

SELECTED TOPICS IN

INFORMATION AND

CODING THEORY

Series on Coding Theory and Cryptology

Editors: Harald Niederreiter (National University of Singapore, Singapore) and
San Ling (Nanyang Technological University, Singapore)

Published

Vol. 1 Basics of Contemporary Cryptography for IT Practitioners
by B. Ryabko and A. Fionov

Vol. 2 Codes for Error Detection
by T. Kløve

Vol. 3 Advances in Coding Theory and Cryptography
eds. T. Shaska et al.

Vol. 4 Coding and Cryptology
eds. Yongqing Li et al.

Vol. 5 Advances in Algebraic Geometry Codes
eds. E. Martínez-Moro, C. Munuera and D. Ruano

Vol. 6 Codes over Rings
ed. P. Solé

Vol. 7 Selected Topics in Information and Coding Theory
eds. I. Woungang, S. Misra and S. Chandra Misra

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

For photocopying of material in this volume, please pay a copying fee through the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to
photocopy is not required from the publisher.

ISBN-13 978-981-283-716-5
ISBN-10 981-283-716-7

Typeset by Stallion Press
Email: enquiries@stallionpress.com

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means,
electronic or mechanical, including photocopying, recording or any information storage and retrieval
system now known or to be invented, without written permission from the Publisher.

Copyright © 2010 by World Scientific Publishing Co. Pte. Ltd.

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601

UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

Printed in Singapore.

SELECTED TOPICS IN INFORMATION AND CODING THEORY
Series on Coding Theory and Cryptology — Vol. 7

Dedicated to

Isaac’s wife: Clarisse and sons: Clyde, Lenny, Kylian

Subhas’s daughter: Devarati

Sudip’s son: Devadeep

This page intentionally left blankThis page intentionally left blank

PREFACE

Overview and Goals

Information and Coding Theory research and applications are undergoing

rapid advancements. The last few years have witnessed rapid advancements

in Information and Coding Theory research and applications. This book

provides a comprehensive guide to selected topics, both ongoing and

emerging, in Information and Coding Theory. Consisting of contributions

from well known and high profile researchers in their respective

specialties, topics that are covered include applications of coding theory

to computational complexity, algebraic combinatorics in coding theory,

codes construction and existence, source coding, channel capacity, network

coding, and few other selected topics in Information and Coding Theory

research.

The book has been prepared keeping in mind that it needs to prove

itself to be a valuable resource dealing with both the important core and

the specialized issues in Information and Coding Theory. We hope that it

will be a valuable reference for students, instructors, researchers, engineers,

and industry practitioners in these fields. All of the chapters are integrated

in a manner that renders the book as a supplementary reference volume

and/or textbook for use in both undergraduate and graduate courses on

Information and Coding Theory. Each chapter is of an expository, but also

of a scholarly, tutorial, or survey style, on a particular topic within the

scope of Information and Coding Theory.

Organization and Features

The book is organized into 15 chapters, each chapter written by topical

area experts. These chapters are grouped into four parts.

vii

viii Preface

Part 1 is devoted to the applications of coding theory to computational

complexity, and is composed of three chapters: Chaps. 1–3. Chapter 1

discusses several theoretical methods for analyzing the linear complexity

and related complexity measures and proposes several classes of interesting

sequences with high linear complexity. Chapter 2 focuses on the

construction of high coding gain lattices with low decoding complexity

from good codes in larger dimensions, and proposes a possible lattice

construction with high coding gain using turbo codes and Low Density

Parity Check codes. Chapter 3 is dedicated to the issues of cooperative

communication in wireless relay networks. Various constructions of

the distributed space-time block codes with low maximum-likelihood

decidability are surveyed, and new upper bounds on the maximum rate

of certain classes of single-symbol decodable distributed space-time block

codes are proposed.

Part 2 focuses on methods of algebraic combinatorics in coding theory,

and methods of codes construction and existence. It is composed of four

chapters: Chaps. 4–7. Chapter 4 discusses in-depth the interplay of coding

theory and algebraic combinatorics, focusing on the interaction of codes

with combinatorial designs. Chapter 5 discusses ways and results in which

to define, construct, prove theorems, and analyze codes from group rings in

general, using both zero-divisor and units within a group ring. The codes

derived are described as either zero-divisor or unit-derived codes. Chapter

6 is a continuation of the work initiated in Chapter 5, by presenting a

new algebraic group ring-based method for constructing codes with no

short cycles in the check matrix, and a general algebraic method for

constructing Low Density Parity Check codes with no short cycles. Chapter

7 presents the construction of some well-known classes of algebraic block

codes, and discusses recent generalizations of quasi-cyclic codes, as well as

some algebraic and combinatorial methods of obtaining new codes from

existing ones.

Part 3 centers on source coding, channel capacity, and network coding

issues. It is composed of three chapters: Chaps. 8–10. Chapter 8 introduces

a new approach to estimation, prediction and hypothesis testing for time

series based on ideas of universal coding or universal data compression.

Chapter 9 presents a subjective approach to network coding, which is

concerned with the deterministic multicast encoding of cyclic networks.

This topic is presented at a level of detail that is not found elsewhere in

the literature. Chapter 10 addresses the problem of transmission of several

distributed sources over a multiple access channel with side information

Preface ix

at the sources and the decoder, and proposes a joint source channel

coding approach, which generalizes previous results available on the studied

problem.

Part 4 addresses other selected topics in Information and Coding Theory,

and is composed of five chapters; Chaps. 11–15. Chapter 11 presents a

tutorial exposition of Low Density Parity Check codes. Chapter 12 focuses

on some selected topics in the theory of variable length codes, including

connections with codes for constrained channels and sources. Chapter 13

deals with decoding techniques and methods for finding the minimum

distance of linear codes by means of Gröbner bases. Chapter 14 presents

an overview of cooperative diversity, along with latest advances and open

issues in this evolving field. In Chap. 15, algebraic coding theory is used as

an alternative way to define secure cryptographic primitives.

We list below some of the important features of this book, which, we

believe, would make it a valuable resource for our readers:

• This book is designed, in structure and content, to aid the learning

process with the intention of making the book useful at all learning levels.

• Most of the chapters of the book are authored by prominent

academicians/researchers, practitioners, in Information and Coding

Theory that have been working with these topics for quite a few years

now and have thorough understanding of the concepts.

• The authors of this book are distributed in a large number of countries

and most of them are affiliated with institutions of worldwide repute.

This gives this book an international flavor.

• Most of the chapters in this book have a distinct section providing

direction for future research, which, particularly, targets researchers

working in these areas. We believe that this section should provide insight

to the researchers about some of the current research issues.

• The authors of each chapter have attempted to provide a comprehensive

bibliography, which should greatly help the readers interested further to

dig into the topics.

• Most of the chapters of this book have a separate section outlining

thoughts for practitioners. We believe that this section in every chapter

will be particularly useful for industry practitioners working directly with

the practical aspects behind enabling these technologies in the field.

• All chapters, except one, provide a set of questions at the end that can

help in assessing the understanding of the readers. In most chapters,

solutions are provided to some of these questions.

x Preface

• To make the book useful for pedagogical purposes, all chapters of the

book have a corresponding set of presentation slides. The slides can be

obtained as a supplementary resource by contacting the publisher, World

Scientific, Singapore.

We have made attempts in all possible ways we could to make the different

chapters of the book look as much coherent and synchronized as possible.

However, it cannot be denied that due to the fact chapters were written

by different authors, it was not fully possible to fully achieve this task. We

believe that this is a limitation of most edited books of this sort.

Target Audience

The book is written by primarily targeting the student community. This

includes the students of all levels — those getting introduced to these areas,

those having an intermediate level of knowledge of the topics, and those

who are already knowledgeable about many of the topics. To keep up with

this goal, we have attempted to design the overall structure and content

of the book in such a manner that makes it useful at all learning levels.

To aid in the learning process, almost all chapters have a set of questions

at the end of the chapter. Also, in order that teachers can use this book

for classroom teaching, the book also comes with presentation slides and

sample solutions to exercise questions, which are available as supplementary

resources.

The secondary audience for this book is the research community,

whether they are working in the academia or in the industry. To meet the

specific needs to this audience group, certain chapters of the book provide

directions for future research.

Finally, we have also taken into consideration the needs to those

readers, typically from the industries, who have quest for getting insight into

the practical significance of the topics, i.e. how the spectrum of knowledge

and the ideas are relevant for real-life applications of coding and information

theory.

Supplementary Resources

As mentioned earlier, the book comes with presentation slides for each

chapter, which can be used for classroom instruction by teachers.

Teachers can contact the publisher, World Scientific, Singapore, to get

access to these resources.

Preface xi

Acknowledgments

We are extremely thankful to the 25 authors of the 15 chapters of this

book, who have worked very hard to bring this unique resource forward for

help of the student, researcher, and practitioner community. The authors

were very much interactive at all stages of preparation of the book from

initial development of concept to finalization. We feel it is contextual to

mention that as the individual chapters of this book are written by different

authors, the responsibility of the contents of each of the chapters lies with

the concerned authors.

We are also very much thankful to our colleagues in the World Scientific

publishing and marketing teams, in particular, Ms. Kimberly Chua, Ms.

Chelsea Chin, and Ms. Mei Kian, who tirelessly worked with us and guided

us in the publication process. Special thanks also go to them for taking

special interest in publishing this book, considering the current worldwide

market needs for such a book.

Finally, we would like to thank our parents, Mr. J. Sime, Ms. C. Seupa,

Prof. J.C. Misra, Ms. Shorasi Misra, our wives Clarisse, Satamita, and

Sulagna, and our children Clyde, Lenny, Kylian, Babai, and Tultuli, for the

continuous support and encouragement they offered during the course of

this project.

Dr. Isaac Woungang

Toronto, ON, Canada

Dr. Subhas Chandra Misra

Kanpur, UP, India

Dr. Sudip Misra

Kharagpur, WB, India

This page intentionally left blankThis page intentionally left blank

CONTENTS

Preface . vii

Contributors . xv

Part 1: Applications of Coding Theory to Computational

Complexity . 1

Chapter 1: Linear Complexity and Related Complexity Measures . . 3

Arne Winterhof

Chapter 2: Lattice and Construction of High Coding

Gain Lattices from Codes . 41

Mohammd-Reza Sadeghi

Chapter 3: Distributed Space-Time Codes with Low ML

Decoding Complexity . 77

G. Susinder Rajan and B. Sundar Rajan

Part 2: Methods of Algebraic Combinatorics in Coding

Theory/Codes Construction and Existence 119

Chapter 4: Coding Theory and Algebraic Combinatorics 121

Michael Huber

Chapter 5: Block Codes from Matrix and Group Rings 159

Paul Hurley and Ted Hurley

Chapter 6: LDPC and Convolutional Codes from Matrix

and Group Rings . 195

Paul Hurley and Ted Hurley

xiii

xiv Contents

Chapter 7: Search for Good Linear Codes in the Class

of Quasi-Cyclic and Related Codes. 239

Nuh Aydin and Tsvetan Asamov

Part 3: Source Coding/Channel Capacity/

Network Coding . 287

Chapter 8: Applications of Universal Source Coding to Statistical

Analysis of Time Series . 289

Boris Ryabko

Chapter 9: Introduction to Network Coding for Acyclic

and Cyclic Networks . 339

Ángela I. Barbero and Øyvind Ytrehus

Chapter 10: Distributed Joint Source-Channel Coding

on a Multiple Access Channel . 423

Vinod Sharma and R. Rajesh

Part 4: Other Selected Topics in Information

and Coding Theory . 469

Chapter 11: Low-Density Parity-Check Codes and the Related

Performance Analysis Methods . 471

Xudong Ma

Chapter 12: Variable Length Codes and Finite Automata 505

Marie-Pierre Béal, Jean Berstel, Brian H. Marcus,

Dominique Perrin, Christophe Reutenauer

and Paul H. Siegel

Chapter 13: Decoding and Finding the Minimum Distance

with Gröbner Bases: History and New Insights 585

Stanislav Bulygin and Ruud Pellikaan

Chapter 14: Cooperative Diversity Systems for Wireless

Communication . 623

Murat Uysal and Muhammad Mehboob Fareed

Chapter 15: Public Key Cryptography and Coding Theory 663

Pascal Véron

CONTRIBUTORS

Nuh Aydin

Department of Mathematics

Kenyon College, Gambier, OH 43022, USA

aydinn@kenyon.edu

Tsvetan Asamov

Department of Mathematics

Kenyon College, Gambier, OH 43022, USA

asamovt@kenyon.edu

Marie-Pierre Béal

Institut Gaspard-Monge (IGM)

