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1 Introduction

During the last two decades research on combinatorial problems of words, i.e.,
on Combinatorics on Words, has grown enormously. Although there has been
important contributions on words starting from the very beginning of last cen-
tury, they were scattered and typically needed as tools to achieve some other
goals in mathematics. A notable exception is combinatorial group theory, which
studies combinatorial problems on words as representing group elements, see
[LS77] and [MKS66]. Now, and particularly after the appearance of Lothaire’s
book – Combinatorics on Words – in 1983 the topic has become a challenging
research topic of its own. In the latest classification of Mathematical Reviews
combinatorics on words constitutes its own section under the chapter discrete
mathematics related to computer science. Although the applications of words
are, by no means, only in computer science the classification catches the basic
of the nature of combinatorics on words.

Recent developments of the field culminated in Lothaire’s second book –
Algebraic Combinatorics on Words – which appeared in 2002. Its more than 500
pages witness the vital stage of the topic. The new book repeats basically nothing
from the first one, and actually most of the results were discovered during the
last twenty years. A biannual conference – referred to as WORDS – devoted
entirely to combinatorics on words has also been created. The fourth event will
be in Turku in 2003.

A word is a sequence of symbols, finite of infinite, taken from a finite alphabet.
A natural environment of a finite word is a free monoid. Consequently, words
can be seen as a discrete combinatorial objects or discrete algebraic objects in a
noncommutative structure. These two facts – discreteness and noncommutativity
– are the two fundamental features of words. At the same time they explain why
many problems are so difficult.

Words are central objects of automata theory, and in fact in any standard
model of computing. Even when computing on numbers computers operate on
words, i.e., representations of numbers as words. Consequently, on one hand,
it is natural to study algorithmic properties of words. On the other hand, the
undecidability of problems is most easily stated in terms of words – the Post Cor-
respondence Problem being a splendid example. Both these elements of words –
algorithmic aspects and undecidability – are visible, often implicitly, throughout
our presentation.

The goal of the tutorial is to discuss – without aiming to be exhaustive –
several typical problems on words, as well as to try to point out several appli-
cations. With a few exceptions the proofs are not presented here, however, in
some cases we use examples to illustrate the basic ideas. Open problems form
an important part of our presentation.
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The contents of this tutorial is as follows. At the end of this introductory sec-
tion we discuss briefly the history of combinatorics on words, and fix some basic
terminology. Then in Section 2 we consider connections to other fields of math-
ematics and computer science. Section 3 is devoted to the most fundamental
notion of words, namely to periodicity. Dimension properties of words consti-
tute Section 4, while Section 5 concentrates one of the most studied and most
characteristic feature of words, namely unavoidable regularities. Words, indeed,
are very suitable objects to formulate such fundamental properties. In Section
6 complexity issues of infinite words are studied from different points of view.
An interesting phenomenon is that what is considered to be complicated in a
classical sense, e.g., algebraically, need not be so from the point of view of words.
Finally, in Section 7 we discuss about some extensions of the theory to finite sets
of words, and in Section 8 collect a list of important open problems, many of
those being apparently very difficult. As we said everywhere above algorithmic
and decidability issues are present.

We conclude by some bibliographic remarks. Combinatorics on words has
now become a rich area, with many connections to algorithms, to number the-
ory, to symbolic dynamics, and to applications in biology and text processing.
Several books have appeared quite recently, or will appear in the next months,
that emphasize these connections. What have to be mentioned are the book
of Allouche and Shallit [AS03], where the emphasis is on relation to automata
theory, and the book by Pytheas-Fogg [PF02] which is a nom de plume for the
Marseille group. Quite recently the book by Crochemore and Rytter [CR02] ap-
peared as a follow-up book to [CR94]. A detailed introduction into algorithms
on words is given in the book [CHL01]. Algorithms on words are also described,
from a more biological point of view, in Gusfield’s book [Gus97]. Finally, we
should point to algebraic applications of combinatorics on words, as they appear
in the book of de Luca and Varricchio [dLV99].

1.1 History

The history of combinatorics on words goes back to the beginning of the last
century, when A. Thue started to work on repetition-free words. He proved,
among other things, the existence of an infinite square-free word over a ternary
alphabet. Interestingly, it seems that Thue had no outside motivation for his
research on words. He published his results in two long papers [Th06] and [Th12],
but unfortunately in a less known Norwegian journal, so that his results became
known only much later, cf. [Be95]. Actually many of those were reproved several
times.

The notion of word is, of course, so natural that it can be found even in
several older mathematical works. Even Gauss considered a problem which was
nothing but a problem on combinatorics on words, cf. [Ga00] and [KMPS92],
and in 1850s Prouhet [Pr51] introduced the most famous infinite word redefined
by Thue. However, Thue was clearly the first to study systematically problems
on words, and moreover as problems of their own.
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After Thue during the first half of the previous century there were only a few
isolated works on words, such as those of [Ar37], [Mo21], [Mo38] and [MH38]. In
these works, as it has been very typical for the whole field, properties of words
were not that much the research topic of itself rather than tools for solving
problems in other areas.

It took till the second half of the last century when the theory of words arose.
This happened more or less simultaneously in France and Russia. In France it
grew up from research of M.P. Schützenberger on theory of codes, see [Sch56].
The Russian school, in turn, developed from the seminal work of P.S. Novikov
and S. Adian on Burnside Problem for groups, see [Ad79]. Especially, in Russia
results on words, not to speak about the theory, were not so explicit, although
their studies culminated rather soon to remarkable results, such as Makanin’s
algorithm for satisfiability of word equations, see [Ma77]. In France, the theory
of words became an independent topic of its own rather soon, very much due
to the stimulating paper [LS67] from 1967. Other stimulating early works were
(hand written) book [Len72] and [Hm71].

Once the foundations of the theory were laid down it developed rapidly.
One influencial paper should be mentioned here, from year 1979. In [BEM79]
repetition-free words were studied very extensively, and an important notion of
an avoidable pattern, as well as many open problems, were formulated. The D0L
systems, and particularly the D0L problem [CF77], was an important source of
many questions on combinatorics on words, including the Ehrenfeucht Compact-
ness Property, see [Ka93].

In fifteen years or so, in 1983 the active research on words culminated to the
first book of the topic, namely Lothaire’s book Combinatorics on Words. The
starting point of Lothaire’s book was a mimeographed text of lectures given by
M.P. Schützenberger at the University of Paris in 1966 and written down by
J.F. Perrot. It had an enormous influence on the further development of the
field. Results of this impact, including several jewels of theory, can be seen from
Lothaire’s second book – Algebraic Combinatorics on Words – which appeared
last year.

1.2 Notions and notations

We conclude this Introduction by fixing the terminology and a few notions
needed in this presentation. For more detailed definitions we refer to [Lot02]
or [CK97].

We denote by A a finite set of symbols referred to as an alphabet. Sequences,
finite or infinite, of letters from A are called words. The empty sequence is
called the empty word and is denoted by 1 or ε. The set of all finite words, in
symbols A∗, is the free monoid generated by A under the operation of product
or concatenation of words: u · v = uv. The free semigroup generated by A, in
symbols A+, is A∗ \ {1}. The set of one-way infinite words over A is denoted by
Aw. Formally, such words are mappings from N into A.

For two words u and v we say that u is a prefix (resp. a suffix or a factor)
of u if there exist a word x (or words x and y) such that v = ux (resp., v = xu
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or v = xuy). In the case of prefix we write u = vx−1. Note that the mapping
(v, x) 7→ vx−1 can be viewed as a partial mapping from A∗×A∗ into A∗. These
notions extend straightforwardly to subsets, i.e., to languages, of A∗. A very
crucial notion in combinatorics on words is that of a morphism from the free
monoid A∗ into itself (or into another free monoid B∗), that is to say a mapping
h : A∗ → A∗ satisfying h(uv) = h(u)h(v) for all words u and v. Examples of
important morphisms are

µ :
a 7→ ab
b 7→ ba

and ϕ :
a 7→ ab
b 7→ a

.

The former, discovered by Thue, is so-called Thue-Morse, sometimes referred
to Prouhet-Thue-Morse, morphism. It plays an important role in the study of
repetition-free words. The other morphism is called Fibonacci morphism. These
morphisms has a property that they map a to a word starting with a as a prefix.
This implies that the limits

t = lim
i→∞

µi(a) and f = lim
i→∞

ϕi(a)

exist. We say that f and t are obtained by iterating morphisms µ and ϕ at the
word a. Clearly, f and t are the unique fixed-points of these morphisms. They
are called Thue-Morse and Fibonacci words, respectively. We have, for example,

f = abaababaabaab . . .

It is easy to see that alternatively

f = lim
i→∞

fi

where
f0 = a, f1 = ab and fn+1 = fnfn−1 for n ≥ 1.

These formulas explain the name Fibonacci morphism.
In order to state some properties of these words, let us say that a word w

is k-free if it does not contain as a factor any word of the form uk. This notion
extends, cf. [CK97], in a natural way to nonnegative rational numbers, and also
to real numbers ζ, when the requirement is that w does not contain a factor of
the form uk with k ∈ Q and k > ζ. If w = xuk′

y, with k′ ≥ k and u 6= 1, we
say that w contains a repetition of order k. By a k+-free word we mean a word
which is k′-free for any k′ > k (but not necessarily k-free).

What Thue proved was that the Thue-Morse word is 2+-free, i.e. does not
contain repetitions of higher order than 2. Indeed, it – like any binary word of
length at least four – contains a repetition of order 2. For the Fibonacci word
the repetitions which are avoided in it are exactly those being of order > ϕ2 + 1

when ϕ is the number of the golden ratio, i.e. ϕ =
√

5+1
2 . In other words, the

Fibonacci word is (ϕ2 +1)+-free, cf. [MP92]. This is just one of the many special
properties of the Fibonacci word. In fact, it is almost a universal counterexam-
ple for conjectures or an example showing an optimality, an exception being a
problem in [Cas97a].
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2 Connections

In this section we point out some connections of combinatorics on words and
other areas of mathematics and computing. Such connections are quite broad
and has been fruitful in both directions. In fact, many important properties
of words has been discovered when looking for tools to solve other completely
different problems. More concretely, we discuss here three different connections,
one to matrices, one to algebra and one to algorithms. These reflects, we hope,
different aspects of such connections. Other connections to combinatorial group
theory, to algebraic combinatorics, and to general combinatorics are sketched
or described in [MKS66] and [LS77]. More specifically, let us just mention Lie
Algebras, see [Re93], words as codings of combinatorial structures, and words as
codings of permutations.

For the beginning, however, let us consider another typical and interesting
relation between words and some classical mathematical notions. Hilbert’s space
filling curve has played an important role describing an intuitive anomaly in
topology. From the point of view of topology it can be seen as quite a complicated
object. However, from the point of view of words it is nothing but an infinite word
over a four element alphabet which, moreover, is easy to define: it is a morphic
image under a length preserving morphism, i.e., a coding, of the fixed-point of
an iterated morphism.

2.1 To matrices

As the first connection we consider that of words and matrices, more precisely,
that of multiplicative semigroups of matrices. Let us denote by Mn×n(S) the
family of n × n matrices with entries in the semigroups S. It has been known
since 1920s that free monoids can be embedded into the multiplicative semigroup
of 2× 2 matrices over N, i.e. into M2×2(N). For A = {a, b} such an embedding
is given, for instance, by the mapping

(1) a 7→
(

1 1
0 1

)

and b 7→
(

1 0
1 1

)

.

In fact, this mapping is an isomorphism between {a, b}∗ and SL2(N), the set of
matrices in M2×2(N) having a determinant equal to 1. Arbitrary, even countable,
free semigroups can be embedded in M2×2(N) by employing an embedding from
{ai|i ∈ N}∗ into A∗ given by

ai 7→ abi for i ≥ 0.

The above ideas become even more usable when we associate above with a
morphism h : A∗ → A∗. In order to simplify the notation we set A = {1, 2} and
define the mapping

1 7→
(

k|h(1)| 0
ν(h(1)) 1

)

and 2 7→
(

k|h(2)| 0
ν(h(2)) 1

)

,
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where the vertical bars are used to denote the length of a word and ν : A+ → N
maps a word into the number it represents in base k > 3. It is straightforward
to see that this mapping too is an embedding, that is to say, for any word
u = a1 · · · an, we have

u = a1 · · · an 7→
(

k|h(u)| 0
ν(h(u)) 1

)

.

Consequently, questions asking something about images of a morphism of A∗

can be transformed into questions about matrices. More concretely; this allows
to transfer the undecidability of the Post Correspondence Problem into unde-
cidability results on matrices. Paterson [Pat70] was among the first to use this
idea when showing (i) in the following theorem, for the other parts we refer to
[HK97], where also further references can be found.

Theorem 2.1. The following questions are undecidable:

(i) Does a given finitely generated multiplicative subsemigroup of M3×3(Z)
contain the zero matrix?

(ii) Does a given finitely generated multiplicative subsemigroup of M3×3(Z)
contain a matrix having the zero in the right upper corner?

(iii) Is a given finitely generated multiplicative subsemigroup of M3×3(N)
free?

Part (iii) is undecidable even for upper triangular matrices.

All of the above problems are open in dimension n = 2. Another interesting
open problem is the question of part (i) for the identity matrix. The embedding
methods used in Problems (i)-(iii) does not seem to work here, see [CHK99]. In
the dimension n = 2 this problem is decidable, see [CK02].

Embeddings like (1) are important not only to conclude the above undecid-
ability results, but also to obtain results for words from those of matrices. The
Ehrenfeucht Compactness Property, discussed in Section 4, is a splendid example
of that.

2.2 To algebra

The second connection we consider is that to algebra. We want to give a concrete
example rather than recalling that words are, after all, elements of free monoids
or that representations of groups are relations on words. This example, due to
[MH44], is an application of repetition-free words to solve Burnside Problems for
semigroups. The problem asks whether the assumptions (i): the semigroup S is
finitely generated; and (ii): each element of S is of a finite order, i.e. generates a
finite cyclic subsemigroup, imply that the semigroup S itself is finite.

