
Balanced Grammars and Their Languages

Jean Berstel1 and Luc Boasson2

1 Institut Gaspard Monge (IGM), Université Marne-la-Vallée,
77454 Marne-la-Vallée Cedex 2

berstel@univ-mlv.fr
2 Laboratoire d’informatique algorithmique: fondements et applications (LIAFA),

Université Denis-Diderot,
75251 Paris Cedex 05

boasson@liafa.jussieu.fr

Abstract. Balanced grammars are a generalization of parenthesis gram-
mars in two directions. First, several kind of parentheses are allowed.
Next, the set of right-hand sides of productions may be an infinite regu-
lar language. XML-grammars are a special kind of balanced grammars.
This paper studies balanced grammars and their languages. It is shown
that there exists a unique minimal balanced grammar equivalent to a
given one. Next, balanced languages are characterized through a property
of their syntactic congruence. Finally, we show how this characterization
is related to previous work of McNaughton and Knuth on parenthesis
languages.

1 Introduction

Balanced grammars are extended context-free grammars of a special kind. They
generate words over a set of parenthesis that are well-formed (i.e. Dyck words).
The right-hand side of any production of a balanced grammar is well-formed in
a sense to be described. Moreover, for each nonterminal, the set of right-hand
sides of productions for this nonterminal is a regular set.

The motivation for studying balanced grammars is twofold. First, it appears
that grammars describing XML-documents are special cases of balanced gram-
mars. The syntactic properties of these grammars have been considered in [1].
Next, parenthesis grammars, as developed by McNaughton [8] and Knuth [6],
also appear to be balanced grammars, but with finitely many productions and
only one pair of parentheses.. Parenthesis grammars have many interesting syn-
tactic and decision properties, and it is interesting to investigate whether these
properties carry over to grammars with regular sets of productions and several
pairs of parentheses. As we shall see, many constructs carry over, although the
proofs are sometimes more involved. In the course of this investigation, we will
consider how several well-known constructions for standard context-free gram-
mars behave when the sets of productions is regular.

A context-free grammar will be called regular if, for each nonterminal, the
set of right-hand sides of productions for this nonterminal is regular. If these

W. Brauer et al. (Eds.): Formal and Natural Computing, LNCS 2300, pp. 3–25, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

4 Jean Berstel and Luc Boasson

sets are finite (the case of usual context-free grammars) the grammar is called
finite context-free. A well-known exercise on context-free grammars shows that
the language generated by a regular context-free grammar is context-free. Thus,
extending the set of productions does not change the family of languages that is
generated. On the contrary, questions about grammars may turn out to be more
difficult in the case of regular context-free grammars. One example is given
in Section 4 below, where it is shown that every grammar can be converted
to a codeterministic grammar. This was proved by McNaughton in the case
of parenthesis grammars, but appears to hold for general regular context-free
grammars.

The paper is organized as follows. Section 2 and 3 introduce regular context-
free grammars and balanced grammars. Section 4 is about codeterministic gram-
mars. Section 5 groups elementary results, examples and undecidability results
for balanced languages. In Section 6, it is shown that every codeterministic bal-
anced grammar can be reduced to a minimal balanced grammar, and that this
grammar is unique (Theorem 6.3 and 6.5). In Section 7, we show that balanced
languages are closed under complement. This is a result that holds only within
regular balanced grammars, and does not hold within the framework of paren-
thesis grammars. Section 8 presents a syntactic characterization of balanced
language. These are well-formed languages such that the set of Dyck words in-
tersects only a finite number of congruence classes for the syntactic congruence
of the language. Although this property is undecidable, it is closely related to the
decision procedure in Section 9 where balanced languages with bounded width
are considered. Indeed, we show that this property always holds in the case of
bounded width.

2 Regular Context-Free Grammars

A regular context-free grammar G = (V,A,P) is defined as follows. The set V
is the finite set of variables or non-terminals. The alphabet A is the terminal
alphabet. The set P is the set of productions. For each variable X , the set

RX = {m ∈ (V ∪A)∗ | (X → m) ∈ P}
is a regular subset of (V ∪ A)∗. It follows that the set P itself is regular. A
convenient shorthand is to write

X → RX

The set RX is the set of X-handles. The language generated by a variable is
defined in the usual way. We consider grammars that may have several axioms.

Regular context-free grammars have been considered in particular by Con-
way. In his book [2], the theory of context-free languages is developed in this
framework.

Example 2.1. Consider the regular grammar G = ({X}, {a, ā},P) where P is
the set

X → aX∗ā

Balanced Grammars and Their Languages 5

It generates the set of Dyck primes over {a, ā}.
In the sequel, we simply say context-free grammar for a regular context-free

grammar, and we say that a grammar is finite if it has a finite set of produc-
tions. For every (regular) context-free grammar, there exists a finite context-free
grammar generating the same language. In particular, all these languages are
context-free.

3 Balanced Grammars

The main purpose of this paper is to study balanced grammars, as defined be-
low. As we shall see, these grammars are a natural extension of McNaughton’s
parenthesis grammars.

A context-free grammar G = (V, T,P) is balanced if the two following restric-
tions hold. First, the terminal alphabet T has a decomposition T = A ∪ Ā ∪B,
where Ā = {ā | a ∈ A} is a disjoint copy of A, and B is disjoint from A and
from Ā. Next, productions are of the form X −→ amā, with m ∈ (V ∪ B)∗. It
follows that the regular sets RX of X-handles admit a decomposition

RX =
⋃
a∈A

aRX,aā

where
RX,a = {m ∈ (V ∪B)∗ | X → amā}

Of course, the sets RX,a are regular subsets of (V ∪B)∗. We write for short:

X →
⋃
a∈A

aRX,aā

It appears useful to call letters in A colors, and to call the initial letter of the
right-hand side of a production the color of the production.

If B = ∅, a balanced grammar is called pure. A language L is (pure) balanced
if

L =
⋃

X∈W

LG(X)

for some subset W of V .
A language over A ∪ Ā is well-formed if it is a subset of the Dyck language

over A. Clearly, any pure balanced language is well-formed, and the converse
does not hold (see Example 5.8 below).

The set DA of Dyck primes over A ∪ Ā will play an important role. Let us
recall that it is a prefix and a suffix code, and that every word x ∈ DA admits
a unique factorization of the form x = az1 · · · znā, where a ∈ A, n ≥ 0 and
z1, . . . , zn are Dyck primes. A Dyck factor of a word w is any factor x of w that
is a Dyck prime.

The setDA has strong synchronization properties. We state them in a lemma.

6 Jean Berstel and Luc Boasson

Lemma 3.1. (i) If a Dyck prime z is a factor of a product z1 · · · zn of Dyck
primes, then z is a factor of one of the zi.
(ii) If a Dyck word w ∈ D∗ is a factor of a Dyck prime z, then w = z or there
exist Dyck words x, y ∈ D∗ and a letter a ∈ A such that the Dyck prime axwyā
is a factor of z. �

Let us start with two simple examples of balanced languages.