Université Paris-Est

77454 Marne-la-Vallée Cedex 2, Paris, France

beal@univ-mlv.fr

Jean Berstel

Institut Gaspard-Monge (IGM), Université Paris-Est

77454 Marne-la-Vallée Cedex 2, Paris, France

berstel@univ-mlv.fr

Dominique Perrin

Institut Gaspard-Monge (IGM)

Université Paris-Est

77454 Marne-la-Vallée Cedex 2, Paris, France

dominique.perrin@esiee.fr

Brian H. Marcus

University of British Columbia

B.C., Vancouver, Canada

marcus@math.ubc.ca

xv

xvi Contributors

Christophe Reutenauer

LaCIM, Université du Québec à Montréal

Montréal, Canada

reutenauer.christophe@uqam.ca

Paul H. Siegel

Department of Electrical and Computer Engineering

University of California at San Diego, San Diego, USA

psiegel@ucsd.edu

Boris Ryabko

Siberian State University of Telecommunications

and Informatics and Institute of Computational Technology

of Siberian Branch of Russian Academy of Science, Russia

boris@ryabko.net

Stanislav Bulygin

Department of Mathematics

University of Kaiserslautern

P.O. Box 3049, 67653 Kaiserslautern, Germany

bulygin@mathematik.uni-kl.de

Ruud Pellikaan

Department of Mathematics and Computing Science

Eindhoven University of Technology, P.O. Box 513

NL-5600 MB, Eindhoven, The Netherlands

g.r.pellikaan@tue.nl

Michael Huber

Institut für Mathematik, Technische Universität Berlin,

Straße des 17. Juni 136, D-10623, Berlin, Germany

mhuber@math.TU-Berlin.DE

Murat Uysal

Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario, Canada, N2L3G1

muysal@ece.uwaterloo.ca

Muhammad Mehboob Fareed

Department of Electrical and Computer Engineering

University of Waterloo, Waterloo, Ontario, Canada

mmfareed@ece.uwaterloo.ca

Contributors xvii

Angela I. Barbero

Department of Applied Mathematics

University of Valladolid

47011 Valladolid, Spain

angbar@wmatem.eis.uva.es

Oyvind Ytrehus

Department of Informatics

University of Bergen, N-5020 Bergen, Norway

oyvind@ii.uib.no

G. Susinder Rajan

Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore 560012, India

susinder@ece.iisc.ernet.in

B. Sundar Rajan

Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore 560012, India

bsrajan@ece.iisc.ernet.in

Mohammd-Reza Sadeghi

Faculty of Mathematics and Computer Science

Amirkabir University of Technology Hafez Ave.

Tehran, Iran

msadeghi@aut.ac.ir

Vinod Sharma

Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore 560012, India

vinod@ece.iisc.ernet.in

R. Rajesh

Department of Electrical Communication Engineering

Indian Institute of Science, Bangalore 560012, India

rajesh@pal.ece.iisc.ernet.in

Paul Hurley

IBM Research

Zurich Research Laboratory, Switzerland

pah@zurich.ibm.com

xviii Contributors

Ted Hurley

Department of Mathematics

National University of Ireland

Galway, Ireland

ted.hurley@nuigalway.ie

Pascal Véron

Institut de Mathématiques de Toulon

Université du Sud Toulon-Var

Toulon, France

veron@univ-tln.fr

Xudong Ma

Department of Electrical and Computer Engineering

University of Waterloo, Waterloo

Ontario N2L 3G1, Canada

x3ma@bbcr.uwaterloo.cay

Chapter 12

VARIABLE-LENGTH CODES AND

FINITE AUTOMATA

MARIE-PIERRE BÉAL∗, JEAN BERSTEL∗,
BRIAN H. MARCUS†, DOMINIQUE PERRIN∗,

CHRISTOPHE REUTENAUER‡

and PAUL H. SIEGEL¶

∗Institut Gaspard-Monge (IGM), Université Paris-Est, France

†University of British Columbia, Vancouver, Canada

‡LaCIM, Université du Québec à Montréal, Canada

¶Department of Electrical and Computer Engineering, UCSD, USA

The aim of this chapter is to present, in appropriate perspective, some selected
topics in the theory of variable-length codes. One of the domains of applications
is lossless data compression. The main aspects covered include optimal prefix
codes and finite automata and transducers. These are a basic tool for encoding
and decoding variable-length codes. Connections with codes for constrained
channels and sources are developed in some detail. Generating series are
used systematically for computing the parameters of encodings such as length
and probability distributions. The chapter contains numerous examples and
exercises with solutions.

12.1. Introduction

Variable-length codes occur frequently in the domain of data compression.

Historically, they appeared at the beginning of modern information theory

with the seminal work of Shannon. One of the first algorithmic results is the

construction, by Huffman, of an optimal variable-length code for a given

weight distribution. Although their role in data communication has been

limited by their weak tolerance to faults, they are nonetheless commonly

used in contexts where error handling is less critical or is treated by other

methods.

505

506 M.-P. Béal et al.

Variable-length codes are strongly related to automata, and one of the

aims of this chapter is to highlight connections between these domains.

Automata are labeled graphs, and their use goes beyond the field of coding.

Automata can be used to implement encoders and decoders, such as for

compression codes, modulation codes, and convolutional error correcting

codes.

The use of variable-length codes in data compression is widespread.

Huffman’s algorithm is still frequently used in various contexts, and under

various forms, including in its adaptive version. In particular, Huffman

codes are frequently used in the compression of motion pictures. In another

setting, search trees are strongly related to ordered prefix codes, and

optimal ordered prefix codes, as constructed later, correspond to optimal

binary search trees.

Coding for constrained channels is required in the context of magnetic

or optical recording. The constraints that occur can be represented by finite

automata, and a coding method makes use of finite transducers. In this

context, the constraints are defined by an automaton, which in turn is

used to define a state-dependent encoder. Even if this encoder operates at

fixed rate, it can also be considered as a memoryless encoder based on two

variable-length codes with the same length distribution, that is, with the

same number of words for each length.

Although convolutional error correcting codes are fixed-length codes,

their analysis involves use of finite automata because encoders and decoders

are described in terms of labeled graphs.

Specific properties of automata correspond to properties of variable-

length codes. Typically, unambiguity in automata corresponds to unique

decipherability.

Variable-length codes are also used for the representation of natural

languages. They play a role, for instance, in phonetic transcription of

languages and in the transformation from text to speech, or in speech

recognition. We will mention examples in Sec. 12.10.

The mathematical relationship between codes and automata is very

deep, as shown in early pioneering investigations by Schützenberger.

He discovered and developed a new branch of algebra relating unique

decipherability of codes with the theory of semigroups. There are still

difficult open problems in the theory of variable-length codes. One of them

is the commutative equivalence conjecture. It has practical significance in

relation with optimal coding. We will discuss this and other open problems

in Sec. 12.13.

Variable-Length Codes and Finite Automata 507

The material covered by the chapter is as follows. We start with a few

definitions and examples, and then address the problem of constructing

optimal codes under various types of constraints. Typically, we consider

alphabetic coding under cost conditions.

We study in detail prefix codes used for representing integers, such as

Elias and Golomb codes.

Automata and transducers are introduced insofar as coding and

decoding operations are concerned. These are applied to two special

domains, namely coding with constraints on channels and constraints on

sources. They are important in applications, which are described here.

Reversible codes, also called bifix codes, have both practical significance

and deep mathematical properties, which we only sketch here.

The final section is concerned with synchronization. This is important

in the context of error recovery, and we present very recent theoretical

results such as the road coloring theorem.

The chapter is written at a level accessible to non-specialists. There

are few formal proofs, but key algorithms are described in considerable

detail and many illustrative examples are given. Exercises that reinforce

and extend the material are given at the end of most sections, and sketches

of solutions are provided. Some elementary questions and answers are also

included.

12.2. Background

The topic of this chapter is an introduction to some syntactic and

algorithmic problems of data transmission. In this sense, it is connected

with three main fields:

(1) coding and information theory;

(2) automata and formal language theory;

(3) algorithms.

In this section, we describe these connections, their historical roots and the

notions to which they relate.

The relationship between codes and automata can be traced back to

Shannon, who used labeled graphs to represent information sources. Later,

the notion of information lossless machine was introduced as a model for

reversible encoding [44]. These are the unambiguous transducers defined

below. The term lossless has remained in common use with the notion of

lossless methods for data compression. The main motivation for studying

508 M.-P. Béal et al.

variable-length codes is in data compression. In many coding systems,

encoding by variable-length codes is used in connection with other coding

components for error correction. The search for efficient data compression

methods leads to algorithmic problems such as the design of optimal prefix

codes under various criteria.

One of the main tools for encoding and decoding as presented here

is finite automata and transducers. In this context, finite automata are

particular cases of more general models of machines, such as pushdown

automata that can use an auxiliary stack and, more generally, Turing

machines that are used to define the notion of computability. The

theory of automata has also developed independently of coding theory

with motivations in algorithms on strings of symbols, in the theory of

computation and also as a model for discrete processes.

The basic result of automata theory is Kleene’s theorem asserting the

equivalence between finite automata and regular expressions and providing

algorithms to convert from automata to regular expressions and conversely.

This conversion is actually used in the context of convolutional codes to

compute the path weight enumerator (also called the transfer function) of

a convolutional code [48].

Inside the family of finite automata, several subclasses have been

studied, which correspond to various types of restrictions. An important

one is the class of aperiodic automata, which contains the classes of local

automata frequently used in connection with coding, in particular with

sliding block encoders and decoders.

One of the possible extensions of automata theory is the use of

multiplicities, which can be integers, real numbers, or elements of other

semirings (see [12, 18]). The ordinary case corresponds to the Boolean

semiring with just two elements 0, 1. This leads to a theory in which sets of

strings are replaced by functions from strings to a semiring. This point of

view has in particular the advantage of allowing the handling of generating

series and gives a method, due to Schützenberger, to compute them. We

will often use this method to compute generating series.

The well-known Huffman algorithm, described below, is the ancestor

of a family of algorithms used in the field of information searching. Indeed,

it can be used to build search trees as well as optimal prefix codes for

source compression. The design and analysis of search algorithms is part

of an important body of knowledge encompassing many different ideas

and methods, including, for example, the theory of hashing functions (see

[43]). Text processing algorithms find application in a variety of domains,

Variable-Length Codes and Finite Automata 509

ranging from bioinformatics to the processing of large data sets such as

those maintained by Internet search engines (see [46] for an introduction).