Theorem 2.2. The Burnside Problem for semigroups has a negative answer.
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The answer is achieved as follows, cf. [Lot83]. Let A be a three letter al-
phabet. Then by a result of Thue, there exists a square-free word over A, and
consequently the set of finite square-free words is infinite. Now, adjoin to the
free semigroup A+ the zero element, and define a congruence ≈ on A+ ∪ {0}:
each square-free word forms an equivalence class of its own, and the rest belongs
to the class containing 0. Then the quotient semigroup

S = A+ ∪ {0}/ ≈

is well defined and has the required properties. For finitely generated groups the
Burnside Problem is much more complicated, cf. [Ad79].

2.3 To algorithmics

Finally, we discuss about connections to algorithmics. We consider very natural
algorithmic problem, and point out how a certain property of words can be used
to obtain an efficient solution to the problem. We ask

Question. How can we decide efficiently whether a given word is primitive?

The problem has a brute force quadratic solution: divide the input into two
parts and check whether the right part is a power of the left part. But how to
get a faster solution? The answer comes from the property of primitive words: a
word w is nonprimitive if and only if it is a factor of •ww•, i.e., w occurs properly
as a factor in ww. For the definition of the operator • see the next section. So
the problem is reduced to a simple instance of the string matching problem, and
hence doable in linear time, see e.g., [CR94].

Despite of the simplicity of the above example it is very illustrative: it shows
how the correctness of an algorithm is finally based on a combinatorial property
of words. This seems to be a common rule in efficient string algorithms. Or even
more strongly, whenever a fundamental property of words is revealed, it has
applications in improving algorithms on words, cf. e.g., [MRS95].

String matching and pattern matching are only two – although important
– aspects of algorithmics on words, see [CR94], [CHL01] for expositions, and
[Gus97]. Other algorithmic problems we do not consider here are: systematic
generation of words (e.g., Dyck words), ranking, unranking, and random gener-
ation of words, see e.g., [Ru78], [BBG90] and [FZC94]. All of these are used in
order to code combinatorial structures.

Another important topic on algorithmic combinatorics on words, which is nei-
ther considered in our tutorial, is the satisfiability problem for word equations,
i.e. the decision question whether a given word equation with constants possesses
a solution. The classical paper of Makanin [Ma77] answers this question affir-
matively. However, his algorithm is one of the most complicated algorithms ever
presented, see Chapter 12 in [Lot02] for a detailed exposition. Rather recently
W. Plandowski showed, by his completely new algorithm, that the problem is
actually in PSPACE, cf. [Pla99]
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3 Periodicity

In this section we consider one of the most fundamental notions of words, namely
periodicity. We discuss three different topics, all of those being very fundamental.

3.1 Fine and Wilf’s theorem

One of the oldest results in combinatorics on words concerns commutation of
words. It is the following well-known statement. Typically this result, in one
form or another, has been proved when needed, see e.g., [LS62].

Theorem 3.1. Let x and y be nonempty words. The following properties are
equivalent:

(i) xy = yx,

(ii) the infinite words xω and yω are equal,
(iii) there exists a word z such that x, y ∈ z+,

(iv) {x, y} is not a code, i.e. satisfies a nontrivial relation.

There is another rather old result, due to Fine and Wilf, strongly related to
this theorem. It uses the notion of a period. Let w = a1 · · · an be a word, with
a1, . . . , an letters. An integer p is a period of w, if 1 ≤ p ≤ n and ai = ap+i for
i = 1, . . . , n − p. Thus a1 · · · an−p = ap+1 · · · an, and the word w′ = a1 · · · an−p

is both a prefix and a suffix of w. Provided p < n, the word w′ is called a border
of w. Conversely, if z is a border of w, then the integer n − |z| is a period of w.

Clearly, an integer p, for 1 ≤ p ≤ n, is a period of w if and only if w is a
prefix of the infinite word xω, where x = a1 · · · ap.

A word of length n always has at least the period n. If w has two periods
p and q, then w also has the period p + q provided p + q ≤ n. The set Π(w)
of all periods of a word w has been described in [GO81] (see also Chapter 8
of [Lot02]). The shortest integer in Π(w) is frequently called the period of w.

Theorem 3.2. (Fine and Wilf’s Theorem) Let w be a word of length n. If w
has two periods p and q and n ≥ p + q− gcd(p, q), then also gcd(p, q) is a period
of w.

For the proof of Fine and Wilf’s theorem, we consider a variation of Theorem 3.1.
Given a word w = a1 · · · an, where a1, . . . , an are letters, we set w• = a1 · · · an−1.
In particular, a• = ε for a letter a, and ε• is undefined.

Lemma 3.3. Let x and y be nonempty words. If xy• = yx•, then xy = yx.

Proof. By induction on |xy|. If |xy| = 2, and more generally, if |x| = |y|, one
gets x = y. Otherwise, one may assume |x| > |y|. Then y is a proper prefix of x,
and x = yz for some nonempty word z. It follows that zy• = yz•. By induction,
zy = yz, and consequently xy = yx. ⊓⊔
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We now prove Fine and Wilf’s theorem. First, we show that p and q may
be assumed to be relatively prime. Indeed, assume d = gcd(p, q) > 1, set w =
a0 · · · an−1 and define d words w[i] = aiai+d · · · ai+nid, where ni = ⌊(n−i−1)/d⌋,
for i = 0, . . . , d − 1. These words have periods p/d and q/d and length at least
n/d. By the conclusion, each w[i] is a power of some letter. Thus w is the power
of some word of length d, that is w has period d.

Suppose now that p and q are relatively prime. Let x and y be the prefixes
of w of length p and q, respectively. Then w is a common prefix of xω and yω.
Moreover, setting w = xw′, the word w′ is a prefix of w, so w′ is a prefix of
yω and thus w is a prefix of xyω. Symmetrically, w is a prefix of yxω. Since the
length of w is at least p + q − 1, one gets xy• = yx•. By Lemma 3.3, one gets
xy = yx. Thus x and y are in some z+. But since gcd(p, q) = 1, this implies that
z is a letter. This completes the proof. ⊓⊔

Fine and Wilf’s original paper [FW65] contains three theorems. The first
one is basically Theorem 3.2. It states indeed that if two infinite words u and
v have periods p and q respectively, and they share a common prefix of length
p + q − gcd(p, q), then they are equal. The two other theorems are in the same
vein, but concern real continuous periodic functions.

The proof of Theorem 3.2 in Fine and Wilf’s original paper [FW65] is quite
different and deserves a short description. Any letter of the alphabet is considered
as a number. Any infinite word a0a1a2 · · · an · · · corresponds to a formal series
a0 + a1t + a2t

2 + · · · + antn + · · ·. Thus, the infinite periodic word xω , with
x = a1 · · · ap, corresponds to the formal series F (t) = P (t)/(1− tp), with P (t) =
a1 + · · · + apt

p−1, and similarly yω, with y = b1 · · · bq, corresponds to G(t) =
Q(t)/(1 − tq), with Q(t) = b1 + · · · + bqt

q−1. Now, a computation with rational
fractions shows that

H(t) = F (t) − G(t) =
1 − tgcd(p,q)

(1 − tp)(1 − tq)
R(t) ,

where R(t) is a polynomial of degree at most p+q−gcd(p, q)−1. By assumption,
R(t) = 0, and consequently F = G and xω = yω.

Several other proofs of the theorem are known. Some are by induction on
the length of the period (e.g., Chapter 8 of [Lot02] and [CHL01]). There are
also proofs that argue directly on congruential properties of the indices [CK97].
Extension to more than two periods are given in [CMR99], [Jus00] and [TZ03].
Further related results are shown in [CMSWY01], [BB99] and [MRS03].

The bound in Fine and Wilf’s theorem is sharp. A concrete example is the
word abaababaaba. It has periods 5 and 8 and length 11 = 8+5−2, and is not a
power of a single letter. In fact, all words of length p+ q− 2, with periods p and
q, for coprimes p, q, are known. They are all binary, and, more precisely, prefixes
of infinite standard Sturmian words; see Chapter 2 of [Lot02] for a description
and references.
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3.2 Critical factorization theorem

The Critical Factorization Theorem stated below gives a relation between the
global period of a word, and a notion of local period called local repetition,
associated to a factorization of the word. As it will appear, global periods are
always longer than local periods, but the remarkable fact is that for any word,
there is always a factorization whose local period is equal to the global period.
Such a factorization is called critical.

In order to formalize the above we say that two words x and y are prefix
comparable (resp. suffix comparable) if one of the words is a prefix (resp. a
suffix) of the other. Further, given a word w and a factorization w = uv into
nonempty words, a repetition at (u, v) is a nonempty word z such that z and u
are suffix comparable, and z and v are prefix comparable. The (local) period of
the factorization (u, v) is the length of the shortest repetition at (u, v). It is easy
to see that any local period of a word is shorter that the period. A factorization
(u, v) is critical if its period is equal to the period of w.

Consider for example the word w = abaab which has the period 3. The
factorization (a, baab) has the repetition ba, so its period is 2. The factorization
(aba, ab) has period 1. The factorizations (ab, aab) and (abaa, b) both have period
3, and these are the critical factorizations of the word w. The following theorem
shows that critical factorizations are unavoidable.

Theorem 3.4. (Critical Factorization Theorem.) Every word of length at least 2
has a critical factorization.

The first statements and proofs of the theorem are given in [CV78] and
[Duv79]. A proof of the critical factorization theorem in its present form, and a
discussion, is given in Chapter 8 of [Lot02]. A short proof is in [CP91]. Recent
results related to this topic appear in [HN02].

We sketch now an interesting application of the Critical Factorization Theo-
rem. Consider a finite set X ⊂ A+ of nonempty words. Given a word w ∈ A+,
a sequence of nonempty words

(s, x1, . . . , xm, p)

is an X-interpretation of w if w = px1 · · ·xmp, and p is a prefix of a word in
X , s is a suffix of a word in X , and x1, . . . , xm ∈ X . Two X-interpretations
(s, x1, . . . , xm, p) and (s′, x′

1, . . . , x
′
m′ , p′) of a word w are disjoint if sx1 · · ·xi 6=

s′x′
1 · · ·x′

i′ for i = 1, . . . , m, i′ = 1, . . . , m′.
As an example, consider the set X = {a3, b, aba, a2ba2}. The word a4ba4ba4b

has the X-interpretation (a, a3, b, a3, aba, a3, b). The sequence (a3, aba, a3, b, a3,
ab) is another X-interpretation of the word a4ba4ba4b, and this interpretation is
disjoint from the previous one.

Theorem 3.5. Let X be a finite set of nonempty words, and let p be the max-
imum of the periods of the words in X. Every word w with the period strictly
greater than p has at most Card(X) disjoint X-interpretations.
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As another example consider the set X = {ap}, consisting of a single word
which has period 1. Clearly, every word w that admits an X-interpretation is a
power of a and so also has period 1. The number of its disjoint X-interpretations
is bounded by p, and not by Card(X).

Proof. (Sketch) Assume that a word w has m > n disjoint X-interpretations,
where n = Card(X). Consider any factorization w = uv. There exist m distinct
pairs (y, z) of words such that yz ∈ X , u and y are suffix comparable, and v and
z are prefix comparable. Since m > n, there are at least two pairs (y1, z1) and
(y2, z2) such that y1z1 = y2z2. Set x = y1z1 = y2z2. Assume |y1| > |y2|. Next
y1 and y2 are prefix comparable, or z1 and z2 are suffix comparable. Except
for some special cases, which we do not consider in this sketch, the number
d = |y1|− |y2| = |z2|− |z1| is a period of x. This implies that there is a repetition
of length d at (u, v). Thus the local period at (u, v) is at most p.

Thus, all local periods are smaller than p. However, by the Critical Factor-
ization Theorem, at least one local period is strictly greater than p. This yields
a contradiction. ⊓⊔

A detailed proof is given in [Lot83]. An application to the order of the sub-
groups of the syntactic monoid of the set X∗ was given in [Sch79]. There is a
renewal of research on this topic now, see [PR02].

In [Ma02] examples were given showing that the bound for the number
of disjoint X-interpretations is optimal in Theorem 3.5. For example, the set
{aibai | i = 1, . . . , n − 1} ∪ {banb} is such a set.

3.3 Characterizations for ultimately periodic words

We conclude this section with a third fundamental periodicity result of words de-
rived in [MRS95], see also [MRS98]. It characterizes one-way infinite ultimately
periodic words in terms of local periodicity. Intuitively, it tells how much lo-
cal regularity, i.e., periodicity, is needed to guarantee the global regularity, i.e.,
ultimate periodicity. Such results are the most basic goals in mathematics.

In order to continue let us fix a few notions. Let ρ ≥ 1 be a real and p ≥ 1
a natural number. We say that a finite word is ρ-legal if it contains as a suffix
a repetition of order ρ (or equivalently – by definition – of order larger than or
equal to ρ), and that it is (ρ, p)-legal if it contains as a suffix a repetition of
order ρ of a word of length at most p. Similarly, an infinite word w is ρ-legal or
(ρ, p)-legal if it so for all of its long enough prefixes. Note that (ρ, ∞)-legality
can be interpreted as simply ρ-legality.

We describe the usefulness of these notions in the following two examples,
which are illustrations of subsequent theorems.

Example 1. We claim that the Fibonacci word

f = lim
i→∞

fi = abaababaabaab · · ·

where f0 = a, f1 = ab and fn+1 = fnfn−1 for n ≥ 1, is (2, 5)-legal, as first
observed by J. Shallit, personal communication.
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It is straightforward to see that f can be decomposed uniquely into blocks
of ab and aba, such that ab does not occur twice and aba three times in a row.
Consequently, suffixes of prefixes of f ending at one of the blocks are of the
forms:

Now consider the suffixes ending at the rightmost ab in the left graph, i.e.
ending either at a or b there. In the former case there is a suffix aa, a square.
In the latter case there is necessarily either square aabaab or square abaababaab,
i.e., also a square of a word of length at most five. The similar argumentation
applies for the right graph.