Example 3.2. The language of Dyck primes over {a, ā} is a pure balanced lan-
guage, generated by

X → aX∗ā

Example 3.3. The language DA of Dyck primes over T = A∪ Ā is generated by
the grammar

X →∑
a∈AXa

Xa → aX∗ā, a ∈ A
The variable X generates the language DA which is well-formed. Although the
present grammar is not balanced, the language DA is a pure balanced language.
Indeed, it suffices to replace X by

∑
a∈AXa in the second part, and to consider

that every Xa is an axiom.

There exist several families of context-free grammars G = (V, T,P) related
to balanced grammars that have been studied in the past.

Parenthesis grammars have been studied in particular by McNaughton [8]
and by Knuth [6]. Such a grammar is a balanced grammar where the alphabet
A is a singleton (just one color), so T = B ∪ {a, ā}, and with finitely many
productions.

Bracketed grammars were investigated by Ginsburg and Harrison in [4]. The
terminal alphabet T is the disjoint union of three alphabets A, B̄ and C, and
productions are of the form X −→ amb̄, with m ∈ (V ∪ C)∗. Moreover, there is
a bijection between the set A of colors and the set of productions. Thus, in a
bracketed grammar, every derivation step is marked.

Chomsky-Schützenberger grammars are used in the proof of the Chomsky-
Schützenberger theorem (see e. g. [5]), even if they were never studied for their
own. Here the terminal alphabet is of the form T = A∪Ā∪B, and the productions
are of the formX −→ amā. Again, there is only one production for each color a ∈
A. So it is a special kind of balanced grammar with finite number of productions.

XML-grammars have been considered in [1]. They differ from all previous
grammars by the fact that the set of productions is not necessarily finite, but
regular. XML-grammars are balanced grammars. They are pure if all text ele-
ments are ignored. XML-grammars have the property that for each color a ∈ A,
there is only one variable X such that the set RX,a is not empty. Expressed with
colors, this means that all variables are monochromatic and all have different
colors.

Balanced Grammars and Their Languages 7

4 Codeterministic Grammars

A context-free grammar is called codeterministic if X → m, X ′ → m implies
X = X ′. Codeterministic grammars are called backwards deterministic in [8].

In the next proposition, we show that codeterministic grammars can always
be constructed. The main interest and use is for balanced grammars. In this case,
the codeterministic grammar obtained is still balanced (Corollary 4.2). This also
holds if the grammar one starts with is e.g. in Greibach Normal Form.

Proposition 4.1. For every context-free grammar, there exists an equivalent
codeterministic grammar context-free grammar that is effectively computable.

The proof is adapted from the proof given in [8] for the case of finite context-
free grammars. We give it here because it is an example of how an algorithm on
finite grammars carries over to regular grammars.

Proof. Let G = (V,A,P) be a context-free grammar. It will be convenient to
denote here variables by small Greek letters such as α, β, σ because we will also
deal with sets of variables. For each variable α ∈ V , let Rα be the regular set
of α-handles. Let Aα be a deterministic automaton recognizing Rα. We first
describe a transformation of the automaton Aα.

For any finite deterministic automaton A = (Q, q0, F) over the alphabet
V ∪A with set of states Q, initial state q0 and set of final states F , we define a
power automaton A′ recognizing words over the “big” alphabetW = A∪(2V \∅)
as follows. Each “big letter” B is either a nonempty subset of V , or a singleton
{b} composed of a terminal letter b ∈ A. The set of states of A′ is 2Q, its initial
state is {q0}, its final states are the sets P ⊂ Q such that P ∩ Q �= ∅. The
transition function is defined, for P ⊂ Q and B ∈ W , by

P · B = {p · b | p ∈ P, b ∈ B}
This is quite similar to the well-known power set construction. A word M =
B1B2 · · ·Bn over W is composed of “big letters” B1, . . . Bn. Given a word M =
B1B2 · · ·Bn overW , we write m ∈M for m ∈ (V ∪A)∗ wheneverm = b1b2 · · · bn
with bi ∈ Bi for i = 1, . . . , n. Observe that Bi = {bi} if bi ∈ A. In other words,
each w ∈ A∗ is can also be viewed as a “big” word.

For each α ∈ V , let Aα be a deterministic automaton recognizing Rα, let
A′

α be its power automaton, and let R′
α be the language (overW) recognized by

A′
α. Then the following claims obviously hold.
(a) If m ∈ Rα and m ∈M , then M ∈ R′

α.
(b) Conversely, if M ∈ R′

α, then there exists a word m ∈ M such that
m ∈ Rα.

It follows from these claims that M ∈ R′
α if and only if there exists m ∈ M

with m ∈ Rα. In other words, M ∈ R′
α if and only if M ∩Rα �= ∅.

For each word M over W , let V (M) be the subset of V composed of the
variables α such that M is recognized in the power automaton A′

α.
Thus

V (M) = {α ∈ V |M ∩Rα �= ∅}

8 Jean Berstel and Luc Boasson

For each subset U ⊂ V , define the set

SU = {M ∈ W ∗ | U = V (M)}
of words M such that U = V (M). This means that M ∈ SU iff U is precisely
the set of variable α such that M ∈ R′

α (or equivalently M ∩ Rα �= ∅). The set
SU is regular, because it is indeed

SU =
⋂

α∈U

R′
α \
(⋃

α/∈U

R′
α

)
(1)

We define now a new grammar G′ as follows. Its set of variables is V = 2V \ ∅.
The productions are

U → SU

The grammar is codeterministic because in a production X →M , the handle
M determines V (M). It remains to prove that G′ is equivalent to G. We prove
that

L(G,α) =
⋃

α∈U

L(G′, U) (2)

The proof is in two parts. We first show that for α ∈ U , one has
L(G′, U) ⊂ L(G,α)

Consider a word w ∈ L(G′, U) and a derivation U k−→w of length k.
If k = 1 then w ∈ A∗ and U −→w. Thus w is in SU . By Eq. 1, and because

α ∈ U , one has w ∈ Rα. It follows that w ∈ L(G,α).
If k > 1, then U −→M

k−1−→ t for some M ∈ SU and some terminal word t.
Set M = U1 · · ·Un. Then t = t1 · · · tn and Ui

∗−→ ti for i = 1, . . . n. By induction,
one has αi

∗−→ ti for each i and for all αi ∈ Ui. Next, since M ∈ SU , one has
M ∈ R′

α. Consequently there is some m ∈ M ∩ Rα. Setting m = α1 · · ·αn, one
has αi ∈ Ui and α−→α1 · · ·αn. It follows that α

∗−→ t. This proves the inclusion.
Consider now the converse inclusion

L(G,α) ⊂
⋃

α∈U

L(G′, U)

This means that, for each word w ∈ L(G,α), there exists a set U containing α
such that w ∈ L(G′, U).

We shall in fact prove the following, slightly more general property. Let m ∈
(V ∪ A)∗. If α ∗−→m, then for every set M containing m, there exists a set U
containing α such that U ∗−→m.