The topic of coding with constraints is related to symbolic dynamics,

which is a field in its own right. Its aim is to describe dynamical systems and

mappings between them. Codes for constrained channels are a particular

case of these mappings (see [45]).

12.3. Thoughts for Practitioners

In this chapter, a wide variety of variable-length coding techniques are

presented. We consider source and channel models that take into account

the statistical properties of the source and the costs associated with

transmission of channel symbols. Given these models, we define a measure

of code optimality by which to evaluate the code design algorithms.

The resulting families of variable-length codes are intended for use in a

range of practical applications, including image and video coding, speech

compression, magnetic and optical recording, data transmission, natural

language representation, and tree search algorithms.

In practice, however, there are often system-related issues that are

not explicitly reflected in the idealized source and channel models, and

therefore are not taken into account by the code design algorithms. For

example, there are often tradeoffs between the efficiency of the code and

the complexity of its implementation in software or hardware. Encoding and

decoding operations may be subject to latency constraints or a requirement

for synchronous input–output processing. There is often a need for resilience

against errors introduced by the channel, as well as robustness in the

presence of variability in the source and channel characteristics. There may

also be a system interface that dictates the incorporation of specific code

properties or even a specific code. Finally, intellectual property concerns,

such as the existence of patents on certain codes or coding methods, can

play a role in practical code design. Such realities provide a challenge to

the coding practitioner in applying the various design methods, as well as

a stimulus for further research and innovation.

To illustrate some of these points, we examine two applications where

variable-length coding has found pervasive use — data compression and

digital magnetic recording.

Codes for data compression. In Sec. 12.6, we present the classical Huffman

algorithm for designing an optimal prefix code for a memoryless source with

specified symbol statistics and equal channel symbol costs. Codes produced

510 M.-P. Béal et al.

by this algorithm and its variants have been extensively employed in

data compression applications. Practical system issues are often addressed

during the code design process, or by using a modification of the standard

design approach.

As will be described later in the chapter, for a binary channel alphabet,

the Huffman algorithm builds a binary code tree from the bottom up by

combining two nodes with the smallest probabilities. If there are multiple

possibilities for selecting such pairs of nodes, all choices lead to codes

with the same average codeword length. However, this is not true of the

variance of the codeword lengths, and a large variance could have an

impact on the implementation complexity if the code is incorporated into

a data transmission system that calls for a constant transmission rate.

This problem can be mitigated if the practitioner follows a simple rule

for judiciously combining nodes during the generation of the code tree,

resulting in a Huffman code with the smallest possible variance. There are

also variants of the Huffman coding that help to control the maximum

length of a codeword, a parameter that also may influence implementation

complexity of the code.

Another practical consideration in applying Huffman codes may be the

ease of representing the code tree. The class of canonical Huffman codes has

a particularly succinct description: the codewords can be generated directly

from a suitably ordered list of codeword lengths. Canonical codes are also

very amenable to fast decoding and are of particular interest when the

source alphabet is large. Fortunately, a code designed using the standard

Huffman algorithm can be directly converted into a canonical code.

The practitioner may also encounter situations where the source

statistics are not known in advance. In order to deal with this situation,

one can use adaptive Huffman coding techniques. Application of adaptive

coding, though, requires careful attention to a number of implementation

related issues.

Huffman codes are generally not resilient to channel symbol errors.

Nevertheless they have some inherent synchronization capabilities and, for

certain length distributions, one can design synchronized Huffman codes.

Typically, though, in order to ensure recovery within a reasonable time

after a channel error, substantial modifications to the coding scheme are

necessary.

Despite the availability of more efficient data compression methods,

such as arithmetic coding, Huffman coding and its variants continue to

play a role in many text and multimedia compression systems. They are

Variable-Length Codes and Finite Automata 511

relatively effective, simple to implement, and, as just discussed, they offer

some flexibility in coping with a variety of practical system issues. For

further details, see, for example, [58].

Codes for digital magnetic recording. In Sec. 12.9, we consider the problem

of encoding binary source sequences into binary channel sequences in which

there are at least d and at most k 0’s between consecutive 1’s, for specified

0 ≤ d < k. This [d, k]-constraint is used as a channel model in magnetic

recording.

One simple approach to encoding a binary source sequence into the

[d, k]-constraint uses the idea of a bit-stuffing encoder. The bit-stuffing

encoder generates a code sequence by inserting extra bits into the source

sequence to prevent violations of the [d, k]-constraint. It uses a counter

to keep track of the number of consecutive 0’s in the generated sequence.

When the number reaches k, the encoder inserts a 1 followed by d 0’s.

Whenever the source bit is a 1, the encoder inserts d 0’s. The decoder is

correspondingly simple. It also keeps track of the number of consecutive

0’s. Whenever the number reaches k, it removes the following d + 1 bits

(the 1 and d 0’s that had been inserted by the encoder). When the decoder

encounters a 1, it removes the following d bits (the d 0’s that had been

inserted by the encoder). The bit-stuffing encoder can also be recast as

a variable-length code, as shown for the special case [d, k] = [2, 7] in

Fig. 12.1. A source sequence can be uniquely parsed into a sequence of the

source words shown, possibly followed by a prefix of a word. Each source

word is then encoded into a corresponding channel word according to the

table. Although the encoding and decoding operations are extremely simple

conceptually, and the decoder resynchronizes with only a moderate delay

following an erroneous channel bit, this code is not suitable for use in a disk

drive because it does not have fixed encoding and decoding rate.

source channel

1 001

01 0001

001 00001

0001 000001

00001 0000001

00000 00000001

Fig. 12.1. Variable-length [2,7] bit-stuffing code.

512 M.-P. Béal et al.

source channel

10 0100

11 1000

000 000100

010 100100

011 001000

0010 00100100

0011 00001000

Fig. 12.2. The [2, 7] Franaszek code.

In Sec. 12.9, we present another variable-length [2, 7] code, the

Franaszek code, whose encoder mapping is shown in Fig. 12.2. This encoder

has a fixed encoding rate of 1/2, since each source word is mapped to

a codeword with twice its length. In fact, as shown in Sec. 12.9, this

code can be implemented by a rate 1:2, 6-state encoder that converts

each source bit synchronously into two channel bits according to simple

state-dependent rules. The decoder is also synchronous, and it decodes a

pair of channel bits into a single source bit based upon the contents of

an 8-bit window containing the channel bit pair along with the preceding

pair and the next two upcoming pairs. This sliding-window decoding limits

to four bits the propagation of decoding errors caused by an erroneous

channel bit.

This code is also efficient, in the sense that the theoretical upper bound

on the rate of a code for the [2, 7] constraint is approximately 0.5172.

Moreover, among [2, k]-constraints, the [2, 7]-constraint has the smallest

k constraint that can support a rate 1/2 code. This code was patented by

IBM and was extensively used in its commercial disk drive products.

The construction of the Franaszek code involved certain choices along

the way. For example, a different choice of the assignment of source words to

channel codewords would potentially affect the implementation complexity

as well as the worst-case decoder error propagation. Virtually all code design

methodologies share this characteristic, and the practitioner has to exercise

considerable technical insight in order to construct the best code for the

particular situation.

For example, using the state-splitting algorithm discussed later in the

chapter, one can construct another rate 1:2 code for the [2, 7]-constraint

that requires only five encoder states; however, the resulting maximum

error propagation of the decoder is increased to five bits. It is also possible

Variable-Length Codes and Finite Automata 513

to construct fixed-rate encoders for the [2,7]-constraint that have a higher

code rate than the Franaszek code; however, the encoder and decoder

implementation will very likely be more complex.

While some of the earliest [d, k]-constrained codes designed for disk

drives were standardized by the interface between the drive and the host

computer drive controller, the encoding and decoding functions eventually

migrated into the drive itself. This allowed coding practitioners to exercise

their creativity and invent new codes to meet their particular system

requirements. For further details about practical constrained code design,

see, for example, [39, 47].

12.4. Definitions and Notation

We start with some definitions and notation on words and languages.

Some notation. Given a finite set A called the alphabet, each element of

A is a letter, and a finite sequence of letters is called a word. The length of

a word is the number of its letters. The length of a word w is denoted by

|w|. The empty word, usually denoted by ε, is the unique word of length 0.

The set of all words over the alphabet A is denoted by A∗. We denote

by juxtaposition the concatenation of words. If w, x, y, z are words, and if

w = xy, then x is a prefix, and y is a suffix of w. If w = xyz, then y is

called a factor (or also a subword or a block) of w.

Given sets X and Y of words over some alphabet A, we denote by XY

the set of all words xy, for x in X and y in Y . We write Xn for the n-fold

product of X , with X0 = {ε}. We denote by X∗ the set of all words that

are products of words in X , formally

X∗ = {ε} ∪ X ∪ X2 ∪ · · · ∪ Xn ∪ · · · .

If X = {x}, we write x∗ for {x}∗. Thus, x∗ = {xn |n ≥ 0} =

{ε, x, x2, x3, . . . , }. The operations of union, set product, and star (∗) are

used to describe sets of words by so-called regular expressions.

Generating series. Given a set of words X , the generating series of the

lengths of the words of X is the series in the variable z defined by

fX(z) =
∑

x∈X

z|x| =
∑

n≥0

anzn,

where an is the number of words in X of length n. It is easily checked that

fX∪Y (z) = fX(z) + fY (z), (12.1)

514 M.-P. Béal et al.

whenever X and Y are disjoint, and

fXY (z) = fX(z)fY (z), (12.2)

when the product XY is unambiguous, that is whenever xy = x′y′ with

x, x′ ∈ X , y, y′ ∈ Y we have x = x′, y = y′. We will also make use of

an extension (introduced later) of these series to the case where words are

equipped with a cost.

Encoding. We start with a source alphabet B and a channel alphabet A.

Consider a mapping γ that associates with each symbol b in B a non-empty

word over the alphabet A. This mapping is extended to words over B by

γ(s1 · · · sn) = γ(s1) · · · γ(sn). We say that γ is an encoding if it is uniquely

decipherable (UD) in the sense that

γ(w) = γ(w′) ⇒ w = w′

for each pair of words w, w′. In this case, each γ(b) for b in B is a codeword,

and the set of all codewords is called a variable-length code or VLC for

short. We will call this a code for short instead of the commonly used term

UD code.

Every property of an encoding has a natural formulation in terms of

a property of the associated code, and vice versa. We will generally not

distinguish between codes and encodings.

Let C be a code. Since Cn and Cm are disjoint for n �= m and since

the products Cn are unambiguous, we obtain from (12.1) and (12.2) the

following fundamental equation:

fC∗(z) =
∑

n≥0

(fC(z))n =
1

1 − fC(z)
. (12.3)

Alphabetic encoding. Suppose now that both B and A are ordered. The

order on the alphabet is extended to words lexicographically, that is, u < v

if either u is a proper prefix of v or u = zaw and v = zbw′ for some words

z, w, w′ and letters a, b with a < b.

An encoding γ is said to be ordered or alphabetic if b < b′ implies

γ(b) < γ(b′).

A set C of non-empty words over an alphabet A is a prefix code (suffix

code) if no element of C is a proper prefix (suffix) of another one. An

encoding γ of B is called a prefix encoding if the set γ(B) is a prefix code.