Note that the word f is not ultimately periodic, see Section 6.3. ⊓⊔

Example 2. In this example we point out a striking difference of (2, 5)-legal
and (2 + ε, 5)-legal infinite words for any ε > 0. Let us search for (2, 5)-
legal infinite words containing a factor (abaab)2. Now, we try to extend a suffix
ending to the above mentioned factor exhaustively symbol by symbol preserving
the (2, 5)-legality, and not reporting the extensions leading only to ultimately
periodic words. We obtain the graph:

(aabab)
2

a (abaab)
2

(ababa)
2

a b(aba)
2 2

(ab) (aab)
2 2

(aba)
3

ab ab a

a ba (ba)
2 2 2

(aba) (ab)
2 2

(aab)
3

ab ab

ab a

ab

a ab

a

Here the labels tell the extensions, and the nodes correspond the suffixes
obtained at particular moments. In the suffixes a short square is always shown
(proving the legality) together with a sufficient amount of other letters needed
in further steps. In some nodes some continues are not shown – in these cases
only ultimately periodic words would be (2, 5)-legal; for instance from (abaab)2

by b we would obtain a (2, 5)-legal word, which, however, could be continued
only by bs preserving the legality.

It follows from the construction that all words spelled from this graph are
(2, 5)-legal. In particular, there exist nondenumerably many such infinite words,
since the graph contains intersecting loops, labeled by noncommuting words.
One can also show that actually this graph gives all (2, 5)-legal nonultimately
periodic words. We did the exhaustive search for a particular square, the other
squares do not give any other nonultimately periodic (2, 5)-legal infinite words.
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Now, an interesting observation is that if instead of the (2, 5)-legality the (2+
ε, 5)-legality is considered, then the node (aba)2(ab)2 is no longer legal. Indeed,
independently of x the word xabaabaabab does not contain at the end a repetition
of order strictly larger than 2 of a word of length at most 5. Consequently,
intersecting loops are lost, meaning that any (2 + ε, 5)-legal infinite word is
necessarily ultimately periodic.

Constructing graphs similar to the above one for (2, 4)-legal words one can
conclude that all (2, 4)-legal words are ultimately periodic. ⊓⊔

Above examples are special cases of much deeper results. If in Example 1
cubes instead of squares were asked our approach would not work. Indeed, all 3-
legal infinite words are ultimately periodic, or even much strongly ρ-legal infinite
words are necessarily ultimately periodic if and only if ρ ≥ ϕ2 = ϕ + 1 = 2.6 . . .

where ϕ is the number of golden ratio 1+
√

5
2 . This is a remarkable theorem,

conjectured by J. Shallit in 1994, and proved in [MRS95] by F. Mignosi, A.
Restivo and S. Salemi in 1995:

Theorem 3.6. (i) Each ϕ2-legal word is periodic.
(ii) The Fibonacci word is (ϕ2 − ε)-legal for any ε > 0.

Example 2 considers a similar phenomena is a simple setting yielding the
following result, cf. [KLP02]. As outlined in the example the optimality is with
respect to both of the parameters.

Theorem 3.7. (i) Each (2, 4)-legal infinite word is ultimately periodic.
(ii) For any ε > 0, each (2 + ε, 5)-legal infinite word is ultimately periodic.
(iii) There exists nondenumerably many (2, 5)-legal infinite words, including
the Fibonacci word.

In [Le02] the similar optimal value of ρ is found for any finite length n of the
period. For example, and interestingly, the optimal ρ for n = 5, 6, . . . , 11 is
the same, namely 2, while for n = 12 it is 2 1

12 . Further, after some anomaly in
small values of n, the behaviour of such optimal ρs is regular, but amazing: there
exists just one jump in between two values of consecutive Fibonacci numbers,
except that every sixth jump is missing. Also surprisingly, it is not exactly the
Fibonacci word, but very related one, which determines these jumps.

We conclude this section with a few remarks. First the above results are
beautiful examples, not only in combinatorics on words, but in a much broader
perspective, where a local regularity implies the global one, and, in fact, in an
optimal way. In other words, they can be seen as results strictly separating a
predictable, i.e., ultimately periodic, behaviour from a chaotic one, i.e., allowing
nondenumerably choices. This is more discussed in [KLP02].

As the second final comment we state another similar result, the proof of
which is related to the Critical Factorization Theorem. Consider an infinite word
w = a1a2 · · · with ai ∈ A. We say that w contains a square centered at position i
if there exists a t ∈ [1, i] such that ai−t+1 · · · ai is a prefix of ai+1ai+2 · · ·. Then
we have:
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Theorem 3.8. An infinite word w = a1a2 · · · is ultimately periodic if and only
if, for any large enough i, there exists a square centered at position i.

For a proof of this and related results we refer to Chapter 8 in [Lot02], where
also the optimality of the result is shown: no smaller amount than a square, i.e.,
of order 2, of centered repetition guarantees the ultimate periodicity.

4 Dimension properties

In this section we consider properties of words which can be called dimension
properties. We approach this by considering a finite set X as a solution of a
constant-free equation. Natural questions to be asked are, what can be said
about X if it satisfies a nontrivial equation, or several “different” equations?
And how many different equations it can satisfy?

Here an equation over the variables Ξ = {z1, . . . , zn} is just a pair (u, v),
usually written as u = v, of words of Ξ, and X = (x1, . . . , xn) ⊆ (A∗)n is a
solution if xis substituted for zis makes the equation to be an equality in A∗.
More formally, a solution of the equation u = v is a morphism ϕ : Ξ → A∗ such
that ϕ(u) = ϕ(v). Actually, for simplicity, we sometimes overlook the fact that
X must be ordered, and consider it only as a set.

We say that two systems of equations are equivalent if they have exactly the
same solutions, and a system S is independent if it is not equivalent to any of
its proper subsystems. We use the independency to formalize the notion that
“equations are different”. Note also that we have defined only constant free
equations.

We start with the following simple example
Example 3. As an extension of the well known fact that two words satisfy a

nontrivial relation if and only if they are powers of a common word, cf. Section
3, we consider the set X = {x, y, z} ⊆ A+ of three nonempty words satisfying
the equations

(1) xα = yβ and xγ = zδ

with α, β, γ and δ in X∗. If two of the words are powers of a common word so
is the third, by above. Consequently, assume that x = yt for a nonempty word
t. Now, substituting x = yt to the equations in (1) we obtain two relations on
words t, y, z ∈ A+. More specifically, the first equation comes into the form

uα′ = tβ′ with u ∈ {y, z} and α′, β′ ∈ {t, y, z}∗,
and the second equation comes into the form

tγ′ = zδ′ with γ′, δ′ ∈ {t, y, z}∗.
Since |tyz| < |xyz| induction applies showing that t, x and y are powers of
a common word, and so are x, y and z. For the case y = xt with t 6= 1, the
reasoning is the same. Therefore, we have proved that nonempty words satisfying
the pair (1) is necessarily cyclic, i.e., a subset of w+ for some word w. ⊓⊔
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4.1 Defect theorems

We continue by recalling so-called defect theorem: if a set of n words satisfies a
nontrivial relation, then these words can be expressed as products of at most
n−1 words. In other words, we can say that a nontrivial equation implies a defect
effect of its solutions. Consequently, the defect theorem states a dimension type
property for words.

Actually, there does not exist just one, but rather several, defect theorems
witnessing the above defect effect. Namely, the set of n − 1 words might be
defined in different ways. In order to formalize those we recall that a submonoid
M of A∗ is called right unitary if its minimal generating set is a prefix code, cf.
[BP85]. Then we define the free hull and the prefix hull of a finite set X ⊆ A+

as
F (X) =

⋂

M is a free monoid
X ⊆ M

M,

and
P (X) =

⋂

M is right unitary
X ⊆ M

M,

respectively. By the basic properties of these semigroups, F (X) is free and P (X)
is right unitary. Hence, by definition, they are the smallest such semigroups
containing X (and hence also X∗). The cardinalities of the minimal generating
sets of F (X) and P (X) are called the free rank and the prefix rank of X , and
those are denoted by f(X) and p(X), respectively. Before formulating several
versions of the defect theorem we still define the combinatorial rank of X , in
symbols r(X), as the minimal cardinality of a set F such that X ⊆ F ∗. Note
that contrary to the above minimal generating sets F need not be unique. Now
the defect theorem can be formulated, cf. e.g., [BPPR79], [Lot83] or [CK97]:

Theorem 4.1. For any finite X ⊆ A+ we have

c(X) ≤ p(X) ≤ f(X) ≤ card(X),

and moreover the last inequality is proper if X satisfies a nontrivial equation.

The methods to compute these different ranks are discussed in [CK97]. Also
the following example showing that all of these inequalities can be simultaneously
proper is from [CK97].

Example 4. Consider the set X = {aa, aaba, bac, cbb, bbaa, baa}. It satisfies
a nontrivial relation:

aa. bac. bbaa = aaba. cbb. aa

so that f(X) should be < 6. By the well known method, see [BPPR79], one can
compute that X(f) = {aa, ba, c, bb, baa}. But (X(f))+ is not right unitary,
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so that, by methods in [CK97], one computes X(p) = {a, ba, c, bb}. Hence
the cardinality of X(p) is strictly smaller than that of X(f). Finally, X(p) is of
combinatorial rank 3, yielding the following sequence of inequalities

3 = c(X) < p(X) < f(X) < card(X) = 6.

⊓⊔

The above shows that the notion of the defect effect is quite involved. In
order to further emphasize this we recall that even sets generating isomorphic
subsemigroups of A+ might have nonisomorphic free hulls, cf. [HK86].

Example 4, and even more Example 3, might suggest that several different
equations satisfied by X imply a cumulative defect effect for X . For example,
two equalities would imply that r(X) is at most card(X) − 2. This indeed was
the case in Example 3. However, words do not possess such a strong dimension
property:

Example 5. The pair

xzy = yzx and xzzy = yzzx

has a solution x = y = a and z = b of (any) rank 2, and still the equations are
independent. For example, x = abba, y = a and z = b is a solution of the latter
but not of the former. 2

We do not know whether there exist independent systems of equations with
three unknowns, containing more than two equations and having a non-cyclic
solution.

The above indicates that it is very difficult to impose a cumulative defect
effect, and indeed there are very few results in that direction. Chapter 6 in
[Lot02] gives one example showing that if X is a code, but not ω-code neither
to the right nor to the left, then the rank of X is at most card(X) − 2. Here
being not an ω-code means that some one-way infinite word can be decomposed
in two different ways by X . Another complicated but still very special case is
obtained in [KM02].

In the following lines, however, we show a simple but in many cases useful
cumulative defect effect. In order to state it we need some terminology. We
associate a finite set X ⊆ A+ with a graph GX as follows: the nodes of GX are
the elements of X , and there exists an edge between two nodes x and y if and
only if

xX+ ∩ yX+ 6= ∅.
GX is called the dependency graph of X . Then the number of connected com-
ponents of GX , in symbols c(GX), gives an upper bound for the rank of X , cf.
[HK86]:

Theorem 4.2. Let X ⊆ A+ be finite. Then we have

c(X) ≤ p(X) ≤ c(GX).

17



In particular, and this is typically the power of Theorem 4.2, if c(GX) is
connected, then X is cyclic. Note that Example 3 is a simple special case of this
result. Unlike in the usual defect theorems here it is crucial that all words of X
are nonempty.

Defect theorems hold when X is not a code. A natural question is, can this
assumption be weakened, for example, requiring only that X is not an ω-code,
i.e., finite relations are replaced one-way infinite relations or even two-way infinite
relations.

For one-way infinite relations the answer is easy: all results we stated, in
particular Theorems 4.1 and 4.2, hold for one-way infinite relations as well.
Even the proofs are basically the same. For two-way infinite words the situation
is completely different. Strictly speaking no defect theorem holds, as shown by
the set X = {ab, ba} and two factorizations depicted as:

However, one can prove the following defect theorem for two-way infinite
words. In order to state it we need a few notions. Let X ⊆ A+ be a finite set
and w a two-way infinite word. Any decomposition of w into consecutive blocks
of elements of X is an X-factorization of w, and two X-factorizations of w are
disjoint if they do not match at any point of w. Finally, w is nonperiodic if it is
not a two-way infinite repetition of a single word. We have, see [KMP02]:

Theorem 4.3. Let X ⊆ A+ be finite. If there exists a nonperiodic two-way
infinite word with two disjoint X-factorizations, then

c(X) < card(X).

An interesting point here is that, unlike in all other known cases, the defect
effect is witnessed only by the combinatorial rank, for a counterexample see
[Ma02].

We conclude our discussion on defect effect by returning to Example 4. It
shows that different notions of a rank of a finite set do not coincide, and this
is unavoidable. Fortunately, however, the rank of an equation can be defined in
the unique way. Let us define the rank of an equation as the maximal rank of its
solutions. In theory, that would lead – in our considerations – to three different
notions of the rank of an equation, namely the free rank, the prefix rank and the
combinatorial rank. However, we have, see [CK97]:

Theorem 4.4. Let u = v be a constant-free equation over variables Ξ and A
an alphabet such that card(A) ≥ card(Ξ). The following numbers coincide

(i) the maximal of free ranks of solutions of u = v in A∗,
(ii) the maximal of prefix ranks of solutions of u = v in A∗,
(iii) the maximal of combinatorial ranks of solutions of u = v in A∗.

The number specified in Theorem 4.4 is called the rank of an equation u = v.
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4.2 Ehrenfeucht Compactness Property

In above we saw that words have certain dimension type properties, in fact even
a rich theory in that direction. However, the dimension properties of words are
rather weak. A natural question arises: How weak are they? Or more concretely,
how large independent systems of equations can exist? These questions are par-
tially answered in the following Ehrenfeucht Compactness Property:

Theorem 4.5. Each system S of equations with a finite number of variables Ξ
over free monoid A∗ is equivalent to some of its finite subsets S0.