Assume indeed that α �−→m. If % = 1, choose any “big word” M containing
m and let U = {γ | M ∈ R′

γ}. Then U −→M . Moreover α is in U because
m ∈ Rα. This proves the claim in this case.

Assume % > 1. Consider the last step of the derivation α �−1−→xβy−→m =
xhy, with β → h a production in G. Choose any “big word” M containing m.

Balanced Grammars and Their Languages 9

Then M = XHY , where |X | = |x|, |H | = |h|, Y | = |y|. Then x ∈ X , h ∈ H ,
y ∈ Y . By the first part of the proof, there exists a set N containing β such that
N −→H . Consider now Z = XNY . This set contains xβy. By induction, there
exists a set U such that α ∈ U and U ∗−→Z in the grammar G′. Consequently,
U

∗−→M . This finishes the proof. �

Corollary 4.2. If a context-free grammar is balanced (pure balanced, in Grei-
bach normal form, in two-sided Greibach normal form, is finite), there exists an
equivalent codeterministic grammar that is of the same type.

Proof. It suffices to observe that, in a “big word” constructed from a word,
terminal letters remain unchanged, only variables are replaced by (finite) sets of
variables. �

5 Elementary Properties and Examples

Balanced context-free grammars have some elementary features that are basic
steps in proving properties of this family of grammars. Given an alphabet A∪ Ā,
we denote by DA or by D the set of Dyck primes over this alphabet. Given an
alphabet A ∪ Ā ∪ B, where B is disjoint from A ∪ Ā, a Motzkin word is a word
in the shuffle D∗

A

 B∗. It is not difficult to see that every Motzkin word has
a unique factorization as a product of Motzkin primes. Motzkin primes are the
words in the set

M = B ∪
⋃
a∈A

a(D∗
A

 B∗)ā

We are interested in the set

N =
⋃
a∈A

a(D∗
A

 B∗)ā

of Motzkin-Dyck primes

Lemma 5.1. Let G = (V,A∪Ā∪B,P) be a balanced grammar. For each variable
X ∈ V , the language L(G,X) is a subset of N , and if G is pure, then L(G,X)
is a subset of D.

Proof. The proof is straightforward by induction. �

There are only tiny differences between balanced and pure balanced gram-

mars. Moreover, every balanced language is a homomorphic image of a pure
balanced language. To get the pure language, it suffices to introduce a barred
alphabet B̄ and to replace each occurrence of a letter b by a word bb̄. The gram-
mar is modified by adding a new variable Xb for each b, with only the production
Xb → bb̄. Finally, in all other productions, each b is replaced by Xb. The original
language is obtained by erasing all letters in B̄.

For this reason, we assume from now on that all balanced grammars are pure.

10 Jean Berstel and Luc Boasson

Lemma 5.2. Let G = (V,A ∪ Ā,P) be a balanced grammar. Assume that

X
∗−→az1 · · · znā

for some letter a ∈ A and Dyck primes z1, . . . , zn. Then there exists a production
X → aX1 · · ·Xnā in G such that Xi

∗−→ zi for i = 1, . . . , n.

Proof. Assume X ∗−→ az1 · · · znā. Then there is a production X → aY1 · · ·Ymā
such that X → aY1 · · ·Ymā

∗−→az1 · · · znā. Since Y1 · · ·Ym
∗−→ z1 · · · zn, there ex-

ist words y1, . . . , ym such that Yi
∗−→ yi and y1 · · · ym = z1 · · · zn. By Lemma 5.1,

the words yi are Dyck primes. Thus m = n and yi = zi. �

Lemma 5.3. Let L be the language generated by a balanced grammar G =
(V,A ∪ Ā,P). If gud ∈ L for some words g, d ∈ (A ∪ Ā)∗ and some Dyck prime
u ∈ D, then there exists a variable X and an axiom S such that

S
∗−→ gXd, X

∗−→u

Moreover, if G is codeterministic, then the variable X with this property is
unique.

Proof. The second part of the lemma is straightforward. If gud ∈ L, there is
a left derivation S ∗−→ gud for some axiom S. Let a denote the initial letter of
u. Since letters in A appear only as initial letters in handles of productions, the
step in the derivation where this letter is produced has the form

S
∗−→ gXδ−→ gamāδ

∗−→ gud

for some m ∈ RX,a. Since amāδ
∗−→ud, there is a factorization ud = u′d′ with

amā
∗−→u′ and δ ∗−→ d′. By Lemma 5.1, the word u′ is a Dyck prime, and since

ud = u′d′, and the set of Dyck primes is a prefix code, it follows that u = u′ and
consequently d = d′. �

Lemma 5.4. Let L be the language generated by a balanced grammar G =
(V,A ∪ Ā,P). If gu1 · · ·und ∈ L for some words g, d ∈ (A ∪ Ā)∗ and some
Dyck primes u1, . . . , un ∈ D, then there exist variables X1, . . . , Xn and an ax-
iom S such that S ∗−→ gX1 · · ·Xnd and Xi

∗−→ui for i = 1, . . . , n. �

Lemma 5.5. Let G = (V,A ∪ Ā,P) be a codeterministic balanced grammar. If
X,Y are distinct variables, then L(G,X) and L(G, Y) are disjoint.

Proof. Assume there are derivations

X −→ aX1 · · ·Xnā
∗−→u, Y −→a′Y1 · · ·Yn′ ā

′ ∗−→u

for some word u ∈ D. The proof is by induction on the sum of the lengths of
these two derivation. If n+ n′ = 2, then n = n′ = 1, and a = a′. Thus X −→ aā

Balanced Grammars and Their Languages 11

and Y −→ aā, and since G is codeterministic, X = Y . If n+ n′ > 2, then u has
factorizations

u = ax1 · · ·xnā = a′y1 · · · yn′ ā
′

where Xi
∗−→xi, Yj

∗−→ yj. Clearly, a = a′, and because D is a prefix code, one
has n = n′, xi = yi. By induction, if follows that Xi = Yi, and by codeterminism
one gets X = Y . �

5.1 More Examples

Example 5.6. Consider the grammars

X → aY ∗ā
Y → bb̄

and
X → aY
Y → bb̄Y | ā

They clearly generate the same language a(bb̄)∗ā. The left grammar is infinite
and balanced. Thus the language is balanced. The right grammar is finite and
not balanced. It follows from a result of Knuth [6] that we will discuss later that
there is no balanced grammar with a finite number of production generating this
language.

Example 5.7. The language

L = {b(aā)naaāā(aā)nb̄ | n > 0}
is well-formed but not balanced. Assume the contrary. Then, for each n > 0,
there is a word mn ∈ V ∗ such that

S → bmnb̄
∗−→ b(aā)naaāā(aā)nb̄

Moreover, the word mn has the form

mn = X1 · · ·XnZY1 · · ·Yn

where Xi → aā, Yi → aā, Z ∗−→ aaāā. Each word mn is in the regular language
RS,a, and a pumping argument gives the contradiction.