Prefix codes are especially interesting because they are instantaneously

decipherable in a left to right parsing.

Variable-Length Codes and Finite Automata 515

Table 12.1. A binary ordered encoding of
the five most frequent English words.

b γ(b)

A 000
AND 001
OF 01
THE 10
TO 11

Example 12.1. The set B is composed of five elements in bijection with

the five most common words in English, which are A, AND, OF, THE, and

TO. An ordered prefix encoding γ of these words over the binary alphabet

{0, 1} is given in Table 12.1.

A common way to represent an encoding — one that is especially

enlightening for prefix encodings — is by a rooted planar tree labeled in an

appropriate way.

Assume the channel alphabet A has q symbols. The tree considered has

nodes, which all have at most q children. The edge from a node to a child

is labeled with one symbol of the channel alphabet A. If this alphabet is

ordered, then the children are ordered accordingly from left to right. Some

of the children may be missing.

Each path from the root to a node in the tree corresponds to a word over

the channel alphabet, obtained by concatenating the labels on its edges. In

this manner, a set of words is associated with a set of nodes in a tree, and

conversely. If the set of words is a prefix code, then the set of nodes is the

set of leaves of the tree.

Thus, a prefix encoding γ from a source alphabet B into words over a

channel alphabet A is represented by a tree, and each leaf of the tree may in

addition be labeled with the symbol b corresponding to the codeword γ(b),

which labels the path to this leaf. Figure 12.3 represents the tree associated

with the ordered encoding γ of Table 12.1.

Fig. 12.3. The tree of the binary ordered encoding of the five most frequent English
words.

516 M.-P. Béal et al.

Fig. 12.4. The Elias code.

Example 12.2. The Morse code associates with each alphanumeric

character a sequence of dots and dashes. For instance, A is encoded by

“. -” and J is encoded by “. - - -.” Provided each codeword is terminated

with an additional symbol (usually a space, called a “pause”), the Morse

code becomes a prefix code.

Example 12.3. There are many representations of integers. The unary

representation of an integer n is composed of a sequence of n symbols 1.

The usual binary representation of positive integers is exponentially more

succinct than the unary representation, and thus is preferable for efficiency.

However, it is not adapted to representation of sequences of integers, since

it is not UD: for instance, 11010 may represent the number 26, or the

sequence 6, 2, or the sequence 1, 2, 2. The Elias code [19] maps a positive

integer into a word composed of its binary representation preceded by a

number of zeros equal to the length of this representation minus one. For

instance, the Elias encoding of 26 is 000011010. It is easily seen that the set

of Elias encodings of positive integers is a prefix code. The corresponding

tree is given in Fig. 12.4.

Example 12.4. There exist codes, even quite simple ones, which are

neither prefix nor suffix. This is the case of the encoding of a, b, and c by

00, 10, and 100. To see that this is indeed UD, one considers the occurrences

of 1. If the number of 0’s following a 1 is even, this block is decoded as

ca · · · a; otherwise, as ba · · ·a.

12.5. Basic Properties of Codes

We start with stating a basic numerical inequality on codes. It gives a

restriction on the distribution of lengths of codewords.

Variable-Length Codes and Finite Automata 517

Kraft–McMillan inequality. For any code C over an alphabet A with k

letters, one has the inequality, called the Kraft–McMillan inequality (see,

for instance, [5])

∑

c∈C

k−|c| ≤ 1. (12.4)

We prove the inequality below. Before that, we note that (12.4) is easy

to prove for a finite prefix code. Indeed, the inequality above can also be

written as

∑

i

aik
−i ≤ 1,

where ai is the number of code words in C of length i. Multiply both sides by

kn, where n is the maximal length of codewords. One gets
∑

i aik
n−i ≤ kn.

The left-hand side counts the number of words of length n that have a

prefix in C, and the inequality expresses the fact that each word of length

n has at most one prefix in C.

For general codes, the inequality (12.4) can be proved as follows.

Consider the generating series of the lengths of the words of the code C

fC(z) =
∑

c∈C

z|c| =
∑

n≥0

anzn,

where an is the number of codewords of length n. Then, since C is a code,

we have using (12.3):

fC∗(z) =
1

1 − fC(z)
.

Set fC∗(z) =
∑

n≥0 bnzn. Since C∗ is a subset of A∗, one has bn ≤ kn. Thus,

the radius of convergence of fC∗(z) is at least equal to 1/k. Since fC(r) is

increasing for real positive r and fC(0) = 0, the radius of convergence of

fC∗(z) is precisely the positive real number r such that fC(r) = 1. Thus,

fC(1/k) ≤ 1. This proves the Kraft–McMillan inequality.

There is a converse statement for the Kraft–McMillan inequality: For

any sequence ℓ1, . . . , ℓn of positive integers such that
∑

i k−ℓi ≤ 1, there

exists a prefix code C = {c1, . . . , cn} over A such that |ci| = ℓi.

This can be proved by induction on n as follows. It is clearly true for

n = 1. Suppose that n > 1 and consider ℓ1, . . . , ℓn satisfying
∑n

i=1 k−ℓi ≤ 1.

Since also
∑n−1

i=1 k−ℓi ≤ 1, there exists by induction hypothesis a prefix code

518 M.-P. Béal et al.

C = {c1, . . . , cn−1} such that |ci| = ℓi for 1 ≤ i ≤ n − 1. We multiply both

sides of the inequality
∑n−1

i=1 k−ℓi ≤ 1 by kℓn , and we obtain

n−1
∑

i=1

kℓn−ℓi ≤ kℓn − 1. (12.5)

Each of the terms kℓn−ℓi of the left-hand side of (12.5) counts the number of

words of length ℓn− ℓi, and can be viewed as counting the number of words

of length ℓn with fixed prefix ci of length ℓi. Since the code C is prefix, the

sets of words of length ℓn with fixed prefix ci are pairwise disjoint; hence,

the left-hand side of (12.5) is the number of words of length ℓn on the

alphabet A, which have a prefix in C. Thus, (12.5) implies that there exists

a word cn of length ℓn over the alphabet A, which does not have a prefix

in C. The set {c1, . . . , cn} is then a prefix code. This proves the property.

Entropy. Consider a source alphabet B. We associate with each symbol

b ∈ B a weight which we denote by weight(b). For now, we assume that B

is finite. The symbol weights are often normalized to sum to 1, in which

case they can be interpreted as probabilities. The entropy of the source

B = {b1, . . . , bn} with probabilities pi = weight(bi) is the number

H = −
n

∑

i=1

pi log pi,

where log is the logarithm to base 2. Actually, this expression defines what

is called the entropy of order 1. The same expression defines the entropy of

order k, when the pi’s are the probabilities of the blocks of length k and n

is replaced by nk.

Channel. In the context of encoding the symbols of a source alphabet B,

we consider a channel alphabet A with a cost, denoted cost(a), associated

with each channel symbol a ∈ A. The cost of a symbol is a positive integer.

The symbol costs allow us to consider the case where the channel symbols

have non-uniform lengths, and the cost of each symbol can be interpreted

as the time required to send the symbol. A classic example is the alphabet

composed of two symbols {.,−}, referred to as dot and dash, with costs 1

and 2, respectively. This alphabet is sometimes referred to as the telegraph

channel.

Variable-Length Codes and Finite Automata 519

The channel capacity is log 1/ρ where ρ is the real positive root of

∑

a∈A

zcost(a) = 1.

In the case of an alphabet with k symbols, each having cost equal to 1, this

reduces to ρ = 1/k. In the case of the telegraph channel, the capacity is the

positive root of ρ + ρ2 = 1, which is ρ ≈ 0.618.

The cost of a word w over the alphabet A is denoted by cost(w). It is

by definition the sum of the costs of the letters composing it. Thus,

cost(a1 · · · an) = cost(a1) + · · · + cost(an).

We extend the notation of generating series as follows. For a set of words,

X , denote by

fX(z) =
∑

x∈X

zcost(x)

the generating series of the costs of the elements of X . For convenience,

the cost function is omitted in the notation. Note that if the cost function

assigns to each word its length, the generating series of costs reduces to the

generating series of lengths considered earlier. Equations (12.1)–(12.3) hold

for general cost functions.

For a code C over the alphabet A, the following inequality holds, which

is a generalization of the Kraft–McMillan inequality (12.4):

∑

c∈C

ρcost(c) ≤ 1. (12.6)

The proof follows the same argument as for the Kraft–McMillan inequality

using the generating series of the costs of the words of C

fC(z) =
∑

c∈C

zcost(c) =
∑

n≥0

anzn,

where an is the number of words in C of cost equal to n. Similarly,

fA∗(z) =
∑

w∈A∗

zcost(w) =
∑

n≥0

bnzn,

where bn is the number of words in A∗ of cost equal to n. Now

fA∗(z) =
1

1 − fA(z)
,

520 M.-P. Béal et al.

and the radius of convergence of fA∗(z) is the number ρ, which is the real

positive root of
∑

a∈A zcost(a) = 1.

Optimal encoding. Consider an encoding γ, which associates with each

symbol b in B a word γ(b) over the alphabet A. The weighted cost is

W (γ) =
∑

b∈B

weight(b)cost(γ(b)).

When the weights are probabilities, Shannon’s fundamental theorem on

discrete noiseless channels [62] implies a lower bound on the weighted cost,

W (γ) ≥ H

log 1/ρ
.

To show this, we set B = {b1, . . . , bn}, pi = weight(bi), and qi = ρcost(γ(bi)).

We can then write (log ρ)W (γ) =
∑

pi log qi. Invoking the well-known

inequality lnx ≤ x−1, where ln denotes the natural logarithm, and applying

(12.6), we find

(log ρ)W (γ) −
∑

pi log pi =
∑

pi log
qi

pi

= (log e)
∑

pi ln
qi

pi

≤ (log e)
∑

pi

(

qi

pi

− 1

)

≤ (log e)
(

∑

qi − 1
)

≤ 0,

from which the bound follows.

The optimal encoding problem is the problem of finding, for given sets

B and A with associated weight and cost functions, an encoding γ such

that W (γ) is minimal.

The optimal prefix encoding problem is the problem of finding an

optimal prefix encoding. Most research on optimal coding has been devoted

to this second problem, both because of its practical interest and because of

the conjecture that an optimal encoding can always be chosen to be prefix

(see [41] and also the discussion below).

There is another situation that will be considered below, where the

alphabets A and B are ordered and the encoding is required to be ordered.

In the case of equal letter costs, that is, where all cost(a) are equal, the

cost of a letter may be assumed to be 1. The cost of a codeword γ(b) is

then merely the length |γ(b)|. In this case, the weighted cost is called the

average length of codewords. An optimal encoding can always be chosen to

be prefix in view of the Kraft–McMillan inequality, as mentioned above.

Variable-Length Codes and Finite Automata 521

Commutative equivalence. In the case of unequal letter costs, the answer

to the problem of finding a prefix encoding, which has the same weighted

cost as an optimal encoding, is not known. This is related to an important

conjecture, which we now formulate. Two codes C and D are commutatively

equivalent if there is a one-to-one correspondence between C and D such

that any two words in correspondence have the same number of occurrences

of each letter (that is, they are anagrams). Observe that the encodings

corresponding to commutatively equivalent codes have the same weight,

and therefore one is optimal if the other is.

Example 12.5. The code C = {00, 10, 100} seen in Example 12.4 is

neither prefix nor suffix. It is commutatively equivalent to the prefix code

D = {00, 01, 100} and to the suffix code D′ = {00, 10, 001}.