This compactness claim, conjectured by A. Ehrenfeucht – after studying the
D0L sequence equivalence problem, cf. [Ka93] – was proved simultaneously in
[AL85] and [Gu86]. The proof is a marvelous example of the usefulness of the
embedding (1) in Section 2.1. That allows to conclude the result of Theorem 4.5
from Hilbert’s Basis Theorem for polynomials over commuting variables.

Interestingly, no bound for the cardinality of S0, e.g. in the number of vari-
ables, is known. That leads to the following fundamental problem. Does there ex-
ist any such bound? Or would the bound 2n, where n is the number of unknowns,
be enough? The best known lower bounds for the maximal size of independent
systems of equations are Θ(card(Ξ)3) and Θ(card(Ξ)4) in free semigroups and
in free monoids, respectively, see [KP96]. It is interesting to note that there exist
monoids, where Ehrenfeucht Compactness Property holds, but no bound for the
maximal size of independent systems exists. An example of this is the variety of
finitely generated commutative monoids, see again [KP96]. On the other hand,
the property does not hold for all finitely generated monoids, see e.g. [HKP97]
and [HK97].

5 Unavoidable regularities

In this section we consider several properties of words related to repetitions. It
appears that some repetitions, or more generally some other regularities, are
unavoidable, others are avoidable. For instance, it is easily checked that every
binary word of length 4 contains a square. So squares are unavoidable over two
letters. One may ask whether there exist arbitrarily long cube-free words over
two letters. The answer is positive. Thus cubes are avoidable over two letters.

5.1 Power-free words

The Thue-Morse word defined earlier is cube-free. As we already mentioned in
Section 1.2, the Thue-Morse word is even 2+-free. This means that it is overlap-
free, that is it does not contain any factor of the form axaxa, where a is a letter
and x is a word.

As another example, we consider the infinite word z defined below, and we
prove that it is cube-free. We choose to consider this infinite word rather than
the Thue-Morse word because the proof is quite simple, although the argument
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of the proof is rather the same as for the Thue-Morse word. The cube-freeness
of z is optimal in the sense that there are repetitions in z that are cubes up to
one letter. One may say that z is 3−-free.

Consider the morphism

ζ :
a 7→ aba
b 7→ abb

Starting with a, it generates the infinite word

z = ζω(a) = abaabbabaabaabbabbabaabbabaabaabbabaabaabbabbabaabbabb · · ·
Inspection shows that there are many factors of the form uuu•, that is cubes up
to a final letter. For example, aab, bba, abaabaabb, abbabbaba are almost cubes,
and in fact all words ζn(aab) and ζn(bba) for n ≥ 1 are almost cube factors of
the infinite word z.

Fact 5.1. The infinite word z is cube-free.

Proof. We prove that ζ is a cube-free morphism in the sense that it preserves
cube-free words: if w is cube-free, then ζ(w) is cube-free. This suffices to show
that z is cube-free.

Assume the contrary, and consider a finite cube-free word w of minimal length
n such that ζ(w) contains a cube uuu. The word ζ(w) has length 3n, and it is a
product of n blocks, each being either aba or abb.

Observe first that |u| must be a multiple of 3. Indeed, the initial letter of u
appears in w at three positions i, j = i + |u|, k = i + 2|u| for some i, and if
|u| 6≡ 0 mod 3, then i, j, k take all possible values (mod 3). This means that the
initial letter of u must appear in the images ζ(a) = aba and ζ(b) = abb at the
first, the second and the third letter. However, b does not appear as an initial
letter, and a does not appear as a middle letter. This proves the claim.

Next, observe that ζ is one-to-one. Indeed, the argument can be retrieved
from the image of a letter because it is just the last letter of the image. This
means that if ζ(w) = xuuuy for some x, y, we may assume that |x| ≡ 0 mod 3.
We may even assume that x is the empty word because w was chosen to be
minimal. But then, there is a unique word v such that u = ζ(v) and w starts
with v3. ⊓⊔

As already mentioned earlier, the arguments in the proof are rather typical.
Even the construction is typical: iterating a morphism f is a general tool for the
construction of infinite words with predictable properties. Next, the property to
be proved by induction (or by contradiction) uses the fact that one can infer
a property for a word w from a property of the image f(w) (in the previous
example, of ζ(w)). This step may be involved, because the morphism f may
not always have such a simple form as the morphism ζ. In the present case,
we proved that ζ is a cube-free morphisms, that is a morphisms that preserves
cube-free words. Another, rather old, example is given e.g., in [Hal64]. It is the
morphism

a 7→ abc
b 7→ ac
c 7→ b
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This morphism does not preserve square-free words, because the image of aba is
abcacabc. However, iterating the morphism yields an infinite square-free word.

The question whether a morphism is k-free, that is whether it preserves k-free
words, is not yet completely solved. The simplest, but not the easiest case is that
of square-free morphisms. The final answer to this case was given in [Cro82]. For
a nonerasing morphism h on A, set

M(h) = max
a∈A

|h(a)|, m(h) = min
a∈A

|h(a)|.

Then the following holds:

Theorem 5.2. Let h : A∗ → B∗ be a nonerasing morphism. If h preserves
square-free words of length K(h) = max (3, 1 + ⌈(M(h) − 3)/m(h)⌉) , then h is
square-free.

As a special case, any uniform morphism h, i.e. such that the images of all letters
have the same length, is square-free as soon as it preserves square-free words of
length 3. In the ternary case, one has the following theorem [Cro82]:

Theorem 5.3. A ternary endomorphism h is square-free if h preserves square-
free words of length 5.

No general result is known for cube-free morphisms. In the case of binary
morphisms, one has the following bound [Kar83]:

Theorem 5.4. A binary morphism h is cube-free if h preserves cube-free words
of length 10.

This bound was improved to the length 7 in [Lec85b]. In the same direction,
we mention the following striking result concerning power-free morphisms, i.e.
k-frees morphisms for all k [Lec85a].

Theorem 5.5. A morphism h is power-free if h preserves square-free words and
if the words h(a2) for a a letter, are cube-free.

Deciding whether a given morphism is k-free, for a fixed k ≥ 3, or even
cube-free, is an difficult open problem.

Abelian repetitions, i.e. repetitions of commutatively equal blocks, constitute
another type of interesting repetitions of words. Of course, every repetition of
words is also Abelian repetitions, but not vice versa. It was shown in [Ev68]
that Abelian squares can be avoided in infinite words if the alphabet contains
25 letters. In [Ple70] the result was improved to five letter alphabets, and finally
the four letter case – known as an Erdös Problem – was solved in a complicated
paper in [Ke92]. The required infinite word is obtained by iterating a uniform
morphism, where the images of letters are of length 85! This amazing result
has been completed by Carpi [Car98] who shows that the number of Abelian
square-free words over 4 letters of given length grows exponentially. He also
proves that there are ”many” Abelian square-free morphisms, i.e., morphisms
that map Abelian square-free words on Abelian square-free words. He shows
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that the monoid of Abelian square-free morphisms is not finitely generated.
Similarly in [Ju72] it was shown that Abelian fifth powers can be avoided in a
binary alphabet, and later [Dek79] filled the gaps: Abelian fourth powers can
be avoided in a binary alphabet and cubes in a ternary alphabet. Moreover, all
these results are optimal, for instance all binary words avoiding Abelian cubes
are finite, in fact, of length at most 7.

Most, if not all, known repetition-free words are defined by iterating a mor-
phism, or as a morphic image of such. However, this approach can capture only
very few repetition-free words, as witnessed by the following result proved in
[Br83]. In order to formulate it we denote by ρ − Fk(n) the number of ρ-free
words of length n over a k-letter alphabet.

Theorem 5.6. (i) The number of cubefree words of length n over a binary al-
phabet is exponential, i.e., there exist constants A, B > 0 and α, β > 1 such
that

Aαn ≤ 2 − F3(n) ≤ Bβn

(ii) There exist nondenumerably many squarefree infinite words over a ternary
alphabet.

Both parts of the above theorem holds also for squarefree words over a ternary
alphabet, see again [Br83]. On the other hand, for 2+-free binary words the
situation is different:

Theorem 5.7. (i) The number of 2+-free words of length n over a binary al-
phabet is polynomial, i.e., there exist constants A, B > 0 and α, β > 1 such
that

Anα ≤ 2+ − F2(n) ≤ Bnβ

(ii) There exist nondenumerably many 2+-free infinite words over a binary al-
phabet.

Part (i) above is shown in [RS85], while part (ii) is an exercise in [Lot83].
The values of the parameters α and β in Theorem 5.7 (ii) are studied in [Ko88]
and [Le96], see also [Cas93] and [Car93b].

Very recently in [KS03] Theorems 5.6 and 5.7 were extended to determine
the exact borderline between polynomial and exponential growth in numbers of
binary ρ-free words of length n:

Theorem 5.8. The cardinality of 21/3−F2(n) is polynomial while that of 21/3
+−

F2(n) is exponential.

Amazingly the Thue-Morse morphism plays a central role in the proof of
Theorem 5.8.

Recently, it has been shown [Ram03] that the only binary 7/3-power-free
word that can be obtained by iterating a morphism is the Thue-Morse word.
Moreover, the Thue-Morse morphism is the basically the only 7/3-power-free
morphism: if h is a binary morphism, and if h(01101001) is 7/3-power-free, then
h is a power of the Thue-Morse morphism (up to inverting of 0 and 1)
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5.2 Test sets and test words

A convenient framework is to define test sets for morphisms. A finite set T ⊂ A∗

is a test set for overlap-free (resp. square-free, cube-free) morphisms if every
morphism f : A∗ → B∗ is overlap-free (resp. square-free, cube-free) as soon as
f(w) is overlap-free (resp. square-free, cube-free) for all w ∈ T . Theorem 5.4
can be rephrased as follows: the set of binary cube-free words of length 10 is a
test set for binary cube-free morphisms. Test sets for overlap-free morphisms are
characterized in [RS99]. Test sets for k-free morphisms with k ≥ 3 are studied
in [RW02b]. It has been shown that no test sets exist for the set of square-free
morphisms over a 4-letter alphabet.

Another interesting notion is that of test word. A word w ∈ A∗ is a test
word for overlap-free (resp. square-free, cube-free) morphisms if every morphism
f : A∗ → B∗ is overlap-free (resp. square-free, cube-free) as soon as the word
f(w) is overlap-free (resp. square-free, cube-free). Thus w is a test word if {w} is
a test set. It has been shown [BS93] that abbabaab is a test word for overlap-free
morphisms. We refer to [RS99] and [RW02b] for a detailed study of test words
in various cases.

Overlap-free morphisms were already characterized by Thue [Th12]. The fol-
lowing is Satz 16 of his 1912 paper; the morphism µ was given in the introduction.

Theorem 5.9. Let h be an overlap-free binary endomorphism. Then there is an
integer n such that h = µn or h = π ◦ µn, where π is the endomorphism that
exchanges the two letters of the alphabet.

Clearly, this means that the monoid of binary overlap-free endomorphisms
is finitely generated. The same does not hold for larger alphabets, neither for
overlap-free morphisms, nor for k-power free morphisms: all these monoids of
endomorphisms are not finitely generated [Ric02b]. Many other monoids of en-
domorphisms are not finitely generated, such as the monoid of primitive mor-
phisms (that is, preserving primitive words) or of Lyndon morphisms (that is,
preserving Lyndon words), see [Ric02a].

5.3 Repetition threshold

More general repetitions can be considered as well. Thue himself called a word
on n letters irreducible if two distinct occurrences of a nonempty factor are
always separated by at least n − 2 letters. Thus, irreducible means overlap-free
if n = 2, and square-free if n = 3. A more general concept, first considered by
F. Dejean [Dej72], is to require that the length of the word y separating two
occurrences of x is bounded from below by the length of x times some factor.
This is precisely what we called earlier a repetition: a word xyx, where x is
nonempty, is a repetition of order k, where k = |xyx|/|xy|.

We have seen that every binary word of length 4 contains a square, and that
there exist infinite binary overlap-free words (such as the Thue-Morse word):
these words are 2+-free.
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A similar property holds for ternary words: every ternary word of length 39
contains a repetition of order 7/4, and there exists [Dej72] an infinite ternary
word that has no repetition of order > 7/4. More precisely, we have:

Theorem 5.10. The word generated by the endomorphism

a 7→ abcacbcabcbacbcacba
b 7→ bcabacabcacbacabacb
c 7→ cabcbabcabacbabcbac

has no repetitions of order > 7/4. So it is (7
4 )+-free.

Call repetition threshold the smallest number s(k) such that there exists an
infinite word over k letters that has only repetitions of order less than or equal
to s(k). We know that s(2) = 2, s(3) = 7/4. It is conjectured in [Dej72] that
s(4) = 7/5 and s(k) = k/(k − 1) for k ≥ 5. We know that this conjecture is true
up to 11, see [Pan84b] and [MO92], but the general case is still open.

5.4 Unavoidable patterns

Another topic on unavoidable regularities concerns unavoidable patterns. This is
a generalization of the notion of square-freeness and k-power-freeness. Interest-
ingly, this notion has a rather deep relation to universal algebra, see [BMT89].
We consider two alphabets, the first denoted by A as usual, and the second one,
by E, called the pattern alphabet. Given a pattern p ∈ E∗, the pattern language
associated to p on A is the set of all words h(p), where h is a non-erasing mor-
phism from E∗ to A∗. A word w is said to avoid the pattern p, if no factor of w
is in the pattern language of p. For example, consider the pattern p = ααββα,
where α and β are letters. The word 1(011)(011)(0)(0)(011)1 does not avoid p.
On the contrary, 0000100010111 avoids p. A pattern is avoidable on A if there
exists an infinite word on A that avoids p, otherwise it is unavoidable. A pattern
is k-avoidable if it is avoidable on a k letter alphabet.