Example 5.8. Consider the grammar

X → aY ∗ā
Y → bb̄Y cc̄ | ε

The language is balanced if and only if b = c. Indeed, if b = c, then the language
is generated by the grammar

X → a(ZZ)∗ā
Z → bb̄

If b �= c, the language is {a(bb̄)n(cc̄)nā | n ≥ 0}, and an argument similar to
Example 5.7 shows that it is not balanced.

12 Jean Berstel and Luc Boasson

Example 5.9. The grammar

X0 → Y aā
X → aY ā | aa
Y → aXāāaaā | aY āāāaXā

generates a balanced language. It was used by Knuth ([6]) to demonstrate how
his algorithm for the effective construction of a balanced grammar works.

5.2 Decision Problems

In this section, we state two decidability results. There are other decision prob-
lems that will be considered later. The following result was proved in [1]. It will
be used later.

Theorem 5.10. Given a context-free language L over an alphabet A ∪ Ā, it is
decidable whether L is a subset of the set DA of Dyck primes over A ∪ Ā.

The following result is quite similar to a proposition in [1]. The proof differs
slightly, and is included here for sake of completeness.

Theorem 5.11. It is undecidable whether a language L is balanced.

Proof. Consider the Post Correspondence Problem (PCP) for two sets of words
U = {u1, . . . , un} and V = {v1, . . . , vn} over the alphabet C = {a, b}. Consider
a new alphabet B = {a1, . . . , an} and define the sets LU and LV by

LU = {ai1 · · ·aik
h | h �= uik

· · ·ui1} LV = {ai1 · · · aik
h | h �= vik

· · · vi1}

Recall that these are context-free, and that the set L = LU ∪ LV is regular iff
L = B∗C∗. This holds iff the PCP has no solution.

Set A = {a1, . . . , an, a, b, c}, and define a mapping ŵ from A∗ to (A ∪ Ā) by
mapping each letter d to dd̄.

Consider words û1, . . . , ûn, v̂1, . . . , v̂n in {aā, bb̄}+ and consider the languages

L̂U = {ai1 āi1 · · ·aik
āik
h | h �= ûik

· · · ûi1}

and
L̂V = {ai1 āi1 · · · aik

āik
h | h �= v̂ik

· · · v̂i1}
Set L̂ = c(L̂U ∪ L̂V)c̄. Assume L̂ is a balanced language, generated by some
balanced grammar with set of axiomsW , and consider the set R =

⋃
X∈W RX,c.

Since each word in L̂U ∪ L̂V is a product of two-letter Dyck primes, the set R
is equal to LU ∪ LV , up to a straightforward identification. Thus LU ∪ LV is
regular which in turn implies that the PCP has no solution. Conversely, if the
PCP has no solution, LU ∪ LV is regular which implies that LU ∪ LV = B∗C∗,
which implies that L̂ = cB̂∗Ĉ∗ĉ, showing that L̂ is balanced. �

Balanced Grammars and Their Languages 13

6 Minimal Balanced Grammars

The aim of this section is to prove the existence of a minimal balanced code-
terministic grammar for every balanced context-free grammar, and moreover
that this grammar is unique up to renaming. This is the extension, to regular
grammars with several types of parentheses, of a theorem of McNaughton [8].

Let G be a balanced codeterministic grammar generating a language L =
L(G), and let H be the set of axioms, i.e. L = ∪S∈HL(G,S).

A context for the variable X is a pair (g, d) of terminal words such that
S

∗−→ gXd for some axiom S ∈ H . The set of contexts for X is denoted by
CG(X), or C(X) if the grammar is understood. The length of a context (g, d) is
the integer |gd|. Two variables X and Y are equivalent, and we write X ∼ Y if
and only if they have same contexts, that is if and only if C(X) = C(Y).

Proposition 6.1. Given a balanced codeterministic grammar G, there exists an
integer N such that X ∼ Y if and only if they have same contexts of length at
most N .

The proof will be an easy consequence of the following construction.
For any pair (g, d) of terminal words, we consider the setW =W (g, d) of the

variables that admit (g, d) as a context. Thus X ∈ W if and only if (g, d) ∈ C(X).

Lemma 6.2. Let G be a balanced codeterministic grammar G. There exists an
integer N with the following property. For any pair (g, d) of terminal words,
there exists a pair (g′, d′) of length at most N such that W (g, d) =W (g′, d′).

Proof of Proposition 6.1. Assume thatX and Y have the same contexts of length
N . Let (g, d) be any context for X , and set W =W (g, d). By definition, X is in
W . Next, there exists a pair (g′, d′) with |g′d′| ≤ N such that W = W (g′, d′).
Since X and Y have the same contexts of length N , and since (g′, d′) is a context
for X , it is also a context for Y , and consequently Y is in W . This shows that
every context for X is also a context for Y . �

Proof of the lemma. Consider the setW =W (g, d). The construction is in three
steps.

For every X in W , there is a derivation S ∗−→ gXd for some axiom S ∈ H .
Clearly, gd is well-formed. Moreover, since the grammar is balanced, the words
g and d have the form g = a1g1 · · · angn, d = dnān · · ·d1ā1, where g1, . . . , gn,
d1, . . . dn are (products of) Dyck words. Thus every gi is a product of Dyck
primes, and similarly for every dj . Because G is codeterministic, there is a factor-
ization of the derivation into S ∗−→ a1M1 · · · anMnXM

′
nān · · ·M ′

1a1 where each
Mi and M ′

j is a product of variables, and Mi
∗−→ gi, M ′

j
∗−→ dj . For each of the

variables appearing in these products, we choose a Dyck prime of minimal length
that is generated by this variable, and we replace the corresponding factor in g
and d by this word of minimal length. Denote by N0 the greatest of these mini-
mal lengths. Then (g, d) is replaced by pair (g′, d′) of the form g′ = a1g

′
1 · · · ang

′
n,

d = d′nān · · · d′1ā1 with the property that each g′i, d
′
j , is a product of Dyck primes

of length at most N0. There may be many such Dyck primes, but they are all

14 Jean Berstel and Luc Boasson

small. Thus W (g, d) = W (g′, d′), and we may assume that the initial (g, d)
satisfies the property of having only small Dyck primes.

In the second step, we compute an upper bound for n. Observe that this
integer is independent of the variable X chosen in W and also independent of
the actual axiom. Fore each X in W , there is a path in the derivation tree from
the axiom S to X . This path has n+ 2 nodes (S and X included), and each of
the internal nodes of the path produces one pair (ai, āi) in the factorizations of g
and d. Assume that there are h variables inW . Then there are h different paths.
Considering all these paths, one get h-tuples of variables, which are the labels
of the internal nodes at depth 1, 2,. . . , n for these paths. If n is greater than
h‖V ‖+1 then two of these tuples are componentwise identical, and all derivation
trees can be pruned simultaneously, without changingW . Thus, one may replace
(g, d) by a pair such that n ≤ ‖V ‖‖V ‖.