It is conjectured that any finite maximal code (that is, a code that

is not strictly contained in another code) is commutatively equivalent to

a prefix code. This would imply that, in the case of maximal codes, the

optimal encoding can be obtained with a prefix code. For a discussion, see

[10, 13]. The conjecture is known to be false if the code is not maximal. A

counter-example has been given by Shor [63]. Note that if equality holds

in the Kraft–McMillan inequality (12.4), then the code must be maximal.

Conversely, it can be shown (see, [11]) that for a finite maximal code, (12.4)

is an equality.

12.6. Optimal Prefix Codes

In this section, we describe methods used to obtain optimal prefix codes

under various constraints, such as equal or unequal letter costs, as well as

equal or unequal letter weights, and finally encodings which are alphabetic

or not. The different cases are summarized in Fig. 12.5, where the vertices

are associated with the inventors of some corresponding algorithm. For

instance, vertex 3 denotes the problem of finding an optimal alphabetic

tree in the case of unequal weights and unequal letter costs, and it is solved

by Itai’s algorithm described later. All these algorithms, except Karp’s

algorithm, have polynomial running time. We consider first the two cases

(vertices 4 and 1 in Fig. 12.5) of unequal weights without the constraint on

the encoding to be alphabetic.

Unequal letter costs. The computational complexity of the optimal prefix

encoding problem in the case of unequal letter costs (vertex 4 in Fig. 12.5) is

522 M.-P. Béal et al.

1

2

4

3

5

6

8

7

Huffman Karp

Varn

Garsia–Wachs Itai

Varn

Fig. 12.5. Various hypotheses. Front plane (1, 2, 3, 4): unequal weights. Right plane
(3, 4, 7, 8): unequal letter costs. Top plane (2, 3, 6, 7): alphabetic encodings. The two
unnamed vertices 5, 6 are easy special cases.

still unknown, in the sense that neither polynomial time algorithm is known

for this, nor is it known whether the corresponding recognition problem

(is there a code of cost ≤ m?) is NP-complete. It has been shown to be

reducible to an integer programming problem by Karp [41].

We explain how an optimal prefix code can be found by solving an

integer programming problem. Let ρ be the positive real number such that

fA(ρ) = 1. Thus, log 1/ρ is the channel capacity. Recall that, for any code

C, one has

fC(ρ) ≤ 1. (12.7)

However, given a series f(z), the inequality f(ρ) ≤ 1 is not sufficient

to imply the existence of a prefix code C such that f(z) = fC(z). For

example, if the alphabet A has a single letter of cost 2, then fA(z) = z2,

and so ρ = 1. The polynomial f(z) = z satisfies f(ρ) = 1; however, there

can be no codeword of cost 1.

Despite this fact, the existence of a code C with prescribed generating

series of costs can be formulated in terms of solutions for a system of linear

equations, as we describe now.

Let C be a prefix code over the channel alphabet A, with source

alphabet B equipped with weights denoted weight(b) for b ∈ B, and let

P be the set of prefixes of words in C which do not belong to C. Set

fA(z) =
∑

i≥1

aiz
i, fC(z) =

∑

i≥1

ciz
i, fP (z) =

∑

i≥1

piz
i.

Here ai is the number of channel symbols of cost i, ci is the number of

codewords of cost i, and pi is the number of words in P of cost i. The

Variable-Length Codes and Finite Automata 523

following equality holds between the sets C, P , and A (see Exercise 12.6.2).

PA ∪ {ε} = P ∪ C.

Since the unions are disjoint, it follows that

c1 + p1 = a1,

c2 + p2 = p1a1 + a2,

...

cn + pn = pn−1a1 + · · · p1an−1 + an,

...

(12.8)

Conversely, if ci, ai are non-negative integers satisfying these equations,

there is a prefix code C such that fC(z) =
∑

i≥1 ciz
i.

Thus, an optimal prefix code can be found by solving the problem of

finding non-negative integers ub for b ∈ B, which will be the costs of the

codewords, and integers ci, pi for i ≥ 1, which minimize the linear form
∑

b ubweight(b) such that Eq. (12.8) hold and with ci equal to the number

of b such that ub = i.

There have been many approaches to partial solutions of the optimal

prefix encoding problem [25, 49]. The most recent one is a polynomial time

approximation scheme, which has been given in [29]. This means that, given

ǫ > 0, there exists a polynomial time algorithm computing a solution with

weighted cost (1 + ǫ)W , where W is the optimal weighted cost.

Equal letter costs. The case of equal letter costs (vertex 1 in Fig. 12.5)

is solved by the well-known Huffman algorithm [37]. The principle of this

algorithm in the binary case is as follows. Select two symbols b1, b2 in B with

lowest weights, replace them by a fresh symbol b with weight weight(b) =

weight(b1)+weight(b2), and associate with b a node with children labeled b1

and b2. Then iterate the process. The result is a binary tree corresponding

to an optimal prefix code. The complexity of the algorithm is O(n log n),

or O(n) if the weights are available in increasing order. The case where all

weights are equal (vertex 5 in Fig. 12.5) is an easy special case.

Example 12.6. Consider the alphabets B = {a, b, c, d, e, f} and A =

{0, 1}, and the weights given in the following table:

a b c d e f

weight 2 2 3 3 3 5

524 M.-P. Béal et al.

Fig. 12.6. Computing an optimal Huffman encoding by combining trees.

The steps of the algorithm are presented below:

a b c d e f

2 2 3 3 3 5

ab c d e f

4 3 3 3 5

ab c de f

4 3 6 5

(ab)c de f

7 6 5

(ab)c (de)f

7 11

((ab)c)((de)f)

18

The corresponding trees are given in Fig. 12.6.

Alphabetic coding. We suppose that both the source and the channel

alphabets are ordered (these are vertices 2, 3, 6, 7 in Fig. 12.5). Recall that

an encoding γ is said to be ordered or alphabetic if b < b′ ⇒ γ(b) < γ(b′).

The optimal alphabetic prefix encoding problem is the problem of finding an

optimal ordered prefix encoding.

Alphabetic encoding is motivated by searching problems. Indeed, a

prefix code can be used as a searching procedure to retrieve an element

of an ordered set. Each node of the associated tree corresponds to a query,

and the answer to this query determines the subtree in which to continue

the search.

Example 12.7. In the binary tree of Figure 12.3, one looks for an

occurrence of an English word. The query associated with the root can

be the comparison of the first letter of the word to the letter T.

In contrast to the non-alphabetic case, there exist polynomial-time

solutions to the optimal alphabetic prefix encoding problem. It has been

considered mainly in the case where the channel alphabet is binary.

Again, there is a distinction between equal letter costs and unequal letter

costs.

Example 12.8. Consider the alphabet B = {a, b, c}, with weight(a) =

weight(c) = 1 and weight(b) = 4. Figure 12.7(a) shows an optimum tree

Variable-Length Codes and Finite Automata 525

Fig. 12.7. Two trees for the given weights. Optimum coding tree (a) has weighted cost 8,
it is optimal but not ordered. Optimum ordered tree (b) is ordered and has weighted
cost 11.

for these weights, and Fig. 12.7(b) an optimum ordered tree. This example

shows that Huffman’s algorithm does not give the optimal ordered tree.

We consider now the case of equal letter costs, represented by vertex 2

in Fig. 12.5. Let B = {b1, . . . , bn} be an ordered alphabet with n letters, and

let pi be the weight of letter bi. There is a simple algorithm for computing

an optimal ordered tree based on dynamic programming. It runs in time

O(n3) and can be improved to run in time O(n2) (see [43]).

We present a more sophisticated algorithm due to Garsia and

Wachs [23]. The intuitive idea of the algorithm is to use a variant of

Huffman’s algorithm by grouping together pairs of elements with minimal

weight, which are consecutive in the ordering. The algorithm can be

implemented to run in time O(n log n).

Example 12.9. Consider the following weights for an alphabet of five

letters:

a b c d e

weight 25 20 12 10 14

The algorithm is composed of three parts. In the first part, called the

combination part, one starts with the sequence of weights

p = (p1, . . . , pn)

and constructs an optimal binary tree T ′ for a permutation bσ(1), . . . , bσ(n)

of the alphabet. The leaves, from left to right, have weights

pσ(1), . . . , pσ(n).

526 M.-P. Béal et al.

In general, this permutation is not the identity; hence, the tree is not

ordered, see Fig. 12.8(a).

The second part, the level assignment, consists of computing the levels

of the leaves. In the last part, called the recombination part, one constructs

a tree T , which has the weights p1, . . . , pn associated with its leaves from

left to right, and where each leaf with weight pi appears at the same level

as in the previous tree T ′. This tree is ordered, see Fig. 12.8(b).

Since the leaves have the same level in T and in T ′, the corresponding

codewords have the same length, and therefore the trees T and T ′ have the

same weighted cost. Thus, T is an optimal ordered tree.

We now give the details of the algorithm and illustrate it with this

specific example. For ease of description, it is convenient to introduce some

terminology. A sequence (p1, . . . , pk) of numbers is 2-descending if pi > pi+2

for 1 ≤ i ≤ k − 2. Clearly a sequence is 2-descending if and only if the

sequence of “two-sums” (p1 + p2, . . . , pk−1 + pk) is strictly decreasing.

Let p = (p1, . . . , pn) be a sequence of (positive) weights. The left

minimal pair or simply minimal pair of p is the pair (pk−1, pk), where

(p1, . . . , pk) is the longest 2-descending chain that is a prefix of p. The

index k is the position of the pair. In other words, k is the integer such that

pi−1 > pi+1 (1 < i < k) and pk−1 ≤ pk+1

with the convention that p0 = pn+1 = ∞. The target is the index j with

1 ≤ j < k such that

pj−1 ≥ pk−1 + pk > pj , . . . , pk.

Fig. 12.8. The two steps of the algorithm: (a) the unordered tree obtained in the
combination phase, and (b) the final ordered tree, obtained by recombination. Both
have weighted cost 184.

Variable-Length Codes and Finite Automata 527

Example 12.10. For (14, 15, 10, 11, 12, 6, 8, 4), the minimal pair is

(10, 11), the target is 1, whereas for the sequence (28, 8, 15, 20, 7, 5), the

minimal pair is (8, 15) and the target is 2.

The three phases of the algorithm work as follows. Let (p1, . . . , pn) be

a sequence of weights.

Combination. Associate with each weight a tree composed of a single leaf.

Repeat the following steps as long as the sequence of weights has more than

one element:

(i) Compute the left minimal pair (pk−1, pk).

(ii) Compute the target j.

(iii) Remove the weights pk−1 and pk.

(iv) Insert pk−1 + pk between pj−1 and pj .

(v) Associate with pk−1 + pk a new tree with weight pk−1 + pk, and which

has a left (right) subtree the corresponding tree for pk−1 (for pk).

Level assignment. Compute, for each letter b in B, the level of its leaf in

the tree T ′.

Recombination. Construct an ordered tree T in which the leaves of the

letters have the levels computed by the level assignment.

Example 12.11. Consider again the following weights for an alphabet of

five letters:

a b c d e

weight 25 20 12 10 14

The initial sequence of trees is given in Fig. 12.9. The left minimal pair

is 12, 10; its target is 2; hence, the leaves for c and d are combined into

a tree which is inserted just to the right of the first tree, as shown in the

left-hand side of Fig. 12.10. Now the minimal pair is (20, 14) (there is an

infinite weight at the right end); hence, the leaves for letters b and e are

combined, and inserted at the beginning. The resulting sequence of trees is

shown in the right-hand side of Fig. 12.10.