For instance, since there exist infinite square-free words over three letters,
the pattern αα is 3-avoidable. Also, the Thue-Morse infinite word avoids the
patterns ααα and αβαβα, the latter one corresponding to overlaps.

Clearly, the pattern αβα is unavoidable. More generally, define the Zimin
words Zn as follows. Let αn, for n ≥ 0, be distinct letters in E. Set Z0 = ε and
Zn+1 = ZnαnZn for n ≥ 1.

Fact 5.11. The Zimin words Zn are all unavoidable.

In some sense, these words are all the unavoidable words. Indeed, say that a
pattern p divides a pattern p′ if p′, viewed as an ordinary word, has a factor in
the pattern language of p.

Theorem 5.12. A pattern p is unavoidable if and only if it divides some Zimin
word.
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There exists an algorithm to decide whether a pattern is avoidable. This has
been given independently in almost the same terms by [BEM79] and [Zim82].
Let us just sketch the construction.

Let p ∈ E∗ be a pattern, and let P the set of variables occurring in p. The
adjacency graph of p is the bipartite graph G(p) with two copies of P as vertices,
denoted PL and PR, and with an edge between λL and µR if and only if λµ is
a factor of p. For example, the adjacency graph of the pattern p = αβαγβα has
six vertices and four edges.

A subset F of P is free if there is no path in G(p) from a vertex λL to a
vertex µR with λ, µ in F . In our example, the free sets are {α} and {β}. Given a
pattern p and a free set F for p, we reduce p to q by deleting in p all occurrences
of the letters of F . In our example, p = αβαγβα reduces to q = βγβ by the
free set {α}, and q itself reduces to γ which itself reduces to the empty word. A
pattern is reducible if it can be reduced to the empty word in a finite number of
steps. The remarkable theorem that yields the algorithm is:

Theorem 5.13. A pattern p is avoidable if and only if it is reducible.

As shown by the pattern αα, an avoidable pattern is not necessarily avoidable
on two letters. In other terms, the same pattern may be 2-unavoidable, but k-
avoidable for some larger k. The avoidability index µ(p) of a pattern p is the
smallest integer k such that p is k-avoidable, or ∞ if p is unavoidable. Contrary
to the previous theorem, there is no known algorithm to compute the avoidability
index of a given pattern. Even for short patterns, the exact value of µ(p) may
be unknown. For instance, it is not known whether the value of µ(ααββγγ) is
2 or 3, although there is some experimental evidence that the index is 2, see
Chapter 3 in [Lot02]. However, the proof of Theorem 5.13, if analyzed carefully,
provides an upper bound on the avoidability index of a pattern.

Theorem 5.14. Let p be a pattern on k symbols. If p is avoidable, then µ(p) ≤
2k + 4.

The above bound is probably far from being optimal. In fact, it is quite difficult
to find patterns with high avoidability index. A pattern which has index 4 is

p = αβζ1βγζ2γαζ3βαζ4αγ

over a pattern alphabet of 7 symbols. No pattern of index 5 is known, and one
may ask whether such a pattern exists. Many results on avoidable and unavoid-
able patterns are reported in Chapter 3 of [Lot02], while [Cur93] is a source of
several open problems. Recent results concerning complexity of the reduction
algorithm appear in [Hei02a], [Hei02b] and [Hei02c].

5.5 Shirshov’s theorem

An unavoidable regularity is a property of words that can be observed on any
word, provided it is sufficiently long. Several of these unavoidable regularities
exist. The most famous are Ramsey’s theorem, van der Waerden’s theorem and
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Shirshov’s theorem. We just state here Ramsey’s and van der Waerden’s theo-
rems in the perspective of words, and then discuss Shirshov’s theorem and some
of its consequences.

Let A be a finite alphabet, S a set and k ≥ 2 an integer. A map f : A∗ → S
is called k-ramseyan if there exists an integer L(f, k) such that any word w
of length at least L(f, k) admits a factor u of the form u = w1 · · ·wk, with
w1, . . . , wk nonempty words, such that

f(wi · · ·wj) = f(wi′ · · ·wj′ )

for all 1 ≤ i ≤ j ≤ k, 1 ≤ i′ ≤ j′ ≤ k. Further f is ramseyan if it is k-ramseyan
for some k. Ramsey’s theorem, see [GRS90], can be stated in a number of com-
binatorial structures. On words it can be stated as the following unavoidable
regularity:

Theorem 5.15. (Ramsey’s theorem) Every map f : A∗ → S into a finite set S
is ramseyan.

Given a word w = a1 · · · an, where a1, . . . , an are letters, a cadence of w of
order r is a sequence 0 < t1 < · · · < tr ≤ n such that at1 = at2 = · · · = atr

.
A cadence is arithmetic if the integers are in arithmetic progression, that is if
ti+1− ti = ti− ti−1 for 1 < i < r. Now, we can formulate the second unavoidable
regularity of words:

Theorem 5.16. (van der Waerden’s theorem) Let A be an alphabet with k let-
ters. For any positive integer n, there exists an integer W (k, n) such that any
word w over A of length at least W (k, n) contains an arithmetic cadence of order
n.

Ramsey’s and van der Waerden’s theorems are rather well known. However,
the evaluation of the integers W (k, n), as well as the function L, is very difficult
and not at all completely known, see [GRS90]. We refer to [Lot83] and to [dLV97]
for proofs of our above formulations and further discussions.

We now turn to Shirshov’s theorem, which is much less known. It was proved
by Shirshov in connection with so-called polynomial identities (see [Lot83] for
a discussion of this issue). The unavoidable regularity concerned by this result
has also other far reaching applications.

Let A be a totally ordered alphabet, and let < denote the lexicographic order
on A∗ induced by the order on the alphabet. Denote by Sn the symmetric group
on n elements. A sequence (u1, u2, . . . , un) of nonempty words is called an n-
division of the word u = u1u2 · · ·un if, for any nontrivial permutation σ of Sn,
one has

u1u2 · · ·un > uσ(1)uσ(2) · · ·uσ(n)

Example 6. Consider the binary alphabet A = {a, b} ordered by setting a < b.
The word w = ababbaba is 3-divided by the sequence (ababb, ab, a). One can also
verify that this is the only 3-division of w and that there is no 4-division. ⊓⊔
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Now we can formulate our third unavoidable regularity:

Theorem 5.17. (Shirshov’s theorem) Let A be an alphabet with k letters. For
any positive integers n, k, there exists an integer N(k, p, n) such that any word
w over A of length at least N(k, p, n) contains as a factor an n-divided word or
a pth power.

Again, the integers N(k, p, n) are quite difficult to compute. It is also quite
interesting that this result admits an extension to infinite words, in contrast to
van der Waerden’s theorem. An infinite word s is called ω-divided if it can be
factorized into an infinite product s = s1s2 · · · sn · · · of nonempty words such
that (s1, . . . , sn) is an n-division for all n > 0. Now, by denoting by F (s) the set
of all (finite) factors of an infinite word s we can formulate:

Theorem 5.18. For any infinite word t over A, there exists an infinite word s
such that F (s) ⊂ F (t) and s is ultimately periodic or s is ω-divided.

This is, in fact, a consequence of another structural result of infinite words. In
order to state this, we recall that a Lyndon word is a word w that is primitive
and that is smaller (for the lexicographic order) than all of its conjugates, i.e.,
such that whenever w = xy with x, y nonempty, then xy < yx. Then we have:

Theorem 5.19. For any infinite word t over A, there exists an infinite word s
such that F (s) ⊂ F (t) and s is a product of an infinite sequence of non increasing
Lyndon words: s = ℓ1ℓ2 · · · ℓn · · ·, with ℓn ≥ ℓn+1 and ℓn is a Lyndon word for
all n.

As we already said Shirshov’s theorem has quite interesting consequences. We
consider here one of those. A semigroup S is called periodic if every subsemigroup
of S generated by a single element is finite. A sequence (s1, . . . , sn) of n elements
of S is called permutable if there exists a nontrivial permutation σ of Sn such that
s1 · · · sn = sσ(1) · · · sσ(n). The semigroup is called n-permutable if any sequence
of n elements of S is permutable, and S is called permutable if S is n-permutable
for some n. A language L is called periodic (resp. permutable) if its syntactic
semigroup is periodic (resp. permutable). A striking characterization of rational
languages can now be stated:

Theorem 5.20. A language L is rational if and only if it is periodic and per-
mutable.

The proof is based on Shirshov’s theorem, see [RR85], [dLV97]. Also the proofs of
Theorems 5.18 and 5.19, as well as more related results can be found in [dLV97].

5.6 Unavoidable sets of words

We conclude this section with still another notion of an unavoidability, namely
the notion of unavoidable set of words. A set X of words over A is unavoidable if
any long enough word over A has a factor in X , that is if A∗ −A∗XA∗ is finite.

For example, the set {a, bb} is unavoidable over {a, b}. Indeed, any word of
length 2 either contains an a or contains bb. Since a superset of an unavoidable

27



set is again unavoidable, it is natural to consider minimal unavoidable sets. Every
minimal unavoidable set is finite. Indeed, if X is unavoidable, then let d be the
maximal length of the words in the finite set A∗ − A∗XA∗. Let Z be the set of
words in X of length at most d + 1. Every word of length d + 1 has a factor in
X which actually is in Z. Thus Z is unavoidable and finite.

In fact, there exists an algorithm to decide whether a finite set X of words
in unavoidable, and the structure of unavoidable sets of words is rather well
understood, see Chapter 1 of [Lot02] for a general exposition and for references. A
recent result concerns unavoidable sets of words of the same length, i.e., uniform
unavoidable sets. For k, q ≥ 1, let c(k, q) be the number of conjugacy classes
of words of length k on q letters. An unavoidable set of words of length k on
q symbols clearly has at least c(k, q) elements. It is quite remarkable that the
converse holds as well, see [CHP03]:

Theorem 5.21. For any k, q ≥ 1, there exists an unavoidable set of words of
length k on q letters having exactly c(k, q) elements.

As an illustration assume that k = 3 and q = 2, so that c(k, q) = 4. Now
the sets {aaa, aab, aba, bbb} and {aaa, aab, bba, bbb}, for example, are avoidable,
the former because it does not intersect all the conjugacy classes and the latter
since it avoids (ab)ω. On the other hand, the set X = {aaa, aab, bab, bbb} is
unavoidable. Indeed, infinite words containing no letter a or the factor aa clearly
contains a factor from X , and all the other words contain either bab or bbb.

6 Complexity

Given a set X of words over an alphabet A the complexity function of X is
the function pX defined by pX(n) = Card(X ∩ An). We are interested here in
the (subword) complexity (one should say factor complexity!) of a finite or an
infinite word u. It is the function pu which is the complexity function for the
set F (u) of factors of u, thus pu(n) = Card(F (u) ∩ An) is just the number of
factors of length n in u. The study of infinite words of given complexity has
revealed a large set of surprising results. Moreover, there are strong relations
to number theory and symbolic dynamics. Subword complexity was studied, in
relation with languages generated by D0L-systems, already in [ELR75].

6.1 Subword complexity of finite words

The subword complexity of a finite word w is simply the function pw such that
pw(n) is the number of factors of length n of w. Of course, pw(0) = pw(|w|) =
1, and pw(n) = 0 for n > |w|. The description of the shape of the function
pw uses the parameter Gw defined as follows: Gw is the maximal length of a
repeated factor, that is a factor that appears at least twice in w. For instance,
let w = abccacbccabaab. The word bcca is a repeated factor of maximal length,
so Gw = 4. The shape of the function pw is given by the following result, see
[dL99], [CdL01b], [CdL01a] and [LS01]:
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Theorem 6.1. Let w be a word over at least two letters. There is an integer
mw such that the function pw(n) behaves as follows:

(i) it is strictly increasing for 0 ≤ n ≤ mw,
(ii) it is constant for mw ≤ n ≤ Gw + 1,
(iii) it is decreasing for Gw + 1 ≤ n ≤ |w|, and more precisely pw(n + 1) =
pw(n) − 1 for n = Gw + 1, . . . , |w|.

Consider again the word w = abccacbccabaab. One gets pw(1) = 3, pw(2) = 8,
pw(3) = 10, pw(4) = 11, and this is the maximum because Gw = 4. Then it
decreases by 1 at each step: pw(5) = 10 . . . . In our example, the integer mw is
equal to Gw.

A precise description of the parameter mw is missing. On the contrary, the
parameter Gw is strongly related to other structural parameters of the word w.
Denote by Rw the minimal number such that there is no factor x of w of length
Rw that has two right extensions in w, i.e., such that xa and xb are factors of
w for distinct letters a and b. Next, let Kw be the length of the shortest suffix
of w which is an unrepeated factor of w. Then it can be shown, see [CdL01b],
that Gw + 1 = max(Rw, Kw). The parameter Gw has the following interesting
property, proved in [CdL01b]:

Theorem 6.2. A word w is completely determined by its set of factors of length
at most Gw + 2.

For example, the word w = abccacbccabaab, of length 14, is entirely determined
by its factors of length 6. Many combinatorial facts, and properties of distribution
of these parameters, are given in [CdL02a] and [CdL02b].

Related to Theorem 6.2 one can ask several questions when a given word is
uniquely determined by its factors or sparse subwords. Besides these two variants
one can also ask the same when multiplicities are taken into account. This leads
to four different problems, see [Ma00] or Chapter 6 in [Lot83]. Among those is a
question, sometimes referred to as Milner’s Problem, asking what is the minimal
length of sparse subwords with multiplicities which defines the word uniquely.