After these two steps, we know that g = a1g1 · · ·angn, d = dnān · · ·d1ā1,
with n not too big and each gi, dj product of small Dyck primes. The number
of primes in say gidi is exactly the number of variables minus 1 in the right-
hand side of the i-th production on the path from the axiom S to the variable
X . More precisely, assume that a production is Z → aiγY δā, with γ

∗−→ gi,
δ

∗−→ di. Then the number of Dyck primes in gi is |γ|, and similarly for di. There
may be several of these productions at level i, but for each of these productions,
the handle aiγY δā is the same up to possibly the variable Y . Each of these
handles in in some fixed regular set, determined by the variable Z which also
may change. Since there are only finitely many regular sets, it is clear that γ
and δ may be chosen of small length. It follows that in each gi, dj the number
Dyck primes they factor into may be bounded by a constant depending only on
the grammar. This finishes the proof. �

A balanced codeterministic grammar is reduced if two equivalent variables
are equal.

Theorem 6.3. A balanced codeterministic grammar is equivalent to a balanced
codeterministic reduced grammar.

We start with a lemma of independent interest.

Lemma 6.4. Let X → aX1 · · ·Xnā be a production of a balanced codeterminis-
tic grammar G. For all variables Y1 ∼ X1, . . . , Yn ∼ Xn, there exists a variable
Y ∼ X such that Y → aY1 · · ·Ynā is a production of G.

Proof. Consider indeed a derivation

S
∗−→ gXd−→ gaX1 · · ·Xnād

∗−→ gax1 · · ·xnād

where Xi
∗−→xi for i = 1, . . . , n. The pair (ga, x2 · · ·xnād) is a context for X1,

thus also for Y1. Consequently, there is a derivation

S1
∗−→ gaY1x2 · · ·xnād

∗−→ gay1x2 · · ·xnād

for some axiom S1 and some word y1 with Y1
∗−→ y1. Since the grammar is code-

terministic, it follows that S1
∗−→ gay1X2x3 · · ·xnād. Thus (gay1, x3 · · ·xnād) is

Balanced Grammars and Their Languages 15

a context for X2 (and for Y2), and as before, there is a word y2 with Y2
∗−→ y2

such that, for some axiom S2, one has

S1
∗−→ gay1Y2 · · ·xnād

∗−→ gay1y2x3 · · ·xnād

Continuing in this way, we get a derivation

S′ ∗−→ gay1 · · · ynād

where Yi
∗−→ yi for i = 1, . . . , n. Since the grammar is codeterministic, it follows

that
S′ ∗−→ gaY1 · · ·Ynād

and since the grammar is balanced, this derivation decomposes into

S′ ∗−→ gY d−→ gaY1 · · ·Ynād

for some production Y → aY1 · · ·Ynā. Observe that (g, d) is a context for Y . It
follows easily that X ∼ Y . �

Proof of Theorem 6.3. Let G be a balanced codeterministic grammar, and de-
fine a quotient grammar G/ ∼ by identifying equivalent variables in G. More
precisely, the variables in the quotient grammar are the equivalence classes of
variables in G. Denote the equivalence class of X by [X]. The productions of
G/ ∼ are all productions [X] → a[X1] · · · [Xn]ā, where X → aX1 · · ·Xnā is a
production in G. Observe that the sets of productions of G/ ∼ are still regular.

Note that if X ∼ Y in G and X is an axiom, then Y also is an axiom,
because X is an axiom iff (ε, ε) is a context for X . Thus the axioms in G/ ∼ are
equivalence classes of axioms in G.

Set L = L(G,H) and L′ = L(G/ ∼, H/ ∼). It is easily seen that L ⊂ L′.
Indeed, whenever X ∗−→u in G, then [X] ∗−→u in G/ ∼. Conversely, suppose
[X] k−→u in G/ ∼. We show that there exists Y in [X] such that Y ∗−→u. This
clearly holds if k = 1. If k > 1, then [X]−→ a[X1] · · · [Xn]ā

k−1−→ ax1 · · ·xnbara

with [Xi]
∗−→xi. By induction, there exist variables Yi in [Xi] such that Yi

∗−→xi

in G. Moreover, by the previous lemma, there exists a production

Y → aY1 · · ·Ynā

in G for some Y in [X]. Thus Y ∗−→u. This proves the claim. It follows that if
u ∈ L′, then u ∈ L. �

Before stating the next result, it is convenient to recall the syntactic con-
gruence of a language. Given a language L, the context of a terminal word u
is the set CL(u) = {(g, d) | gud ∈ L}. Observe that this is independent of
the device generating L. The syntactic congruence ≡L is defined by x ≡L y iff
CL(x) = CL(y). This congruence will be considered later.

Theorem 6.5. Two equivalent reduced grammars are the same up to renaming
of the variables.

16 Jean Berstel and Luc Boasson

Proof. Let G be a reduced grammar generating the language L. IfX is a variable
ofX and X ∗−→u, then CG(X) = CL(u). Indeed, if gud ∈ L, there is a derivation
S

∗−→ gud for some axiom. This can be factorized into S ∗−→ gY d
∗−→ gud for

some variable Y because G is balanced, and Y = X because G is codeterministic.
Thus (g, d) is a context for X . The converse inclusion is clear.

Consider another reduced grammarG′ also generating the language L. Let X
be a variable in G, let u ∈ L(G,X) and let (g, d) be a context for X . Then gud ∈
L. Thus, there exists a derivation S′ ∗−→ gud inG′. Since u is a Dyck prime andG′

is balanced, there is a variable X ′ in G′ such that u ∈ L(G′, X ′). Moreover, (g, d)
is also a contextX ′ (in G′). By the previous remark,CG(X) = CL(u) = CG′(X ′).
Consider another word v in L(G,X). Then there is a variable Y ′ such that
v ∈ L(G′, Y ′). However CG′(X ′) = CG′(Y ′) and, since G′ is reduced, X ′ = Y ′.
Thus, to each variable X in G there corresponds a unique variable X ′ in G′ that
has same contexts. It follows easily that L(G,X) = L(G′, X ′).

It remains to show that the productions are the same. For this, consider a
production X → aY1 · · ·Ynā in G. Then there are words u1, . . . , un such that
X

∗−→ au1 · · ·unā, Yi
∗−→ui in G. In the grammar G′, there is a variable X ′

such that X ′ ∗−→ au1 · · ·unā. Since G′ is balanced and codeterministic there are
variables Y ′

i such that X ′ → aY ′
1 · · ·Y ′

nā and Y ′
i

∗−→ui in G′. This finishes the
proof. �

Observe that a reduced grammar is minimal in the sense that it has a minimal
number of variables.

7 Complete Balanced Grammars

In this section, we consider complementation. Any balanced language is a subset
of the languageD of Dyck primes. Thus, complementation of a balanced language
makes only sense only with respect to the set D.

Proposition 7.1. The complement of a balanced language with respect to the
set of Dyck primes is balanced.

It is straightforward that balanced languages are closed under union. They
are therefore also closed under intersection.

Proof. Let L be a balanced language and let G be a balanced codeterministic
grammar generating it, so that L = L(G,W) for some subset W of the set of
variables V . Set also M = L(G, V). Then M is precisely the set of Dyck factors
of words in L. Hence, D \M is the possibly empty set of Dyck primes that are
not Dyck factors of words in L. We show that D \M is balanced.