Fig. 12.9. The initial sequence of trees.

528 M.-P. Béal et al.

Fig. 12.10. The next two steps.

Fig. 12.11. The two last steps of the combination part.

Next, the last two trees are combined and inserted at the beginning

as shown in the left-hand side of Fig. 12.11, and finally, the two remaining

trees are combined, yielding the tree shown in the right-hand side of the

figure.

The tree T ′ obtained at the end of the first phase is not ordered. The

prescribed levels for the letters of the example are as follows:

a b c d e

level 2 2 3 3 2

The optimal ordered tree with these levels is given by recombination. It is

the tree given in Fig. 12.8(b).

For a correctness proof, see [42, 43]. The time bound is given in [43].

The Garsia–Wachs algorithm is simpler than a previous algorithm due to

Hu and Tucker [35], which was also described in the first edition of Knuth’s

book, preceding [43]. For a proof and a detailed description of the Hu–

Tucker algorithm and variations, see [34, 36].

Alphabetic coding with unequal costs. This is the most general case

for alphabetic encoding (vertex 3 in Fig. 12.5). There is a dynamic

programming algorithm due to Itai [40], which computes an optimal

solution in polynomial time.

Variable-Length Codes and Finite Automata 529

Given a source alphabet B = {1, . . . , n} with n symbols, and weights

weight(1), . . . ,weight(n), one looks for an optimal alphabetic encoding γ on

the ordered channel alphabet A with costs cost(a), for a in A. The weighted

cost is
∑n

i=1 weight(i)cost(γ(i)). For convenience, the first (resp. the last)

letter in A is denoted by α (resp. by ω). We also write a + 1 for the letter

following a in the order on A.

Define Wa,b[i, j] as the minimal weight of an alphabetic encoding for

the symbols k with i ≤ k ≤ j, using codewords for which the initial symbol

x satisfies a ≤ x ≤ b.

The following equations provide a method to compute the minimal

weight Wα,ω[1, n]. First, for a < b, i < j,

Wa,b[i, j] = min{Wa+1,b[i, j], Va,b[i, j], Wa,a[i, j]}, (12.9)

where

Va,b[i, j] = min
i≤k<j

(Wa,a[i, k] + Wa+1,b[k + 1, j]).

This formula expresses the fact that either the first codeword does not

start with the letter a, or it does, and the set of codewords starting with

a encodes the interval [i, k] for some k < j, or finally all codewords start

with a. Next, for i < j,

Wa,a[i, j] = cost(a)

(

j
∑

k=i

weight(k)

)

+ min
i≤k<j
α≤x<ω

{Wx,x[i, k] + Wx+1,ω[k + 1, j]}. (12.10)

In this case, all codewords start with the letter a. Moreover, the second

letter cannot be the same for all codewords (otherwise this letter can be

removed and this improves the solution). Finally, for a ≤ b, the boundary

conditions are:

Wa,b[i, i] = min
a≤x≤b

{Wx,x[i, i]}, Wx,x[i, i] = cost(x)weight(i). (12.11)

The appropriate way to compute the W ’s is by increasing values of the

difference j − i, starting with (12.11) and, for a fixed value of j − i, by

increasing lengths of the source alphabet intervals, starting with (12.10),

followed by (12.9).

This method gives an algorithm running in time O(q2n3) where q is

the size of the channel alphabet. Indeed, each evaluation of (12.10) requires

530 M.-P. Béal et al.

time O((j − i)q), and each evaluation of (12.9) is done in time O(j − i).

Itai [40] has given an improvement of the algorithm that leads to a better

bound of O(q2n2).

Example 12.12. Consider a five symbol source alphabet and a three

letter channel alphabet {a, b, c} with weights and costs as follows:

i 1 2 3 4 5

weight(i) 5 8 2 10 4

x a b c

cost(x) 1 3 2

The algorithm computes the following tables:

Wa,a =













5 34 48 85 115

− 8 22 54 84

− − 2 34 56

− − − 10 32

− − − − 4













, Wb,b =













15 60 78 135 173

− 24 42 94 132

− − 6 58 88

− − − 30 60

− − − − 12













,

Wc,c =













10 47 63 110 144

− 16 32 74 108

− − 4 46 72

− − − 20 46

− − − − 8













, Wa,b =













5 29 40 78 97

− 8 14 52 66

− − 2 32 46

− − − 10 22

− − − − 4













,

Wb,c =













10 31 47 89 123

− 16 28 62 88

− − 4 26 52

− − − 20 38

− − − − 8













, Wa,c =













5 21 33 60 86

− 8 12 34 60

− − 2 22 40

− − − 10 18

− − − − 4













.

Hence, the minimal weight of an encoding is Wa,c[1, 5] = 86. Since

Wa,a[1, 2]+Wb,c[3, 5] = Wa,a[1, 3]+Wb,c[4, 5] = 86, there are, by (12.9), two

optimal trees. Inspection of the matrices yields the trees given in Fig. 12.12.

Fig. 12.12. Trees built with Itai’s algorithm.

Variable-Length Codes and Finite Automata 531

Optimal encodings with equal weights. In the case where all source symbols

have the same weight (vertices 5–8 in Fig. 12.5), this weight can be assumed

to be 1. The weighted cost becomes simply

W (γ) =
∑

b∈B

cost(γ(b)).

The prefix coding problem in this case is known as the Varn coding problem.

It has an amazingly simple O(n log n) time solution [67].

We assume that A is a k-letter alphabet and that n = q(k − 1) + 1 for

some integer q. Hence, the prefix code (or the tree) obtained is complete

with q internal nodes and n leaves. Varn’s algorithm starts with a tree

composed solely of its root, and iteratively replaces a leaf of minimal cost

by an internal node, which has k leaves, one for each letter. The number of

leaves increases by k − 1; hence, in q steps, one gets a tree with n leaves.

Note that this solves also the cases numbered 5, 6 in Fig. 12.5.

Fig. 12.13. Varn’s algorithm for seven words over a 3-letter alphabet. At each step, a
leaf of minimal cost is replaced by a node with all possible leaves. There are two choices
for the last step. Both give a minimal tree.

532 M.-P. Béal et al.

Example 12.13. Assume we are looking for a code with seven words

over the ternary alphabet {a, b, c}, and that the cost for letter a is 2,

for letter b is 4, and for letter c is 5. The algorithm starts with a tree

composed of a single leaf, and then builds the tree by iteration. There are

two solutions, both of cost 45, given in Fig. 12.13. Tree 12.13(d) defines

the prefix code {aa, ab, ac, ba, bb, bc, c}, and tree 12.13(e) gives the code

{aaa, aab, aac, ab, ac, b, c}.

12.6.1. Exercises

Exercise 12.6.1. Show that for any distribution pi of probabilities, the

sequence ℓi = ⌈log 1/pi⌉ satisfies the inequality
∑

2−ℓi ≤ 1. Conclude that

for any source with equal letter costs, there is a prefix code with weighted

cost W ≤ H +1 where H is the entropy of the source with probabilities pi.

Exercise 12.6.2. Let A be a k-letter alphabet. A k-ary tree is complete

if each of its nodes has 0 or k children. A prefix code is complete if its tree

is complete. Let C be a finite complete prefix code and let P be the set of

prefixes of the words of C, which are not in C. Show that

PA ∪ {ε} = P ∪ C.

Deduce that

Card(C) − 1 = Card(P)(k − 1),

where, for a finite set S, Card(S) denotes the cardinality of S.

Exercise 12.6.3. For a non-empty binary word s of length p, denote by

Q the set of words w of length strictly less than p such that sw has s as

a suffix. Let X be the set of binary words which have s as a suffix but no

other factor is equal to s. Show that X is a maximal prefix code and that

the generating series of the lengths of X is

fX(z) =
zp

zp + (1 − 2z)fQ(z)
, (12.12)

where fQ(z) is the generating series of the lengths of Q (called the

autocorrelation polynomial of s).

Exercise 12.6.4. Show that, for s = 101, one has

fX(z) =
z3

1 − 2z + z2 − z3
.

Variable-Length Codes and Finite Automata 533

Table 12.2. The cardinalities of the codes Cn,s.

11 10 111 110 101 1111 1110 1010 1001

3 1 2 0 1 1
4 1 3 1 2 1 0 1 0 1
5 2 4 1 4 2 1 2 2 2
6 3 5 2 7 4 1 4 3 3
7 5 6 4 12 7 2 8 4 6
8 8 7 7 20 12 4 15 9 11
9 13 8 13 33 21 8 28 18 21

10 21 9 24 54 37 15 52 32 39
11 34 10 44 88 65 29 96 60 73
12 55 11 81 143 114 56 177 115 136

Exercise 12.6.5. A set of binary words is said to be a prefix synchronized

code if all words have the same length n and share a common prefix s which

does not appear elsewhere in the sequences of codewords. For each s and

n, there is a maximal set Cn,s, which satisfies this condition. For example,

C5,101 = {10100, 10111}. Table 12.2 shows the cardinalities of some of the

sets Cn,s.

Let U be the set of binary words u such that s is a proper prefix of u

and us does not have s as a factor except as a prefix or a suffix. Show that

fU (z) =
2z − 1

zp + (1 − 2z)fQ(z)
+ 1,

where p is the length of s and fQ(z) is the autocorrelation polynomial of

the word s. (Note: Use the fact that s ∪ {0, 1}X = X ∪ Us where X is as

in Exercise 12.6.3.) Show that for each n ≥ p, Cn,s is the set of words of

length n in U .

Exercise 12.6.6. Let π be a Bernoulli distribution on the source

alphabet B. A Tunstall code of order n is a maximal prefix code with n

codewords over the alphabet B, which has maximal average length with

respect to π. Such a code is used to encode the words of the source alphabet

by binary blocks of length k for n ≤ 2k. For example, if B = {a, b} and

π(a) = 0.8, π(b) = 0.2, the code C = {aaa, aab, ab, b} is a Tunstall code

of order 4. Its average length is 2.44 and thus coding each word of C by a

binary block of length 2 realizes a compression with rate 2/2.44 ≈ 0.82.

Show how Varn’s algorithm can be used to build a Tunstall code.

(Tunstall codes were introduced in [66], see also [58].)

534 M.-P. Béal et al.

12.7. Prefix Codes for Integers

Some particular codes are used for compression purposes to encode

numerical data subject to a known probability distribution. They appear

in particular in the context of digital audio and video coding. The data

encoded are integers and thus these codes are infinite. We will consider

several families of these codes, beginning with the Golomb codes introduced

in [30]. We have already seen the Elias code, which belongs to one of these

families.

Golomb codes. The Golomb code of order m ≥ 1, denoted by Gm, is the

maximal infinite prefix code:

Gm = 1∗0Rm.

Thus, words in Gm are composed of a (possibly empty) block of 1’s, followed

by 0, and followed by a word in Rm, where the prefix codes Rm are defined

as follows. If m = 2k is a power of 2, then Rm is the set of all binary words

of length k. In particular, R1 is composed of the empty word only. For

other values of m, the description is more involved. Set m = 2k + ℓ, with

0 < ℓ < 2k. Setting n = 2k−1,

Rm =

{

0Rℓ ∪ 1R2n if ℓ ≥ n,

0Rn ∪ 1Rn+ℓ otherwise.