6.2 Subword complexity of infinite words

Let us start with two examples. For the infinite word 01(10)ω, the complexity
function is easily computed. One gets p(0) = 1, p(1) = 2, p(2) = 3, p(n) = 4 for
n ≥ 4. More generally, it is easily seen that an ultimately periodic infinite word
has a complexity function that is bounded, and therefore is ultimately constant
because a complexity function is never decreasing. On the contrary, consider the
infinite binary word c known as the Champernowne word:

c = 0110111001011101111000 · · ·
This is obtained by concatenating the binary expansions of all positive integers
in order. Clearly, every binary word is a factor of c and thus pc(n) = 2n for
all n ≥ 0. These examples show that both extreme behaviours are possible
for complexity functions. However, there are gaps in the growth of complexity
functions. The first such result was given in [MH40,CH73]:
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Theorem 6.3. Let x be an infinite word. The following are equivalent:

(i) x is ultimately periodic,
(ii) px(n) = px(n + 1) for some n,
(iii) px(n) < n + k − 1 for some n ≥ 1, where k is the number of letters
appearing in x,

(iv) px(n) is bounded.

Proof. The implications (1) ⇒ (4) ⇒ (3) ⇒ (2) are easy. For the remaining
implication (2) ⇒ (1) we observe that each factor of length n in x can be
extended in exactly one manner to a factor of length n + 1. This means that
each occurrence of a given factor of length n is always followed by the same letter
in x. Consider any factor u of length n that appears twice in x, and denote by y
the word that separates the two occurrences, so that uyu is a factor of x. Since
the letters that follow u are determined by u, this means that in fact uyuy is a
factor of x, and that (uy)ω is a suffix of x. ⊓⊔

This result shows a “gap” for complexity functions: either a function p is
ultimately constant, or p(n) ≥ n + 1 for all n. So an infinite aperiodic word,
that is a word that is not ultimately periodic, cannot have a complexity function
bounded by n. It appears that aperiodic infinite words of complexity p(n) = n+1
indeed exist (see also [Kn72]). These words are called Sturmian words.

For another gap of complexity functions see [Cas97b].

6.3 Sturmian words

A Sturmian word x is always a binary word because px(1) = 2 and px(1) is the
number of letters appearing in x. Every factor of length n can be extended to the
right into a factor of length n + 1. Since px(n + 1) = 1 + px(n), this extension is
unique for all factors up to one, and this last factor has two extensions. A factor
with two extension is called right special. More precisely, call the (right) degree
of a word u the number of distinct letters a such that ua is a factor of x. Then,
in the binary case, a right special factor is a word u of degree 2. A Sturmian
word has exactly one special factor of each length. We give an example:

Fact 6.4. The Fibonacci word f = 010010100100101001010 · · · is Sturmian.

To check this, we observe that f is the fixed-point of the morphism ϕ given in
Section 1.3. Thus f is a product of words 0 and 01. In particular, 11 is not a
factor of f and pf (2) = 3. Also, the word 000 is not a factor of f since otherwise
it is a factor of the image of a factor of f that must contain 11.

Next, we show that for all finite words x, neither 0x0 nor 1x1 is a factor of
f . This is clear if x is the empty word or is a single letter. Arguing by induction,
assume that both 0x0 or 1x1 are factors of f . Then x starts and ends with 0,
so x = 0y0 for some word y. Since 10y01 is a factor of f , there exists a factor z
of f such that ϕ(z) = 0y. Moreover, 00y00 = ϕ(1z1) and 010y01 = ϕ(0z0) are
factors of f , showing that 0z0 and 1z1 are factors, a contradiction.
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We now prove that f has at most one special factor of each length. Assume
that u and v are right special factors of f of the same length, and let x be the
longest common suffix of u and v. Then the four words 0x0, 0x1, 1x0, 1x1 are
factors of f which contradicts our previous observation.

We finally prove that f has at least one special factor of each length. For this,
it suffices to prove that f is aperiodic. Recall that f is the limit of the sequence
of finite Fibonacci words defined by f0 = a, f1 = ab, and fn+2 = fn+1fn. It is
easily shown that the

|fn|a
|fn|

→ 1

τ
, n → ∞ ,

with τ = (1+
√

5)/2, whereas in a ultimate periodic word, this limit is a rational
number. ⊓⊔

We now give two other descriptions of Sturmian words, namely as balanced
words and as mechanical words. Given two binary words u and v of the same
length, the balance of u and v is the number b(u, v) = ||u|1 − |v|1|, that is the
absolute value of the difference of the number of occurrences of the letter 1 in
the words u and v. Since u and v have the same length, one could also have
defined this number by taking the number of 0’s instead of the number of 1’s. As
an example, for 01001 and 11001, the balance is 1. An infinite word x is balanced
if the balance of any two factors of x of the same length is at most 1. Intuitively,
a balanced word cannot have big differences in factors. In particular, a balanced
word cannot contain simultaneously the factors 0u0 and 1u1. Moreover, it can
be shown that a balanced word x has a slope, that is that the limit limn→∞ bn/n
exists, where bn is the number of 1’s in the prefix of length n. As an example,
the slope of the Fibonacci word is 1/ϕ2, where ϕ = (1 +

√
5)/2.

Another notion strongly related to Sturmian words is of more arithmetical
nature. Given two real numbers α and ρ with 0 ≤ α ≤ 1, we define two infinite
words sα,ρ = sα,ρ(0)sα,ρ(1) · · · and s′α,ρ = s′α,ρ(0)s′α,ρ(1) · · · by

sα,ρ(n) = ⌊α(n + 1) + ρ⌋ − ⌊αn + ρ⌋
s′α,ρ(n) = ⌈α(n + 1) + ρ⌉ − ⌈αn + ρ⌉

for n > 0.

The word sα,ρ is the lower mechanical word and s′α,ρ is the upper mechanical
word with slope α and intercept ρ. It is clear that we may assume 0 ≤ ρ ≤ 1. If
α is irrational, sα,ρ and s′α,ρ differ by at most one factor of length 2.

The terminology stems from the following graphical interpretation. Consider
the straight line defined by the equation y = αx + ρ. The points with integer
coordinates just below this line are Pn = (n, ⌊αn + ρ⌋). Two consecutive points
Pn and Pn+1 are joined by a straight line segment that is horizontal if sα,ρ(n) = 0
and diagonal if sα,ρ(n) = 1. The same observation holds for the points located
just above the line.

A special case deserves to be considered separately, namely when 0 < α < 1
and ρ = 0. In this case, sα,0(0) = 0, s′α,0(0) = 1, and if α is irrational

sα,0 = 0cα, s′α,0 = 1cα,
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where the infinite word cα is called the characteristic word of α.
Mechanical words can be interpreted in several other ways. One is as cutting

sequences, and is as follows. Consider again a straight line y = βx + ρ, for
some β > 0 not restricted to be less than 1, and ρ not restricted to be positive.
Consider the intersections of this line with the lines of the grid with nonnegative
integer coordinates. We get a sequence of intersection points. Writing a 0 for
each vertical intersection point and a 1 for each horizontal intersection point, we
obtain an infinite word Kβ,ρ that is called the cutting sequence. Then

Kβ,ρ = sβ/(1+β),ρ/(1+β)

Indeed, the transformation (x, y) 7→ (x + y, x) of the plane maps the line y =
βx + ρ to y = β/(1 + β)x + ρ/(1 + β). Thus, cutting sequences are just an-
other formulation of mechanical words, see also [CMPS93] for a more detailed
discussion.

Mechanical words can also be generated by rotations. Let 0 < α < 1. The
rotation of angle α is the mapping R = Rα from [0, 1[ into itself defined by

R(z) = {z + α}

Iterating R, one gets Rn(ρ) = {nα + ρ}. Thus, defining a partition of [0, 1[ by

I0 = [0, 1 − α[, I1 = [1 − α, 1[ ,

one gets

sα,ρ(n) =

{

0 if Rn(ρ) ∈ I0

1 if Rn(ρ) ∈ I1
.

The three properties are related by the following theorem [MH40]:

Theorem 6.5. Let s be an infinite word. The following are equivalent:

(i) s is Sturmian;
(ii) s is balanced and aperiodic;
(iii) s is mechanical with an irrational slope.

A proof can be found in Chapter 2 of [Lot02]. As a example, the Fibonacci word
f is indeed the lower mechanical word with slope and intercept equal to 1/ϕ2.
There is a special class of Sturmian words called characteristic Sturmian words.
These are the words where the intercept equals the slope. Each characteristic
Sturmian word s has a description as the limit of a sequence sn of finite words,
quite as the Fibonacci word f is the limit of the finite words fn. The recurrence
relation is slightly more complicated. It has the form

sn = sdn

n−1sn−2 for n ≥ 1

with s−1 = 1, s0 = 0, and where d1, d2, . . . is a sequence of integers with d1 ≥ 0
and dn > 0 for n > 1. This sequence is related to the slope α of s by the fact
that [0, 1+d1, d2, . . .] is the continued fraction expansion of α. In the case of the
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Fibonacci word, the continued fraction expansion of 1/ϕ2 is indeed [0, 2, 1, 1, . . .]
and the dn are all equal to 1. The sequence sn is called the standard sequence,
and every word that appears in a standard sequence is a standard word.

A beautiful theorem, proved in [CMPS93], describes those irrational num-
bers α for which the standard Sturmian word can be generated by iterating a
morphism. We give here the description that follows from a complement given
in [All98].

Theorem 6.6. Let 0 < α < 1 be an irrational number. The characteristic Stur-
mian word of slope α is a fixed-point of some nontrivial morphism if and only if
α is a quadratic irrational number such that 1/ᾱ < 1.

In this theorem, ᾱ denotes the conjugate of the number α, that is the other root
of its minimal polynomial. This result shows a relation between a combinatorial
property of words and an arithmetical counterpart.

Sturmian words have a tremendous amount of combinatorial or arithemetic
properties. An account can be found in Chapter 2 of [Lot02] and in [PF02].

A final comment: why Sturmian words are called Sturmian? This term was
introduced by Morse and Hedlund in their work on symbolic dynamics. The
term is rather unfortunate in that the mathematician Sturm (1803–1855) never
worked on these sequences. The argument is as follows ([MH40], page 40 and
41): consider a linear homogeneous second order differential equation

y′′ + φ(x)y = 0

where φ is continuous and has period 1. For an arbitrary solution u(x) of this
equation, one considers the infinite word a0 · · ·an · · · where an is the number
of zeros of u in the interval [n, n + 1). According to the well-known Sturmian
separation theorem, this infinite word is Sturmian (over a convenient alphabet).
This observation motivates the choice of the terminology.

For additional bibliographic comments about the origins, see the answer to
exercise 1.2.8-36 in Knuth’s volume 1, as well as [St76] which dates back the
Fibonacci word to J. Bernoulli III and A.A. Markov, see [Be1772] and [Ma1882].

6.4 Episturmian words

There have been several attempts to extend the notion of Sturmian words. By
the definition, Sturmian words are binary, and so relaxations of the constraints
on the complexity function were looked for. It appears that a very good extension
is rather related to what is called Arnoux-Rauzy, or more generally episturmian
words. We start with a typical word of this family called Tribonacci word. This
word is defined, like the Fibonacci word, as the limit of a sequence of words
defined by a recurrence relation:

tn+3 = tn+2tn+1tn, t0 = 0, t1 = 01, t2 = 0102

So the Tribonacci word is

t = 0102010010201010201 · · ·

33



It is also defined as the fixed-point of the mophism

0 7→ 01
1 7→ 02
2 7→ 0

It is not very difficult to see that pt(n) = 2n + 1 for n ≥ 0. This means that for
each n, there must be 2 additional extensions to the right of factors of length
n. To do this, there are two possibilities: either there are 2 distinct right special
factors, each of which has degree 2, or there is just one right special factor which
has degree 3. It can be checked that the second property holds for the Tribonacci
word. The right special factors are ε, 0, 10, 010, 2010,. . . . As in the case of the
Fibonacci words, the right special factors are the reversal of the prefixes of t.

Infinite words that have exactly one right special factor of each length, and
each having degree 3, where introduced by Arnoux and Rauzy in [AR91], and are
therefore called Arnoux-Rauzy words, or AR-words for short. This terminology
has been extended to words over k-letters, see e.g., [WZ01], by requiring that for
each length n, there is a unique right special factor with degree k. This definition
is relaxed in [DJP01] and [JP02] to allow right special factors of degree at most k.
Infinite words with this property are called episturmian words, and AR-words are
called strict episturmian [JP02]. Strict episturmian binary words are Sturmian,
whereas episturmian binary words may be ultimately periodic, so they are the
mechanical words.

6.5 Hierarchies of complexities

One of the first papers on subword (factor) complexity is [ELR75]. In this paper,
it is shown that the subword complexity of a D0L language is bounded by cn2

(resp. cn log n, cn) if the morphism that generates the languages is arbitrary
(resp. growing, uniform). This result was extended in [Pan84a]:

Theorem 6.7. The subword complexity of an infinite word generated by iterat-
ing a morphism is of one of the following types: Θ(n), Θ(n log n), Θ(n log n log n),
Θ(n2), or Θ(1).

Each of the complexity classes corresponds to a class of morphisms. We just
give some examples. The morphism

a 7→ ab
b 7→ bc
c 7→ c

generates the infinite word

abbcbc2bc3 · · · bcn · · ·
having quadratic complexity. Consider next the morphism

a 7→ abc
b 7→ bb
c 7→ ccc

34



It generates the infinite word

abcb2c3b4c9 · · · b2n

c3n · · ·

which has complexity Θ(n log n). Consider finally the morphism

a 7→ abab
b 7→ bb

Starting with a, one gets the infinite word

abab3abab7ababbbabab15 · · ·

which has complexity Θ(n log log n).

6.6 Subword complexity and transcendence

Consider the Thue-Morse word t and the Fibonacci word f written over the
alphabet {0, 1}:

t = 01101001100101101001011001101001 · · ·
f = 010010100100101001010 · · ·

One may consider the infinite words as binary expansions of real numbers in the
interval [0, 1], and ask whether these numbers are algebraic or transcendental.
We address this and related questions in this section.

