab = a(ab � �)ab � ��
 = abaababbabaababbaabbabaabObserve that the last word contains an overlap. Note also that, for w 2 A�X1and f 2 B�, one has �(w � f) = �(w) � f = w � 
f . A description of an in�niteword x starting with ab or aab is an in�nite word f over B such that x = ab � for x = aab � f , according to x starts with ab or aab.Proposition 2.1. Every in�nite overlap-free word starting with the letter aadmits a unique description.Let F = B! � B�IB!be the (rational) set of in�nite words over B having no factor in the setI = f�; �g(
2)�f��; 
�; �
gand let G bet the set of words f such that �f is in F . Then:Theorem 2.2. (Fife's Theorem) Let x be an in�nite word over A = fa; bg.(i) if x starts with ab, then x is overlap-free i� its description is in F ;(ii) if x starts with aab, then x is overlap-free i� its description is in G.A direct consequence is the followingCorollary 2.3. An overlap-free word w is the pre�x of an in�nite overlap-freeword i� w is a pre�x of a word ab � f with f 2 W or of a word aab � f with�f 2 W , where W = B� � B�IB�.This implies in particular a result of Restivo et Salemi [33], namely that it isdecidable whether an overlap-free word is extensible into an in�nite overlap-freeword. Another consequence of Fife's description is the followingCorollary 2.4. The Thue-Morse word t is the greatest in�nite overlap-freeword, in lexicographical order, that start with the letter a.



4.3. Avoidable patterns 73Indeed, the choice of the letters �, �, et 
 implies that if f � f 0, then ab � f �ab � f 0. The greatest word in F is 
!, and this shows the corollary. A. Carpi [9]has developed a description for �nite overlap-free words by means of a �niteautomaton. Unfortunately, his automaton is rather big (more than 300 states).J. Cassaigne [11], using a similar but di�erent encoding, gets a much smallerautomatonSince overlap-free words have a strong structure, it seems natural to count them.The �rst result is due to Restivo and Salemi [33]. They prove that the number
n of overlap-free words over two letters grows polynomially in n (in fact slowerthan n4). Kobayashi [24] has used Fife's theorem to derive the lower of the moreprecise bounds for 
n :Theorem 2.5. There are constants C1 and C2 such thatC1n� < 
n < C2n�where � = 1:155 : : : and � = 1:5866 : : :.One might ask what is the \real" limit. In fact, a recent and surprising resultby J. Cassaigne [11] shows that there is no limit. More precisely, he gets exactformulas for the number of overlap-free words, and setting�0 = supfr j 9C > 0; 8n; 
n � Cnrgand �0 = supfr j 9C > 0; 8n; 
n � Cnrghe obtains:Theorem 2.6. One has 1:155 < �0 < 1:276 < 1:332 < �0 < 1:587.This is to be compared with the situation for square-free words. Indeed, Bran-denburg [6] proved that for the number c(n) of square-free words of length nover three letters, there are constants c1 � 1:032 and c2 � 1:38 such that6cn1 < c(n) < 6cn2 . Brandenburg also proves that the number of cube-free wordsover two letters grows exponentially.4.3 Avoidable patternsThe overlap-freeness of the Thue-Morse sequence, and the square-freeness of theother words we have presented can be expressed in the more general framework ofavoidable and unavoidable patterns in strings. This concept has been introducedin the context of equations de�ning algebras. Certain unavoidable words have