The codes Rm for m = 1 to 7 are represented in Fig. 12.14. Note that, in

particular, the lengths of the codewords differ at most by one.

The Golomb codes of order 1, 2, 3 are represented in Fig. 12.15. The

encoding of the integers is alphabetic. Note that, except possibly for the first

level, there are exactly m words of each length. One way to define directly

the encoding of an integer is as follows. Set r = ⌈log m⌉. Define the adjusted

binary representation of an integer n < m as its representation on r−1 bits

if n < 2r − m and on r bits otherwise (adding 0’s on the left if necessary).

Fig. 12.14. The sets R1 to R7.

Variable-Length Codes and Finite Automata 535

Fig. 12.15. The Golomb codes of orders 1, 2, 3.

The encoding of the integer n in Gm is formed of n/m 1’s followed by 0,

followed by the adjusted binary representation of n modulo m.

A geometric distribution on the set of integers is given by

π(n) = pnq, (12.13)

for positive real numbers p, q with p + q = 1. Such a distribution may

arise from run-length encoding where a sequence 0n1 is encoded by n. If

the source produces 0 and 1’s independently with probability p and q, the

probability of 0n1 is precisely π(n). This is of practical interest if p is large

since then long runs of 0 are expected and the run-length encoding realizes

a logarithmic compression.

We will show that for a source of integers with the geometric

distribution corresponding to a given p, there is an integer m ≥ 1 such

that the Golomb code Gm is an optimal prefix code.

For this, consider, following [22], the integer m such that

pm + pm+1 ≤ 1 < pm + pm−1. (12.14)

For each p with 0 < p < 1, there is a unique integer m satisfying (12.14).

Indeed, (12.14) is equivalent to

pm(1 + p) ≤ 1 < pm−1(1 + p)

or equivalently

m ≥ − log(1 + p)

log p
> m − 1.

Note that when m is large, (12.14) implies pm ∼ 1/2, and that (12.14) holds

for pm = 1/2. Let us show that the application of the Huffman algorithm

to a geometric distribution given by (12.13) can produce the Golomb code

536 M.-P. Béal et al.

of order m where m is defined by (12.14). This shows the optimality of the

Golomb code. Actually, we will operate on a truncated, but growing source

since Huffman’s algorithm works only on finite alphabets.

Set Q = 1 − pm. By the choice of m, one has p−1−m ≥ 1/Q > p1−m.

We consider, for k ≥ −1, the bounded alphabet

Bk = {0, . . . , k + m}.

In particular, B−1 = {0, . . . , m − 1}. We consider on Bk the distribution

π(i) =

{

piq for 0 ≤ i ≤ k,

piq/Q for k < i ≤ k + m.

Clearly π(i) > π(k) for i < k and π(k + i) > π(k + m) for 1 < i < m.

Observe that also π(i) > π(k + m) for i < k since π(k + m) = pk+mq/Q ≤
pk+mq/pm+1 = π(k − 1). Also π(k + i) > π(k) for 1 < i < m since indeed

π(k + i) > π(k + m − 1) = pk+m−1q/Q > pkq = π(k). As a consequence,

the symbols k and k + m are those of minimal weight. Huffman’s algorithm

replaces them with a new symbol, say k′, which is the root node of a tree

with, say, left child k and right child k + m. The weight of k′ is

π(k′) = π(k) + π(k + m) = pkq(1 + pm/Q) = pkq/Q.

Thus, we may identify Bk\{k, k + m} ∪ {k′} with Bk−1 by assigning to k

the new value π(k) = pkq/Q. We get for Bk−1 the same properties as for

Bk and we may iterate.

After m iterations, we have replaced Bk by Bk−m, and each of the

symbols k−m+1, . . . , k now is the root of a tree with two children. Assume

now that k = (h + 1)m − 1 for some h. Then after hm steps, one gets the

alphabet B−1 = {0, . . . , m − 1}, and each of the symbols i in B−1 is the

root of a binary tree of height h composed of a unique right path of length

h, and at each level one left child i + m, i + 2m, . . . , i + (h − 1)m. This

corresponds to the code Ph = {0, 10, . . . , 1h−10, 1h}. The weights of the

symbols in B−1 are decreasing, and moreover π(m − 2) + π(m − 1) > π(0)

because pm−2 + pm−1 > 1. It follows from Exercise 12.7.2 below that the

code Rm is optimal for this probability distribution.

Thus we have shown that the application of Huffman’s algorithm to

the truncated source produces the code RmPk. When h tends to infinity,

the sequence of codes converges to Rm1∗0. Since each of the codes in the

sequence is optimal, the code Rm1∗0 is an optimal prefix code for the

Variable-Length Codes and Finite Automata 537

geometric distribution. The Golomb code Gm = 1∗0Rm has the same length

distribution and so is also optimal.

Golomb–Rice codes. The Golomb–Rice code of order k, denoted GRk, is the

particular case of the Golomb code for m = 2k. It was introduced in [54].

Its structure is especially simple and allows an easy explicit description.

The encoding assigns to an integer n ≥ 0 the concatenation of two binary

words, the base and the offset. The base is the unary expansion (over the

alphabet {1}) of ⌊n/2k⌋ followed by a 0. The offset is the remainder of the

division written in binary on k bits. Thus, for k = 2, the integer n = 9 is

coded by 110|01. The binary trees representing the Golomb–Rice code of

orders 0, 1, 2 are represented in Fig. 12.16.

Another description of the Golomb–Rice code of order k is given by the

regular expression

GRk = 1∗0{0, 1}k. (12.15)

This indicates that the binary words forming the code are composed of a

base of the form 1i0 for some i ≥ 0 and an offset, which is an arbitrary

binary sequence of length k.

It follows from (12.15) that the generating series of the lengths of words

of the Golomb–Rice code of order k is

fGRk
(z) =

2kzk+1

1 − z
=

∑

i≥k+1

2kzi.

The weighted generating series of a code C with probability distribution

π is

pC(z) =
∑

x∈C

π(x)z|x|.

Fig. 12.16. The Golomb–Rice codes of orders 0, 1, 2.

538 M.-P. Béal et al.

The average length of C is then

λC(z) =
∑

x∈C

|x|π(x) = p′C(1).

For a uniform Bernoulli distribution on the channel symbols, the weighted

generating series for the resulting probabilities of the Golomb–Rice codes

GRk and the corresponding average length λGRk
are

pGRk
(z) = fGRk

(z

2

)

=
zk+1

2 − z
,

λGRk
= p′GRk

(1) = k + 2. (12.16)

Observe that in the case where pm = 1/2, the series pGRk
(z), and thus

also the average length λGRk
, happens to be the same for the probability

distribution on the code induced by the geometric distribution on the

source.

Indeed, the sum of the probabilities of the codewords for rm to (r +

1)m − 1 is prm(1 − pm), and since pm = 1/2, this is equal to 2−r−1. The

sum of the probabilities of m words of length r + k + 1 with respect to a

uniform Bernoulli distribution is m2−r−k−1 = 2−r−1 (recall that m = 2k).

Thus, we get the same value in both cases, as claimed.

Exponential Golomb codes. The exponential Golomb codes, denoted EGk

for k ≥ 0, form a family of codes whose length distributions make

them better suited than the Golomb–Rice codes for encoding the integers

endowed with certain probability distributions. They are introduced in [64].

The case k = 0 is the Elias code already mentioned and introduced in [19].

Exponential Golomb codes are used in practice in digital transmissions. In

particular, they are a part of the video compression standard technically

known as H.264/MPEG-4 Advanced Video Coding (AVC) [55].

Fig. 12.17. The exponential Golomb codes of orders 0, 1, 2.

Variable-Length Codes and Finite Automata 539

The codeword representing an integer n tends to be shorter for large

integers. The base of the codeword for an integer n is obtained as follows.

Let x be the binary expansion of 1 + ⌊n/2k⌋ and let i be its length.

The base is made of the unary expansion of i − 1 followed by x with its

initial 1 replaced by a 0. The offset is, as before, the binary expansion

of the remainder of the division of n by 2k, written on k bits. Thus, for

k = 1, the codeword for 9 is 11001|1. Figure 12.17 represents the binary trees

of the exponential Golomb codes of orders 0, 1, 2. An expression describing

the exponential Golomb code of order k is

EGk =
⋃

i≥0

1i0{0, 1}i+k,

and we have the simple relation

EGk = EG0{0, 1}k.

The generating series of the lengths of words in EGk is

fEGk
(z) =

2kzk+1

1 − 2z2
.

The weighted generating series for the probabilities of codewords

corresponding to a uniform Bernoulli distribution and the average

length are

pEGk
(z) =

zk+1

2 − z2
,

λEGk
= k + 3.

For handling signed integers, there is a simple method, which consists

of adding a bit to the words of one of the previous codes. More

sophisticated methods, adapted to a two-sided geometric distribution, have

been developed in [50].

12.7.1. Exercises

Exercise 12.7.1. Show that the entropy H = −∑

π(n) log π(n) of the

source emitting integers with a geometric distribution (12.13) is

H = −(p log p + q log q)/q.

Verify directly that, for p2k

= 1/2, the average length of the Golomb–Rice

code GRk satisfies λGRk
≤ H + 1.

540 M.-P. Béal et al.

Exercise 12.7.2. Let m ≥ 3. A non-increasing sequence w1 ≥ w2 ≥ · · · ≥
wm of integers is said to be quasi-uniform if it satisfies wm−1 + wm ≥ w1.

Let T be an optimal binary tree corresponding to a quasi-uniform sequence

of weights. Show that the heights of the leaves of T differ at most by one.

12.8. Encoders and Decoders

In this section, we present the basic notions of automata theory, as far

as encoding and decoding processes are concerned. The notion of finite

automata allows us to define a state-dependent process, which can be used

for both encoding and decoding. We give the definition of two closely related

notions, namely automata and transducers, which are both labeled directed

graphs.

A finite automaton A over some (finite) alphabet A is composed of a

finite set Q of states, together with two distinguished subsets I and T called

the sets of initial and terminal states, and a set E of edges, which are triples

(p, a, q) where p and q are states and a, is a symbol. An edge is also denoted

by p
a−→ q. It starts in p, ends in q, and has label a.

Similarly, a finite transducer T uses an input alphabet A and an output

alphabet B. It is composed of a finite set Q of states, together with two

distinguished subsets I and T called the sets of initial and terminal states,

and a set E of edges, which are quadruples (p, u, v, q) where p and q are

states and u is a word over A and v is a word over B. An edge is also

denoted by p
u|v−−→ q. The main purpose for transducers is decoding. In this

case, A is the channel alphabet and B is the source alphabet.

A path in an automaton or in a transducer is a finite sequence of

consecutive edges. The label of the path is obtained by concatenating

the labels of the edges (in the case of a transducer, one concatenates

separately the input and the output labels). We write p
w−→ q for a path

in an automaton labeled with w starting in state p and ending in state q.

Similarly, we write p
x|y−−→ q for a path in a transducer. A path is successful

if it starts in an initial state and ends in a terminal state.

An automaton A recognizes a set of words, which is the set of labels

of its successful paths. The sets recognized by finite automata are called

regular sets.