It is well known that the expansion in an integral base b ≥ 2 of a rational
number is ultimately periodic. This means that the subword complexity of a
rational number is very low. On the other hand, it has been conjectured by Borel,
see [All00] for a more detailed discussion, that the infinite word representing the
expansion in base b of an algebraic number is “normal”, which means that all
words appear as factors, and that all factors of length n appear with the same
frequency 1/bn. This conjecture is presently far from being proved, and even
the following, much weaker conjecture, seems to be very difficult: let x be the
expansion in base b of a real number r. If px(n) < bn for all n, then r is either a
rational or a transcendental number, again see [All00].

However, there exist several results in number theory related to the fact
that algebraic numbers cannot be well approximated by rational numbers. In
other terms, if a number is too well approximated, then it is either rational
or transcendental. Two of these results are the famous theorem of Roth and a
refinement of this, which is the theorem of Ridout, see [All00] for references. It
is remarkable that these results can be translated into combinatorial properties
of infinite words [FM97]:

Theorem 6.8. Let x be the expansion in base b ≥ 2 of a real number r ∈ [0, 1].
If there exist real numbers α > 0 and ε > 0 such that the word x has infinitely
many prefixes of the form uv2+ε, with |u| ≤ α|v|, then r is either a rational or
a transcendental number.
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The first condition means that x must contain arbitrarily long powers of ex-
ponent strictly greater than 2, and the second condition requires that these
powers appear “not too far” from the beginning of the word. In fact, the present
statement is the translation of Ridout’s theorem, and when u is assumed to be
the empty word, that is when it is required that x starts with infinitely many
2 + εpowers, this is Roth’s theorem. If the infinite word x has the prefix uv2+ε,
then x = uv2+εy for some infinite word y, and x is “close” to the ultimately
periodic word uvω, so the real r is “close” to the rational number represented
by uvω. For the complete proof of Theorem 6.8, however, some further work is
needed.

Theorem 6.8 gives a powerful tool to prove that real numbers are transcen-
dental. As the first example, we consider the number whose binary expansion is
the Fibonacci word f . Recall that f is the limit of the sequence of finite words
fn defined by f0 = 0, f1 = 01, fn+2 = fn+1fn. It is easily checked that f starts
with infinitely many (2 + 1/ϕ2 − ε)-powers. Indeed, for n ≥ 4, the infinite word
f starts with fnfngn−2, where gn is equal to fn up to the last two letters. For
instance, f starts with (01001010)(01001010)(01010). Thus the number whose
binary expansion is the Fibonacci word is indeed transcendental.

The Fibonacci word is a special case of a general result of [FM97]:

Theorem 6.9. Let x be the expansion in base 2 of a real number r ∈ [0, 1]. If x
is a Sturmian word, then r is transcendental.

It is shown also in [FM97] that the same result holds for above mentioned
Arnoux-Rauzy words.

We know that the Thue-Morse word is overlap-free, so it does not contain
2+-powers. Thus Theorem 6.9 does not apply. However, the transcendence of
the number represented by the Thue-Morse word has been proved directly by
Mahler and Dekking, see again [All00] for references.

Recently, the case of infinite words that are fixed-points of morphisms has
been considered. An endomorphism h of A∗ is called primitive, if there exists an
integer m such that each word hm(a), for a ∈ A, contains at least one occurrence
of every letter in A. For instance, the Fibonacci morphism is primitive. The result
is the following, see [AZ98] or already [FM97] for primitive morphisms:

Theorem 6.10. If the binary expansion of a real number is the fixed-point of
a non-trivial morphism that is either primitive or uniform, then this number is
either rational or transcendental.

We mention that it is decidable whether the fixed-point of a non-trivial mor-
phism is an ultimately periodic word, see [Pan86] and [HL86], or [Séé88] for the
complete characterization of the binary case. Thus, it is decidable whether the
number in Theorem 6.10 is rational or transcendental.

6.7 Descriptive and computational complexity

In addition to subword complexity the classification of infinite words can be
based on many other measures reflecting different aspects of complexity. Here
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we consider briefly two such directions, namely descriptive and computational
complexities. The former one measures how complicated mechanisms are needed
to generate infinite words. In general, this is not obvious to formalize, however,
concrete examples can be given to illustrate it, see [CK94] for different such
mechanisms. Computational complexity, in turn, asks how much computational
resources are needed to generate a particular infinite word, say by a Turing
machine, see e.g., [HKL94].

The most frequently used method of defining an infinite word is, as we have
already seen, that of iterating a morphism. More complicated methods are, for
example, iterating two or more morphisms periodically, iterating a sequential
transducer and so on. The famous Kolakoski word can be obtained by iterating
two morphisms periodically, see Section 8 and [CKL92], but it is not known
whether it can be obtained as a morphic image of an infinite word obtained by
iterating a morphism. By iterating sequential transducers one can define even
much more complicated words as shown below.

Example 7. For a natural number n let binr(n) denote the reverse binary
representation of n. Then, clearly, a sequential transducer can compute

binr(n) 7→ binr(n + 1),

and consequently the infinite word

S binr(1)#binr(2)# · · ·#binr(n) · · ·

can be generated by iterating a sequential transducer. ⊓⊔

Example 8. Let M be a Turing machine and

w0, w1, w2, . . .

the sequence of configurations of its computation on an input word w. Then,
similarly to above, the word

Sw0#w1#w2 · · ·

can be generated by iterating a sequential transducer. Consequently, problems
on such words are typically undecidable. ⊓⊔

Neither of the above words is, in general, definable by iterating a morphism.
This follows, for example, the subword complexity considerations, cf. Theorem
6.7.

Infinite words definable by iterating a morphism are simple, not only descrip-
tively, but also computationally. In order to formalize this we consider Turing
machines as generators of infinite words: The machine has one one-way write
only tape for the generation and several two-way working tapes for the compu-
tations. At the beginning all the tapes are empty, and the space complexity of the
machine is the number of cells used in working tapes for printing the nth letter
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of the word. It follows from standard considerations in the complexity theory
that the first complexity class after the trivial class O(1) is that of O(log n), for
details see [HKL94]. The former one corresponds to ultimately periodic infinite
words.

Now, we can state:

Theorem 6.11. Each infinite word obtained by iterating a morphisms is of
space complexity O(log n).

Of course, the class of O(log n) is much larger than that of infinite words
obtained by iterated morphisms. Indeed, the question whether or not all words
obtained by iterating sequential transducers are in this class is equivalent to a
classical open problem in complexity theory, see [DM02].

7 From words to finite sets of words

So far we have been interested in properties of single words, finite or infinite, and
not sets of words. Even in the defect theorems, although those deal with finite sets
of words, the crucial point is that those sets are considered as solutions of single
(or several) word equations. Similarly, avoidable sets of words avoided a single
word. A natural question is to ask whether at least some of the basic properties
of words can be extended to finite sets of words. Among the most natural such
question is the one asking what can be said about the commutation of (finite)
sets of words. This and some related problems have been considered in several
recent papers, cf. [Ka01] for a survey.

7.1 Conway’s Problem

More than 30 years ago Conway asked in his book [Con71] whether the maximal
set commuting with a given rational set R is rational as well. Such a maximal set,
which clearly exists – it is the union of all sets commuting with R – is called the
centralizer of R, in symbols C(R). It is straightforward to see that the centralizer
is a semigroup or a monoid depending on whether the considerations are in A+

or A∗. Apart from some trivial observations the problems seems to be equally
hard, but not known to be related, in these two cases. We concentrate on the
semigroup case here.

Conway’s Problem asks a very natural and simple looking question on ra-
tional languages. Surprisingly, however, the answer is not known even for finite
languages, and in fact even a much simpler looking question, namely whether
the centralizer of a finite X is recursive, or equivalently recursively enumerable,
is unanswered. Here, the equivalence comes from the fact that the complement
of the centralizer of even a recursive set, is recursively enumerable, as is rather
easy to see. The following simple example from [CKO02] reveals something of
the complexity of the commutation of finite languages.
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Example 9. Consider the four element set X = {a, ab, ba, bb}. As is straight-
forward to compute, it commutes with the sets

Y1 = X ∪ X2 ∪ {bab, bbb}

and
Y2 = {a, b}+{b},

the latter one being the centralizer of X (in A+). Note that Y2 is not only rational
but also finitely generated, since Y2 = (X ∪ {bab, bbb})+. ⊓⊔

Obviously, X+ is always a subset of the centralizer, or more generally, any
semigroup generated by a root of X , i.e. a set Y such that X = Y i for some i ≥ 1,
is a subset of the centralizer of X . Let us call a root of X minimal if it is not a
proper root of any set, and denote it by ρm(X). A minimal root of a set need not
be unique, for example, even a unary set like {ai | 0 ≤ i ≤ 30, i 6= 1, 8, 11, 23}
can possess two different (minimal) square roots, see [CK00]. If X possesses just
one minimal root we call it the primitive root and denote it by ρ(X). In the case
of codes or nonperiodic two or three element sets the primitive root exist. We
call a set primitive if ρ(X) = X .

We can state the following simple estimates for the centralizer: for any X ⊆
A+, we have

ρm(X)+ ⊆ C(X) ⊆ Pref(X+) ∩ Suf(X+),

where ρm(X) is any minimal root of X . The left inclusion is obvious and the right
one is easy to conclude. We say that C(X) is trivial if it coincides with ρm(X)+

for some minimal root of X . Being trivial does not mean that the triviality is
easy to check. Indeed, we do not know whether the question “Is C(X) = X+?”
is decidable even for finite sets X .

An affirmative answer of Conway’s Problem has been shown in a number of
special cases, see e.g. [CKO02], [KP02] and [Pe02] for a general treatment. The
first nontrivial result was that of [Ra89] solving the problem for prefix sets. This
together with a recent extension of the above special cases, see [KLP03], are
summarized as follows:

Theorem 7.1. (i) For each three element set X the centralizer of X is either
w+, for a primitive word w, or X+ depending on whether X is periodic or not.

(ii) For each prefix set X the centralizer of X is ρ(X)+.
In particular, in both of these cases Conway’s Problem has an affirmative answer.

It is a challenge to find a short proof for Part (ii) in Theorem 7.1. In what
follows we give a short proof, see [KP01], for a special case of part (i) in Theorem
7.1, namely for the case when X is binary. This is based on so-called branching
point approach. For X ⊂ A+, we say that w ∈ Pref(X+) is a branching point if
w can be extended in Pref(X+) at least by two different letters

Theorem 7.2. Let X = {x, y} ⊆ A+. Then the centralizer of X is either w+,
for a primitive word w, or X+ depending on whether or not xy = yx.
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Proof. The case when x and y commute is a simple application of the defect
theorem for two element sets.

So assume that xy 6= yx. Let z be the maximal common prefix of xy and yx,
in symbols z = xy ∧ yx. Hence, as seen in Lemma 3.3, |z| ≤ |xy| − 2. Further let
us call a two element set marked if the first symbols of the words are different.

Claim I. For a marked Z we have C(Z) = Z+.

Claim I follows directly from the following three facts: First, the centralizer
is a subset of Pref(Z+). Second the set Z has branching points only in Z+.
This, indeed, is true since Z is marked. Third, C(Z) is a semigroup, so that if
z′ ∈ C(Z) ⊆ Pref(Z+) so do z′x and z′y. Consequently, C(Z) can contain only
branching points of Z.

Now, we are done if X is marked. If not, say X ⊆ aA∗ with a ∈ A, we set
X ′ = a−1Xa, and show

Claim II. C(X) = aC(X ′)a−1.

In order to prove Claim II, we first write C(X) = aY , with y ⊆ A∗. This is
possible since XC(X) = C(X)X . Recalling that aX ′ = Xa we can compute

XC(X)a = XaY a = aX ′Y a

and

C(X)Xa = aY Xa = aY aX ′.

Since the left hand sides are equal so are the right ones.This means that Y a
commutes with X ′ and hence, by the maximality of the centralizer, we obtain
that Y a ⊆ C(X ′). This, however, can be written in the form C(X) = aY ⊆
aC(X ′)a−1.

Starting from the fact that C(X ′) = Y ′a for some Y ′ ⊆ A+, we conclude
similarly that aY ′ ⊆ C(X) or, equivalently, that C(X ′) ⊆ a−1C(X)a. This can
be rewritten in the form aC(X ′)a−1 ⊆ C(X). Hence, Claim II follows.

Now, the existence of z and Claims I and II yield the theorem. ⊓⊔

Above theorems deserve a few remarks. First, the equality of two sets in
Claim II can not be done in a usual way showing that an element from the left
is also on the right hand side, and vice versa. Instead sets of words has to be
considered. Second, although in three element case the reduction of the proof of
Theorem 7.2 does not lead to a marked instance, the branching point approach is
a cornerstone in the proof of Part (i) in Theorem 7.1 as well. Third, as shown by
Example 4, no similar result for the centralizer of a four element set is possible.
Finally, the above results lead to a nice characterization of all sets commuting
with a given set of the considered types, as seen in the next section.
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7.2 Characterization of commuting sets

In order to formulate results of this section, we say that a set X ⊆ A+ possesses
BTC-property if the following implication holds:

∀Y ⊆ A+ : if XY = Y X, then there exist I, J ⊆ N and V ⊆ A+

such that

(1) X = ∪i∈IV
i and Y = ∪j∈JV j .

Note that in the case of nonperiodic two or three element sets the condition (1)
reduces to

(2) Y = ∪i∈IX
i.

The above property is similar to that characterizing commutation of polyno-
mials and formal power series over noncommuting variables, cf. [Ber69], [Coh78]
and Chapter 9 in [Lot02]. The abbreviation BTC comes from there: Bergman
type of characterization. We could also say that sets satisfying BTC are of word
type.

We have:

Theorem 7.3. Any two element set possesses BTC. Consequently, any set com-
muting with X = {x, y}, where xy 6= yx, is of the form ∪i∈IX

i for some I ⊆ N.