Consider first the subset N of D \M composed of words x such that any
proper Dyck factor y of x is in M . Thus

N = (D \M) \ (A ∪ Ā)+(D \M)(A ∪ Ā)+

A word is in D \M if and only if it has a Dyck factor in N .

Balanced Grammars and Their Languages 17

A word x ∈ N has the form x = ay1 · · · ynā, where y1, . . . , yn ∈ M . Thus,
there is a derivation

aX1 · · ·Xnā
∗−→x

and the word aX1 · · ·Xnā is not a handle in G. Conversely, if aX1 · · ·Xnā is
not a handle, then any word it generates is not in M because the grammar is
codeterministic. Set Ua =

⋃
X∈V RX,a, consider the grammar G′ obtained by

adding a variable Φ and the productions

Φ→
⋃
a∈A

a(V ∗ \ Ua)ā

Then N = L(G′, Φ).
Consider the grammar G′′ obtained form G′ by adding the productions

Φ→
⋃
a∈A

a(V + Φ)∗Φ(V + Φ)∗ā

Since a word is in D \ M if and only if it has a Dyck factor in N , one has
D \M = L(G′′, Φ).

Observe finally that, in view of codeterminism,

D \ L = D \M ∪
⋃

X∈V \W

L(G,X)

This finishes the proof. �

A balanced grammar G with set of variables V is complete if

D =
⋃

X∈V

L(G,X)

Proposition 7.2. For each balanced codeterministic grammar G, there exists
a balanced complete codeterministic grammar G′ with at most one additional
variable Φ such that L(G,X) = L(G′, X) for all variables X �= Φ.

Proof. This is an immediate consequence of the proof of the previous proposition,
since the grammar G′′ constructed in that proof is indeed complete. �

As a consequence, if G is a minimal grammar for a language L and G′ is
minimal for D \ L than G and G′ have the same number of variables, up to at
most one.

8 A Characterization

We have recalled (Theorem 5.10) that it is decidable whether a context-free
language L is well-formed, that is whether L is a subset of a set of Dyck primes.
We also have seen (Theorem 5.11) that it is undecidable whether L is balanced,

18 Jean Berstel and Luc Boasson

that is whether there exists a (regular) balanced grammar generating L. In the
case of a single pair of parentheses, a remarkable result of Knuth [6] shows
on the contrary that, given a finite context-free grammar generating L, it is
decidable whether there exists an equivalent finite balanced grammar generating
the context-free language L. Moreover, Knuth gives an algorithm for constructing
a finite balanced grammar from a given finite context-free grammar, if such a
grammar exists.

The purpose of this section is investigate this relationship. More precisely,
we shall prove a property that is equivalent for a language to be balanced.
This property is of course undecidable. However, it trivially holds for languages
generated by finite balanced grammars. In this way, we have a characterization
that in some sense explains why Knuth’s algorithm works, and why it cannot
work in the general case.

Recall that the syntactic congruence ≡L of a language L is defined by x ≡L y
iff CL(x) = CL(y). Here CL(u) = {(g, d) | gud ∈ L} is the set of contexts of u
in L. The equivalence class of u is denoted [u]L or [u] if L is understood. Any
language is a union of congruence classes for its syntactic congruence. It is well
known that a language is regular if and only if its syntactic congruence has a
finite number of equivalence classes.

A language L will be called M -finite, where M is a language if the number
of equivalence classes of ≡L intersecting M is finite. We will be concerned with
languages that are D-finite or D∗-finite. Since D is a subset of D∗, any D∗-finite
language is also D-finite. We will see that in some special cases, the converse
also holds.

Observe that for a given (balanced) language L, the set of Dyck primes needs
not to be a union of equivalence classes of ≡L. Consider indeed the language

L = {aabb̄āabb̄āā, aabb̄aābb̄āā}

The pair (aabb̄, bb̄āā) is the only context of both words aā and āa. So they are
equivalent for ≡L. However, aā is a Dyck word and āa is not.

Theorem 8.1. A language L over A ∪ Ā is balanced if and only if it is well-
formed and D∗-finite.

Proof. Assume first that L is well-formed and D∗-finite. We construct a bal-
anced grammar generating L. Since D is a subset of D∗, the language L is also
D-finite. Let V be a finite set of variables in bijection with the equivalence classes
intersecting D. For u ∈ D, denote by X[u] the variable associated to the equiv-
alence class [u]. Conversely, let [X] be the equivalence class of ≡L associated to
X . For X ∈ V there is a word u ∈ D such that X = X[u] and [X] = [u].

Each word w in D∗ has a unique factorization w = u1 · · ·un with ui ∈ D.
We define a word φ(w) over V associated to w by φ(w) = X[u1] · · ·X[un]. The
mapping φ is an isomorphism from D∗ onto V ∗. We consider the grammar
defined by the productions X → aRX,aā, where

RX,a = {φ(w) | awā ∈ D ∩ [X]}

Balanced Grammars and Their Languages 19

and with axioms {X[u] | u ∈ L}. This grammar generates L. Indeed, it is easily
checked that variable X generates [X]∩D. Thus X[u] generates the class [u]∩D,
for u ∈ D. Thus if the sets RX,a are regular, the grammar is balanced.

Consider a fixed X ∈ V and a letter a ∈ A. Denote by ≈ the syntactic
congruence of RX,a. Thus for p, q ∈ V ∗, one has p ≈ q iff rps ∈ RX,a ⇔ rqs ∈
RX,a .

Let p, q be words in V ∗ and let y, z be words in D∗ such that φ(y) = p, φ(z) =
q. Assume y ≡L z. Let r, s ∈ V ∗ be such that rps ∈ RX,a. Choose g, d such that
φ(g) = r, φ(d) = s. Then agydā ∈ [X]. Consequently agzdā ∈ [X], showing that
rqs ∈ RX,a, and therefore p ≈ q. This shows that to each equivalence class of
≡L intersecting D∗ corresponds one equivalence class of RX,a. Since there are
finitely many of the former, there are finitely may of the second, and RX,a is
regular.

Conversely, assume now that L is balanced. Then it is of course well-formed.
Consider a codeterministic balanced grammar G generating L. Let u ∈ D∗

be a Dyck word that is a factor of some word in L, and set u = v1 · · · vn,
with v1, . . . , vn ∈ D. There exists a unique word X1 · · ·Xn ∈ V ∗ such that
S

∗−→ gX1 · · ·Xnd for some words g, d and some axiom S, and Xi
∗−→ vi. We

denote this word X1 · · ·Xn by X(u). Define an equivalence relation on words in
D∗ by u ∼ v if and only if X(u) ≡RX,a X(v) for all X ∈ V and a ∈ A. Here
≡RX,a is the syntactic congruence of the language RX,a. Since the sets RX,a are
regular, there are only finitely many equivalence class for ∼. We show that u ∼ v
implies u ≡L v. This shows that the set of Dyck words that are factors of words
in L are contained in a finite number of classes for ≡L. The other Dyck words
all have empty set of contexts for L, and therefore are in the same class. This
proves the proposition.