74 Notesbeen used e.g. in [38] to characterize those �nite semigroups S that are inherentlynon�nitely based, in the sense that S is not a member of any locally �nitesemigroup variety de�nable by �nitely many equations. It may be noticed thatAxel Thue replaces his research on repetitions in strings in an even slightly moregeneral context, since he considers avoiding patterns with constants. However,he has not stated results in this speci�c framework.A word u is said to appear in a word v if there is a nonerasing morphism h suchthat h(u) is a factor of v. Clearly, if u appears in v and if v appears in w, thenu appears in w. Thus, the relation of appearance is a quasi-order, and it is anorder if words are considered to be equal if they are the same up to a renamingof letters.Consider an alphabet E of \pattern symbols". A word e over E is called apattern. A pattern e is avoidable over k letters, or is k-avoidable, if there isan in�nite word x over k letters such that e does not appear in x. The Thue-Morse sequence shows that the patterns aaa and ababa are (simultaneously)2-avoidable, and square-free in�nite words show that aa is 3-avoidable (but not2-avoidable). If u appears in v and if v is unavoidable, then u is unavoidable or,equivalently, if v is avoidable, then u is avoidable. Avoidable and unavoidablepatterns have been studied by several people (Zimin [51], Schmidt [39], Bean,Ehrenfeucht, McNulty [5], Roth [34], Cassaigne [10], Goralcik, Vanicek [18],Baker, McNulty, Taylor [3], Crochemore, Goralcik [14]).A �rst problem is to determine whether a given pattern is avoidable. There is anice algorithm in [5], and basically the same in [51], to decide whether a patternis avoidable. It works at follows.Let w be a word for which one has to decide if it is avoidable, and let A =alph(w). One constructs a bipartite graph G(w) whose vertex set is AG [ AD,where AG and AD are disjoint sets labelled with the letters in A. There is anedge from aG to bD i� ab is a factor of w.Example. For w = abcba, the graph G(w) is given below.



4.3. Avoidable patterns 75ra HHHrrb HHHr crc ���r br���r a�
 �	G(abcba)���������fa; cg ?fcgHHHHHHHHjfbgrb r b�
 �	G(bb) ra HHHr bra ���r br r�
 �	G(abba) ra HHHr cra ���r c�
 �	G(aca)����	fcg @@@@Rfagra r a�
 �	G(aa) rc r c�
 �	G(c)?fcg"�
 �	G(")A subset B of A is called free for w if no connected component of G(w) containsboth a letter of BG and a letter of BD . In our example, the free subsets are fag,fbg, fcg and fa; cg.With these de�nitions, we are able to de�ne a reduction relation as follows:w ! w0 i� there exists a free subset B such that w0 = eraB(w), where eraBis the morphism that erases all letters in B and is the identity on the otherletters. The following result is due to [51], and Baker, McNulty, Taylor [3]. Itis contained in a slightly di�erent form in Bean, Ehrenfeucht, McNulty [5].Theorem 3.1. A word w is unavoidable i� w !� ".The complexity of this algorithm is at least exponential. P. Roth (personalcommunication) recently has proved that the general problem is NP -complete.There are several easy consequences of this characterization. Call a letter a inw an isolated letter if jwja = 1, i.e. if it occurs only once in w.



76 NotesCorollary 3.2. If w contains no isolated letter, then w is avoidable.Indeed, if w ! w0 and if w0 contains an isolated letter, then w contains anisolated letter.Corollary 3.3. Every word w of length jwj � 2n over an n-letter alphabet isavoidable.Indeed, it is not very di�cult to show that such a word contains a factor withoutisolated letter. This bound is the best possible, because there exist unavoidablewords of length 2n � 1 over an n-letter alphabet. This can be formulated asfollows. Let Z = fz1; z2; : : : ; zn; : : :g be a countable in�nite alphabet, and de�nethe Zimin words Zn byZ1 = z1; Zn = Zn1znzn�1; n > 1Thus Z4 = z1z2z1z3z1z2z1z4z1z2z1z3z1z2z1. ThenProposition 3.4. For every n � 1, the Zimin word Zn is unavoidable. More-over, if w is an unavoidable pattern over an n-letter alphabet, then w appearsin Zn.The �rst part of the proposition has been proved by Coudrain, Sch�utzenberger(see also Lothaire). De�ne a biideal sequence to be a sequence (wn)n�1 of wordssuch that w1 is nonempty and, for all n > 1, wn+1 = wnvnwn for some nonemptyword vn. Then Coudrain and Sch�utzenberger state that for any �xed n, everylong enough word contains an element wn of some biideal sequence.For an avoidable pattern e, denote by �(e) the smallest integer k such that e isk-avoidable. We have seen that �(aa) = 3. The �rst word that is 4-avoidablebut not 3-avoidable has been given by [3]. It has the form ab�bc�ca
ba�ac.It is not known if, for every n, there exists a pattern that is n + 1 avoidablebut not n-avoidable. Upper bounds for �, as a function of � are also givenin [3]. Recently, Roth [34], Cassaigne [10], Goralcik, Vanicek [18] have solvedthe problem of determining all the 2-avoidable binary patterns. There is anunpublished result by Melni�cuk that states that �(e) � alph(e) + 4.
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