Proof. It is enough to show that, if XY = Y X and w ∈ Y ∩Xn, then Xn ⊆ Y .
This, however, follows directly from the fact that X is a code: Indeed, assume
that y = x1 · · ·xn, with xi ∈ X . Then, for any xx+1 ∈ X , we can write

x1 · · ·xnxn+1 = x′
1w

′ with w′ ∈ Y ⊆ C(X) = X+.

Consequently, x1 = x′
1 and w′ = xn · · ·xn+1 ∈ Y . Repeating the argument we

obtain that any word in Xn is in Y . ⊓⊔

The similar reasoning can be used to obtain corresponding result for all
three element sets. In the this case the considerations are, however, much more
involved – due to the fact that such a set need not be a code.

Theorem 7.4. (i) Any three element set possesses BTC. In particular, any set
commuting with a nonperiodic three element set is a union of powers of X.

(ii) Any prefix set possesses BTC. Consequently, any set commuting with a
prefix set X is a union of powers of the primitive root of X.

We recall that Part (i) is optimal in the sense that the BTC property does
not hold for four element sets – as shown again by Example 9.

As a summary of the above we can say that the commutation of languages is
well understood in above special – but still very interesting – cases. Common to
all of those is that the centralizer is always trivial, although to show that is not
always easy. In general, tools to attack Conway’s Problem seems to be completely
lacking. Results of the next section might explain, at least intuitively, why the
problem looks so difficult. In Section 8 several open problems on commutation
are formulated.
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7.3 Undecidability results for finite sets

In this section we show that some simple questions on finite sets of words are
actually undecidable.

In [HIKS02] it was proved, based on Theorem 7.3:

Theorem 7.5. It is undecidable whether a given two element set and a given
context-free language commute.

In order to formulate another undecidability result on finite sets of words we
need some terminology. We call a morphism from A∗ into the monoid of finite
languages a finite substitution. Following [CS78] we say that two mappings f, g
defined on A∗ are equivalent on language L ⊆ A∗ if they map all the words of
L into the same element. In the case of finite substitutions the requirement is
that, for any w ∈ L, the finite languages f(w) and h(w) coincide. In [KL02] the
following undecidability result was proved.

Theorem 7.6. It is undecidable whether two given finite substitutions f and g
are equivalent on the language ab∗c, i.e., whether or not

f(abic) = g(abic) for all i ≥ 0.

Despite of being an interesting, and maybe also surprising, undecidability
result as such Theorem 7.6 has also a few nice consequences. We formulate here
just one of those, for the other see [KL02].

We say that two finite sets X and Y of words are conjugates if there exists a
set Z such that

XZ = ZY.

Actually, the above splits into two notions, since the set Z might be required to
be finite or allowed to be arbitrary. Problems on conjugacy was considered in
[CKM01]. However, the following natural question was not answered: is it decid-
able whether two given finite sets are conjugates? Even the case where X and
Y are biprefix sets seems not to be trivial, although decidable, cf. [CK03]. Note
that the above question can be viewed as a very special question on equations
over the monoid of (finite) languages: the equation contains only one unknown
and two constants. The equation

{a, ab, abb, ba, babb}Z = Z{a, ba, bba, bbba}

is an instance of such an equation. It happens to have a solution Z = {a, ab}.
The above motivates to propose a general problem. Is it decidable whether a

given equation with constants has a solution in the monoid of finite languages?
Very little seem to be known about this important problem. One thing sepa-

rating the finite set case from the word case is a consequence of our Theorem 7.6.
In order to formulate it we need some terminology. We consider infinite systems
of equations with a finite number of unknowns Ξ and constants C. We say that a
system {ui = vi|i ∈ N} is rational if the set {(ui, vi)|i ∈ N} is a rational subset
of (Ξ ∪ C)2. In other words there is a finite transducer mapping each left hand
side of the equations to the corresponding right hand side. Now, the corollary is:

42



Theorem 7.7. It is undecidable whether a given rational system of equations
over the monoid of finite sets of words has a solution.

Interestingly, the satisfiability problem for rational systems of word equations
is decidable. Indeed, such a system is computably equivalent to one of its finite
subsystems, and each finite system of equations can be encoded into a single
equation. The first reduction here is an effective variant of Ehrenfeucht Com-
pactness Property, that is Theorem 4.5, cf. [HK97], and the second reduction is
easy, see e.g., [Hm71]. So the satisfiability problem for rational word equations
is reduced to that of a single equation, i.e. to the seminal result of Makanin.

8 Open Problems

In this final section we formulate several open problems, many of those being
already discussed in previous sections. We start with two decidability questions
of matrices.

Problem 1. Given a finite set of n×n matrices over integers with n ≥ 3, is it
decidable whether or not the identity matrice is obtainable as a product of these
matrices?

Problem 2. Given a finite set of 2 × 2 matrices over natural numbers is it
decidable whether the multiplicative semigroup generated by these matrices is
free?

Of course, the decidability of Problem 1 may depend on the parameter n,
for n = 2 the problem is decidable, see [CK02]. As an evidence of an intriguing
nature of Problem 2 we recall from [CHK99] that we do not even know whether
the concrete matrices

A =

(

2 0
0 3

)

B =

(

3 5
0 5

)

generate a free semigroup. Accordingly the problem is open even in the case
n = 2.

As a consequence of the critical factorization theorem we know that two-way
infinite noncyclic word w cannot have n + 1 pairwise disjoint factorizations of a
set X of n words. On the other hand, Theorem 4.3 shows that if such a word w
has two disjoint X-factorizations then the combinatorial rank of X is at most
card(X)− 1. This motivates the following:

Problem 3. Let X be a finite set of words, and w a two-way noncyclic in-
finite word. What is the relation between the number of pairwise disjoint X-
factorizations of w, in symbols df(X), and the combinatorial rank of X , in sym-
bols rc(X)? More concretely, is it true that rc(X) ≤ card(X) − df(X) + 1?
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A result in [KM02] proves the inequality of Problem 3 in a special case when
X is a prefix set and df(X) = 3.

Two other open problems on dimension properties concern independent sys-
tems of equations.

Problem 4. Does there exist an independent system of three constant-free
equations with three unknowns possessing a noncyclic solution?

Problem 5. (i) Does there exist a function f : N → N such that any indepen-
dent system of constant-free equations with n unknowns contains at most f(n)
equations?

(ii) Does the requirement of part (i) hold for the function f(n) = 2n?

As shown in [KP96] the Ehrenfeucht Compactness Property might hold in
some monoids, like in Abelian monoids, without giving any bound asked in
Problem 5. We recall that some lower bounds for the function f(n) are also
given in [KP96]

Next we formulate a few problems on the avoidability (for additional ques-
tions and comments, see [Cur93], the recent survey of J. Currie [Cur03], and the
paper [RS03]).

Problem 6. Is it decidable whether a given morphism h : A∗ → B∗ is k-free
for a fixed integer k ≥ 3?

We recall that repetition threshold on an n letter alphabet is the smallest
number s(n) such that infinite words on n letters can contain only repetitions
of order less than or equal to s(n).

Problem 7. Is the repetition threshold for n ≥ 12 equal to n/(n − 1)?

Another crucial questions on avoidable patterns are:

Problem 8. Does there exist a pattern which is avoidable in a five-letter
alphabet but unavoidable in a four-letter alphabet?

Problem 9. Is the size of the smallest alphabet where a give pattern is avoid-
able, i.e., its avoidability index, algorithmically computable?

In order to formulate our next problem we say that u is a sparse subword
of a word w if it is obtained from w by deleting some occurrences of letters,
i.e., there exist words u1, . . . , ut and v0, . . . , vt such that u = u1 · · ·ut and w =
v0u1v1 · · ·utvt. Then, for k > 0, k spectrum of a word w is the set of all sparse
subwords of w with multiplicities and of length at most k. Hence, the k spectrum
is a formal polynomial of degree k. For example, the 2 spectrum of the word aabba
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is 3a+2b+3aa+4ab+2ba+bb. In algebra these polynomials are often defined as
results of Magnus Transform of a word. Now we formulate, for more see [Ma00]:

Problem 10. What is the minimal k = k(n) such that the k spectrum of a
word w of length n determines w uniquely?

Superpolynomial lower bound for k(n) was recently shown in [DS02].

One of the amazing sequences of words is that of Kolakoski word k. It can
be defined as a self-reading sequence by the following rule: it consists of blocks
of 1s and 2s each block being of length either 1 or 2, and the length of the ith
block is equal to the ith element of the word. Consequently, the word k starts as

k = 2211212212211... .

Descriptionally the Kolakoski word is quite easy: it can be defined by iterating a
sequential transducer, or even by iterating periodically two morphisms, namely

h1 :
{

1 7→ 2,
2 7→ 22

and h2 :
{

1 7→ 1,
2 7→ 11

.

There is a larger literature on the Kolakoski sequence, e.g., [Dek95], [Car93a],
[Car94], [BL03], [Ch93] and [Le94].

However, very little is known about the Kolakoski word. For example, it is not
known whether the numbers of 1s and 2s are asymptotically equal. Connected
to this tutorial we can state:

Problem 11. Is the subword complexity of Kolakoski word at most quadratic?

Problem 12. Is Kolakoski word obtainable as a morphic image of a fixed-point
of an iterated morphism?

Clearly, a negative answer to Problem 11 would give that for Problem 12,
due to Theorem 6.7. It is also relatively easy to show that k is not obtainable as
a fixed-point of an iterated morphism, see e.g. [CKL92].

We conclude with open problems on finite (and rational) sets of words, in
particular, on commutation of those. We formulate several variants of Conway’s
Problem:

Problem 13. Is the centralizer of a given rational set a) rational, b) recursive?

Problem 14. Is the centralizer of a given finite set a) finitely generated, b)
rational, c) recursive?

As other problems on finite sets of words we state
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Problem 15. Is it decidable whether two finite sets X and Y ⊆ A+ are
conjugates, i.e., there exists a set Z such that XZ = ZY ?

Problem 16. Is it decidable whether a given equation with constants has a
solution in the monoid of finite languages?

Note that Problem 15 contains actually two variants depending on whether
Z is allowed to be arbitrary or finite. In Problem 16 the constants are, of course,
elements of the monoid, i.e. finite languages.
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tronomes, vols. 1,2, Berlin, 1772.

[Be95] J. Berstel, Axel Thue’s papers on repetition in words: a translation, Pub-
lications de Laboratoire de Combinatoire et d’Informatique Mathématique,
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[LS01] F. Levé and P. Séébold, Proof of a conjecture on word complexity, Bull.
Belg. Math. Soc. 8, 277–291, 2001.

[Lot83] M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics 17,
Addison-Wesley, 1983. Reprinted in the Cambridge Mathematical Library,
Cambridge University Press, 1997.

[Lot02] M. Lothaire, Algebraic Combinatorics on Words. Encyclopedia of Mathe-
matics 90, Cambridge University Press, 2002.

[LS77] R. C. Lyndon and P. E. Schupp, Combinatorial Group Theory, Springer-
Verlag, 1977.

[LS62] R. C. Lyndon and M. P. Schützenberger, The equation am = bncp in a free
group, Michigan Math J. 9, 289–298, 1962.

[MKS66] W. Magnus, A. Karrass and D. Solitar, Combinatorial Group Theory, Wi-
ley, 1966.

[Ma77] G. S. Makanin, The problem of solvability of equations in a free semigroup,
Mat. Sb. 103, 147–236, 1977 (English transl. in Math. USSR Sb. 32, 129–
198).

[Ma00] J. Manuch, Characterization of a word by its subwords, Proc. of DLT,
210–219, World Scientific, 2000.

51



[Ma02] J. Manuch, Defect Theorems and Infinite Words, Ph.D. Thesis, University
of Turku, TUCS Dissertations 41, 2002.

[Ma1882] A.A. Markov, Sur une question de Jean Bernoulli, Math. Ann. 19, 27–36,
1882.

[MP92] F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word,
RAIRO Theor. Inform. Appl. 26, 199–204, 1999.

[MRS95] F. Mignosi, A. Restivo, and S. Salemi, A periodicity theorem on words and
applications, In: J. Wiedermann and P. Hajek (Eds.), Mathematical Foun-
dations of Computer Science 1995, LNCS 969, 337–348, Springer-Verlag,
1995.

[MRS98] F. Mignosi, A. Restivo, and S. Salemi, Periodicity and golden ratio, Theo-
ret. Comput. Sci. 204, 153–167, 1998.

[MRS03] F. Mignosi, A. Restivo, and P.V. Silva, On Fine and Wilf’s theorem for
bidimensional words, Theoret. Comput. Sci. 292, 245–262, 2003.

[Mo21] M. Morse, Reccurent geodesics on a surface of negative curvature, Trans.
Am. Math. Soc. 22, 84–100, 1921.

[Mo38] M. Morse, A solution of the problem of infinite play in chess, Bull. Amer.
Math. Soc. 44, 632, 1938.

[MH38] M. Morse and G. Hedlund, Symbolic dynamics, Amer. J. Math. 60, 815–
866, 1938.

[MH40] M. Morse and G. A. Hedlund, Symbolic dynamics II: Sturmian trajectories.
Amer. J. Math. 62, 1–42, 1940.

[MH44] M. Morse and G. Hedlund, Unending chess, symbolic dynamics and a prob-
lem in semigroups, Duke Math. J. 11, 1–7, 1944.

[MO92] J. Moulin-Ollagnier, Proof of Dejean’s conjecture for alphabets with 5, 6,
7, 8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95, 187–205, 1992.
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Gaspard Monge, Université de Marne-la-Vallée, 2002.

[Pe02] I. Petre, Commutation Problems on Set of Words and Formal Power Series,
Ph.D. Thesis, University of Turku, TUCS Dissertations 38, 2002.

[Pla99] W. Plandowski, Satisfiability of word equations is in PSPACE, Proc. of
FOCS, 495–500, 1999.

[Ple70] P. A. B. Pleasants, Non-Repetitive Sequences, Math. Proc. Cambridge
Philos. Soc. 68, 267–274, 1970.
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