Assume gud ∈ L. Then there exists a unique derivation of the form

S
∗−→ g1Xd1, X → aZ1 · · ·ZpX(u)Y1 · · ·Yqā

such that Z1 · · ·Zp
∗−→ g2, Y1 · · ·Yq

∗−→ d2, and g = g1ag2, d = d2ād1. Observe
that (Z1 · · ·Zp, Y1 · · ·Yq) is a context for the word X(u) in the language RX,a.
Since u ∼ v, it is also a context for X(v). Thus X → aZ1 · · ·ZpX(v)Y1 · · ·Yqā

whence S ∗−→ gvd, showing that gvd ∈ L. �

Observe that it is undecidable, whether a well-formed (even context-free)
language L, is D∗-finite. Indeed, by the theorem, this is equivalent for L to be
balanced, and this latter property is undecidable (Theorem 5.11).

9 Bounded Width

In the sequel, we describe a condition, the bounded width property, that implies
the existence of a balanced grammar.

Let L be a well-formed language over A ∪ Ā. We denote by F (L) the set of
factors of words in L. Given N ≥ 0, we denote by D(N) = {ε}∪D∪· · ·∪DN the

20 Jean Berstel and Luc Boasson

set of product of at most N Dyck primes. The language L has bounded width if
there exist N ≥ 0 such that

F (L) ∩D∗ ⊂ D(N)

This means that every Dyck word that is a factor of a word in L is a product of
at most N Dyck primes. The smallest N with this property is the width of L.

Example 9.1. The language L = {abnb̄nā | n > 0} has width 1.

Example 9.2. The language L = {a(bb̄)n(cc̄)nā | n > 0} has unbounded width.

We recall without proof a result from [1] (Theorem 6.1).

Proposition 9.3. Given a well-formed context-free language L, it is decidable
whether L has bounded width.

Bounded width has many implications. As already mentioned, if a well-
formed language L is D∗-finite, then it is D-finite. Bounded width implies the
converse.

Proposition 9.4. Let L be a well-formed language with bounded width. If L is
D-finite, then it is D∗-finite.

Proof. Let q be the number of equivalence classes of L intersecting D. Let N
be the width of L. Let u = u1 · · ·un ∈ D∗, with u1, . . . , un ∈ D. By a general
result on congruences,

[u1] · · · [un] ⊂ [u]

If n > N , then u is the equivalence class of words that are not factors of L.
Otherwise, [u] contains at least one of the q+q2+ · · · qN products of equivalence
classes. Thus the number of equivalence classes of L intersecting D∗ is bounded
by this number. �

The proposition is false if the width is unbounded.

Example 9.5. Consider the language L = {a(bb̄)n(cc̄)nā | n > 0} of the preceding
example. There are just for classes of the syntactic congruence of L intersecting
D. Their intersections with D are L, {bb̄}, {cc̄}, and the set D \ F (L) of Dyck
primes which are not factors of words of L. On the contrary, there are infinitely
many equivalence classes intersecting D∗. For instance, each of the (bb̄)n is in a
separate class, with (a, (cc̄)nā) as a context.

Another property resulting from bounded width is the following.

Proposition 9.6. Le G be a balanced grammar generating a language L with
bounded width. Then G is finite.

Balanced Grammars and Their Languages 21

Proof. Let G = (V,A ∪ Ā,P) be a balanced grammar with productions

X →
⋃
a∈A

aRX,aā

Assume that a language RX,a is infinite. Then, for arbitrarily great n, there
are derivations X ∗−→ az1 · · · znā, and since these words are factors of L, the
language L has unbounded width. Thus all RX,a are finite. �

We shall prove the following proposition.

Proposition 9.7. A well-formed context-free language with bounded width is
D-finite.

In view of Theorem 8.1 and Proposition 9.4, we get

Corollary 9.8. A well-formed context-free language with bounded width is bal-
anced.

In fact, we have

Theorem 9.9. Let L be a well-formed context-free language. Then L has boun-
ded width if and only if L is generated by a finite balanced grammar. Moreover,
the construction of the grammar is effective.

The rest of the paper is concerned with the proof of Proposition 9.7.
We need some notation. The Dyck reduction is the semi-Thue reduction de-

fined by the rules aā→ ε for a ∈ A. A word is reduced or irreducible if it cannot
be further reduced, that means if it has no factor of the form aā. Every word w
reduces to a unique irreducible word denoted ρ(w). We also write w ≡ w′ when
ρ(w) = ρ(w′). If w is a factor of some Dyck prime, then ρ(w) has no factor of
the form ab̄, for a, b ∈ A. Thus ρ(w) ∈ Ā∗A∗.

In the sequel, G denotes a reduced finite context-free grammar over T =
A ∪ Ā, generating a language L. For each variable X , we set

Irr(X) = {ρ(w) | X ∗−→w,w ∈ T ∗}
This is the set of reduced words of all words generated by X . If L is well-formed,
then Irr(S) = {ε} for every axiom S. Moreover, Irr(X) is finite for each variable
X . Indeed, consider any derivation S ∗−→ gXd with g, d ∈ T ∗. Any u ∈ Irr(X) is
of the form u = x̄y, for x, y ∈ A∗. Since ρ(gud) = ρ(ρ(g)uρ(d)) = ε, the word x
is a suffix of ρ(g), and ȳ is a prefix of ρ(d). Thus |u| ≤ |ρ(g)| + |ρ(d)|, showing
that the length of the words in Irr(X) is bounded.

A grammar is qualified if Irr(X) is a singleton for every variable X . It is easy
to qualify a grammar. For this, every variable X is replaced by variables Xu,
one for each u ∈ Irr(X). In each production Y → m, each variable X in the
handle is replaced by all possible Xu. For each new handle m′ obtained in this
way, substitute u for Xu for all variables, and then compute the reduced word
r of the resulting word. The word r is in Irr(Y). Add the production Yr → m′.
When this is done for all possible choices, the resulting grammar is qualified.

We recall the following two lemmas from [1].

22 Jean Berstel and Luc Boasson

Lemma 9.10. If X +−→ gXd for some words in g, d ∈ (A∪ Ā)∗, then there exist
words x, y, p, q ∈ A∗ such that

ρ(g) = x̄px, ρ(d) = ȳq̄y

and moreover p and q are conjugate words.

A pair (g, d) such that X +−→ gXd is a lifting pair if the word p in Lemma 9.10
is nonempty, it is a flat pair if p = ε.

Lemma 9.11. The language L has bounded width iff G has no flat pair.

We are now ready for the proof of Proposition 9.7. Consider a finite context-
free grammar G, with axiom S, generating the well-formed language L with
bounded width. Consider a word Dyck prime u that is a factor of a word in L.
We define, for each word u, a set of tuples called borders of u. We shall see that
if two Dyck primes u, u′ have the same set of borders, then they are equivalent
in the syntactic equivalence of L. The main argument to show that L is D-finite
will be to prove that the set of all borders is finite. This relies on the fact that
L has bounded width.

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
�

�
� \

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
S

Y

c
c

c
c

#
#
#
#

α
X1

λ
X2

β�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
� B

B
B
B
B
B
B
B
B
B
B

T
T
T
T
T
T
T
T
T
T
T
T

g′ uα u�

a
u′� uλ u′r

ā
ur uβ d′

u

v

g d

Fig. 1. The derivation tree.

Let (g, d) be any context for u. Consider a derivation S ∗−→ gud. In the deriva-
tion tree associated to this derivation (Figure 1), we consider the smallest sub-

Balanced Grammars and Their Languages 23

tree that generates a word v that has as factor the Dyck prime u. Let Y be
the root of this tree. Then S

∗−→ g′Y d′, Y ∗−→ v, and u is a factor of v. The
minimality condition on the subtree implies that the derivation factorizes into
Y −→αX1λX2β

∗−→ v where α ∗−→uα, X1
∗−→u�au

′
�, λ

∗−→uλ, X2
∗−→u′rāur,

β
∗−→uβ and

v = uαu�au
′
�uλu

′
rāuruβ

with v = uαu�uuruβ and u = au′�uλu
′
rā. Observe that g = g′uαu� and d =

uruβd
′. Notice that there might be the special caseX1 = a and similarlyX2 = ā.

Also, uλ may be the empty word.

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

\
\

X1 = Y0

γ0
Y1

γ′0

%
%
%

e
e
e

γ1
Y2

γ′1

Yn

%
%
%

e
e
e

γn
a

γ′n

γ = γ0γ1 · · · γn

u� u′�

Fig. 2. The path from X1 to the distinguished letter a.

Consider now the variables Y0 = X1, Y1, . . . , Yn on the path from X1 to the
initial letter a of u (Figure 2). Denote the productions used on this path Yi →
γiYi+1γ

′
i for i = 0, . . . , n− 1, and Yn → γnaγ

′
n. It follows that γ0γ1 · · · γn

∗−→u�.
Similarly, there are words δ0, . . . , δm such that δm · · · δ0 ∗−→ur. A border of u is
the tuple (Y, α, γ, δ, β), with γ = γ0γ1 · · ·γn and δ = δm · · · δ0. If (Y, α, γ, δ, β) is
a border of u, then by construction, there are words g′, d′, uα, u�, ur, uβ with
S

∗−→ g′Y d′, α ∗−→uα, γ
∗−→u�, δ

∗−→ur, β
∗−→uβ such that (g′uαu�, uruβd

′) is
a context for u in L. It follows that if u′ has the same borders that u has, then
u′ has the same contexts as u.

In order to complete the proof, we show that if L has bounded width, then
the lengths of the components γ and δ in any border are uniformly bounded.
This shows that the set of all borders of all Dyck primes is finite.

24 Jean Berstel and Luc Boasson

We carry out the proof for γ. As described above, γ = γ0γ1 · · · γn, where n
is the length of the path from variable X1 to the initial letter a. If this length
is not bounded, then there is a variable, say X that appears arbitrarily often
on this path. Consider all consecutive occurrences of this variable on the path.
Assume there are k + 1 of them. Each of the first k yields an iterative pair
X

+−→ giXdi, and by Lemma 9.10, there exist words xi, yi ∈ A∗, pi, qi ∈ A+

such that ρ(gi) = x̄ipixi, ρ(di) = ȳiq̄iyi. Consider the derivation obtained by
composing these iterating pairs:

X
∗−→ g1g2 · · · gkXdkdk−1 · · · d1, X

∗−→w

The resulting word g1g2 · · · gkwdkdk−1 · · · d1 is a factor of u�au
′
�. Moreover, the

occurrence of the letter a is an occurrence in the factor w, that is w = w′aw′′,
and the letter a cannot be reduced, in the Dyck reduction, with any letter in
w′′dkdk−1 · · · d1 since it reduces with the letter ā in u′rāur. Hence this occur-
rence of a remains in ρ(w). The word g1g2 · · · gkwdkdk−1 · · · d1 simplifies into
x̄1p1x1 · · · x̄kpkxkρ(w)ȳk q̄kyk · · · ȳ1q̄1y1.

Observe that in the suffix ȳk q̄kyk · · · ȳ1q̄1y1, the number of barred letters
exceeds by |q̄k · · · q̄1| the number of unbarred letters. All these letters must reduce
to the empty word with letters in w′′. Since ρ(w) is fixed, this cannot happen.
Thus k is uniformly bounded.

The set of all borders of all Dyck primes is finite. If (Y, α, γ, δ, β) is a bor-
der, there are words g′, d′, uα, u�, ur, uβ with S ∗−→ g′Y d′, α ∗−→uα, γ

∗−→u�,
δ

∗−→ur, β
∗−→uβ and a word z such that u�zur is a Dyck prime. Wee have seen

that the lengths of γ and δ are bounded. The existence of z is easy to check for
a given pair (u�, ur). Thus the construction is effective. �

Acknowledgment. We thank Isabelle Fagnot for helpful discussions.

References

1. J. Berstel and L. Boasson. XML-grammars. In MFCS 2000 Mathematical Founda-
tions of Computer Science (M. Nielsen and B. Rovan, Eds.), Springer-Verlag, Lect.
Notes Comput. Sci. 1893, pages 182–191, 2000.

2. J.H. Conway. Regular Algebra and Finite Machines. Chapman and Hall, London,
1971.

3. N. Chomsky and M.P. Schützenberger. The Algebraic Theory of Context-Free
Languages. In Computer Programming and Formal Systems (P. Braffort and D.
Hirschberg, Eds.), North-Holland, Amsterdam, pages 118–161, 1963.

4. S. Ginsburg and M.A. Harrison. Bracketed Context-Free Languages. J. Comput.
Syst. Sci., 1:1–23, 1967.

5. Michael A. Harrison. Introduction to Formal Language Theory. Addison-Wesley,
Reading, Mass., 1978.

6. D.E. Knuth. A Characterization of Parenthesis Languages. Inform. Control, 11:269–
289, 1967.

7. A.J. Korenjak and J.E. Hopcroft. Simple Deterministic Grammars. In 7th Switching
and Automata Theory, pages 36–46, 1966.

Balanced Grammars and Their Languages 25

8. R. McNaughton. Parenthesis Grammars. J. Assoc. Mach. Comput., 14:490–500,
1967.

9. W3C Recommendation REC-xml-19980210. Extensible Markup Language (XML)
1.0, 10 February 1998. http://www.w3.org/TR/REC-XML.

10. W3C Working Draft. XML Schema Part 0,1 and 2, 22 September 2000.
http://www.w3.org/TR/xmlschema-0,1,2.

	Balanced Grammars and Their Languages
	Introduction
	Regular Context-Free Grammars
	Balanced Grammars
	Codeterministic Grammars
	Elementary Properties and Examples
	More Examples
	Decision Problems

	Minimal Balanced Grammars
	Complete Balanced Grammars
	A Characterization
	Bounded Width
	Acknowledgment
	References