A transducer T defines a binary relation between words on the two

alphabets as follows. A pair (u, v) is in the relation if it is the label of a

successful path. This is called the relation realized by T . This relation can

be viewed as a multi-valued mapping from the input words into the output

Variable-Length Codes and Finite Automata 541

words, and also as a multi-valued mapping from the output words into the

input words. For practical purposes, this definition is too general and will

be specialized. We consider transducers called literal, which by definition

means that each input label is a single letter. For example, an encoding γ,

as defined at the beginning of the chapter, can be realized by a one-state

literal transducer, with the set of labels of edges being simply the pairs

(b, γ(b)) for b in B.

Example 12.14. Consider the encoding defined by γ(a) = 00, γ(b) =

1, and γ(c) = 01. The corresponding encoding transducer is given in

Fig. 12.18.

Transducers for decoding are more interesting. For the purpose of

coding and decoding, we are concerned with transducers which define single-

valued mappings in both directions. We need two additional notions.

An automaton is called deterministic if it has a unique initial state and

if, for each state p and each letter a, there is at most one edge starting in

p and labeled with a. This implies that, for each state p and each word w,

there exists at most one path starting in p and labeled with w.

Consider a finite deterministic automaton with a unique terminal state,

which is equal to the initial state i. The closed paths from i to i such that

no initial segment ends in i are called first return paths. The set of labels

of these paths is a regular prefix code C (that is a prefix code, which is

a regular set), and the set recognized by the automaton is the set C∗.

Conversely, any regular prefix code is obtained in this way.

For example, the Golomb codes are regular, whereas exponential

Golomb codes are not.

More generally, an automaton is called unambiguous if, for all states

p, q, and all words w, there is at most one path from p to q labeled with w.

Clearly, a deterministic automaton is unambiguous.

Fig. 12.18. A simple encoder. The only state is both initial and terminal.

542 M.-P. Béal et al.

Fig. 12.19. A deterministic decoder. A dash represents the empty word. An incoming
(outgoing) arrow indicates the initial (terminal) state.

A literal transducer defines naturally an automaton over its input

alphabet, called its input automaton. For simplicity, we discard the

possibility of multiple edges in the resulting automaton. A literal transducer

is called deterministic (resp. unambiguous) if its associated input automaton

is deterministic (resp. unambiguous). Clearly, the relation realized by a

deterministic transducer is a function.

An important result is that for any encoding (with finite source and

channel alphabets), there exists a literal unambiguous transducer, which

realizes the associated decoding. When the code is prefix, the transducer is

actually deterministic.

The construction is as follows. Let γ be an encoding. Define a

transducer T by taking a state for each proper prefix of some codeword.

The state corresponding to the empty word ε is the initial and terminal

state. There is an edge p
a|−−−→ pa, where − represents the empty word, for

each prefix p and letter a such that pa is a prefix, and an edge p
a|b−−→ ε for

each p and letter a with pa = γ(b). When the code is prefix, the decoder is

deterministic. In the general case, the property of unique decipherability is

reflected by the fact that the transducer is unambiguous.

Example 12.15. The decoder corresponding to the prefix code of

Example 12.14 is represented in Fig. 12.19.

Fig. 12.20. An unambiguous decoder for a code, which is not prefix.

Variable-Length Codes and Finite Automata 543

Example 12.16. Consider the code C = {00, 10, 100} of Example 12.4.

The decoder given by the construction is represented in Fig. 12.20.

As a consequence of this construction, it can be shown that decoding

can always be realized in linear time with respect to the length of the

encoded string (considering the number of states as a constant). Indeed,

given a word w = a1 · · · an of length n to be decoded, one computes the

sequence of sets Si of states accessible from the initial state for each prefix

a1 · · ·ai of length i of w, with the convention S0 = {ε}. Of course, the

terminal state ε is in Sn. Working backwards, we set qn = ε and we identify

in each set Si the unique state qi such that there is an edge qi
ai−→ qi+1

in the input automaton. The uniqueness comes from the unambiguity of

the transducer. The corresponding sequence of output labels gives the

decoding. This construction is based on the Schützenberger covering of an

unambiguous automaton, see [57].

Example 12.17. Consider again the code C = {00, 10, 100}. The

decoding of the sequence 10001010000 is represented on Fig. 12.21. Working

from left to right produces the tree of possible paths in the decoder of

Fig. 12.20. Working backwards from the state ε in the last column produces

the successful path indicated in boldface.

The notion of deterministic transducer is too constrained for the

purpose of coding and decoding because it does not allow a lookahead on

the input or equivalently a delay on the output. The notion of sequential

transducer to be introduced now fills this gap.

A sequential transducer is composed of a deterministic transducer and

an output function. This function maps the terminal states of the transducer

into words on the output alphabet. The function realized by a sequential

transducer is obtained by appending, to the value of the deterministic

transducer, the image of the output function on the arrival state. Formally,

the value on the input word x is

f(x) = g(x)σ(i · x),

Fig. 12.21. The decoding of 10001010000.

544 M.-P. Béal et al.

Fig. 12.22. A sequential transducer realizing a cyclic shift on words starting with the
letter a, with σ(0) = ε and σ(1) = a.

where g(x) is the value of the deterministic transducer on the input word

x, where i ·x is the state reached from the input state i by the word x, and

where σ is the output function. This is defined only if the state i · x is a

terminal state.

Example 12.18. The sequential transducer given in Fig. 12.22 realizes

the partial function aw �→ wa, for each word w. The output function σ is

given by σ(0) = ε and σ(1) = a.

It is a well-known property of finite automata that any finite automaton

is equivalent to a finite deterministic automaton. The process realizing this

transformation is known as the determinization algorithm . This remarkable

property does not hold in general for transducers.

Nonetheless, there is an effective procedure to compute a sequential

transducer S that is equivalent to a given literal transducer T , whenever

such a transducer exists, see [46]. The algorithm goes as follows.

The states of S are sets of pairs (u, p). Each pair (u, p) is composed of

an output word u and a state p of T . For a state s of S and an input letter

a, one first computes the set s̄ of pairs (uv, q) such that there is a pair (u, p)

in s and an edge p
a|v−−→ q in T . In a second step, one chooses some common

prefix z of all words uv, and one defines the set t = {(w, q) | (zw, q) ∈ s̄}.
There is a transition from state s to a state t labeled with (a, z). The

initial state is (ε, i), where i is the initial state of T . The terminal states

are the sets t containing a pair (u, q) with q terminal in T . The output

function σ is defined on state t of S by σ(t) = u. If there are several pairs

(u, q) in t with distinct u for the same terminal state q, then the given

transducer does not compute a function and thus it is not equivalent to a

sequential one.

The process of building new states of S may not halt if the lengths

of the words, which are the components of the pairs, are not bounded.

Variable-Length Codes and Finite Automata 545

Fig. 12.23. Another transducer realizing a cyclic shift on words starting with the
letter a.

There exist a priori bounds for the maximal length of the words appearing

whenever the determinization is possible, provided that, at each step, the

longest common prefix is chosen. This makes the procedure effective.

Example 12.19. Consider the transducer given in Fig. 12.23. The result

of the determinization algorithm is the transducer of Fig. 12.22. State 0

is composed of the pair (ε, p), and state 1 is formed of the pairs (a, p)

and (b, q).

Example 12.20. Consider the code C = {00, 10, 100} of Example 12.4. Its

decoder is represented in Fig. 12.20. The determinization algorithm applied

to this transducer produces, for the input word 102n, the state consisting

of (ban−1, 0) and (can−1, ε). Thus, the algorithm does not terminate, and

there is no equivalent sequential transducer.

12.8.1. Exercises

Exercise 12.8.1. A set of words C is said to be weakly prefix if there is

an integer d ≥ 0 such that the following condition holds for any elements

c, c′ of C and any words w, w′ of C∗. If the prefix of length |c| + d of cw

is a prefix of c′w′, then c = c′. The least integer d such that this property

holds is called the deciphering delay and a weakly prefix code is also said

to have finite deciphering delay .

Show that a weakly prefix set is UD.

Exercise 12.8.2. Which of the following sets C and C′ is a weakly prefix

code? C = {00, 10, 100} and C′ = {0, 001}.

Exercise 12.8.3. Show that a finite code is weakly prefix if and only if it

can be decoded by a sequential transducer.

12.9. Codes for Constrained Channels

The problem considered in this section arises in connection with the

use of communication channels which impose input constraints on the

546 M.-P. Béal et al.

sequences that can be transmitted. User messages are encoded to satisfy

the constraint; the encoded messages are transmitted across the channel

and then decoded by an inverse to the encoder.

In this context, we will use a more general notion of encoding. Instead of

a memoryless substitution of source symbols by codewords, we will consider

finite transducers: the codeword associated with a source symbol depends

not only on this symbol but also on a state depending on the past.

We require, in order to be able to decode, that the encoder is

unambiguous on its output in the sense that for each pair of states and

each word w, there is at most one path between these states with output

label w. For ease of use, we will also assume that the input automaton of

the encoder is deterministic.

Example 12.21. The encoder in Fig. 12.26 is deterministic. The source

alphabet is {0, 1} and the channel alphabet is {a, b, c}. The sequence 0011

is encoded by acbb if the encoding starts in state 1. A more complicated

example of a deterministic encoder that will be described later is depicted

in Fig. 12.31.

A stronger condition for a decoder than unambiguity is that of having

finite look-ahead. This means that there exists an integer D ≥ 0 such that,

for all states q and all channel sequences w of length D + 1, all paths that

begin at state q and have channel label w share the same first edge (and

therefore the first source symbol). In other words, decoding is a function of

the current state, the current channel symbol, and the upcoming string of D

channel symbols [45]. These decoders correspond to sequential transducers

as introduced in Sec. 12.8.

However, even this condition is heavily state-dependent, and so a

channel error that causes the decoder to lose track of the current state may

propagate errors forever. For this reason, the following stronger condition

is usually employed.

A sliding block decoder operates on words of channel symbols with a

window of fixed size. The decoder uses m symbols before the current one and

a symbols after it (m is for memory and a for anticipation). According to

the value of the symbols between time n−m and time n+a, the value of the

nth source symbol is determined. Figure 12.24 depicts a schematic view of a

sliding block decoder. It is not hard to show that sliding-block decodability

implies the weaker finite lookahead property mentioned above. Note that

a sliding block decoder avoids possible problems with error propagation

Variable-Length Codes and Finite Automata 547

because any channel error can affect the decoding only while it is in the

decoder window and thus can corrupt at most m + a + 1 source symbols.

Transducers realizing sliding block decoders are of a special kind. An

automaton is called local if the knowledge of a finite number of symbols in

the past and in the future determines the current state. More precisely, for

given integers m, a ≥ 0 (m stands for memory and a for anticipation), an

automaton is said to be (m, a)-local if for words u and v of length m and a,

respectively, p
u−→ q

v−→ r and p′
u−→ q′

v−→ r′ imply that q = q′. A transducer

is said to be local if its input automaton is local.

A sliding block decoder can be realized by a local transducer with

the same parameters. Conversely, a transducer whose input automaton is

(m, a)-local, and such that the input label and the output label of each edge

have the same length, is a sliding block decoder.

While input constraints have been imposed in some communication

channels, they arise more commonly in data recording channels, such as

those found in magnetic and optical disk drives. Constraints on inputs are

of various types and have changed over the course of the 50-year history

of magnetic disk drives. For illustration, we focus on the [d, k]-constraint,

where 0 ≤ d ≤ k. A binary sequence is said to satisfy the [d, k]-constraint

if the number of contiguous symbols 0 between consecutive symbols 1 is at

least d and at most k.

These constraints arise for the following reasons. An electrical current

in the write head, situated over the spinning disk, creates a magnetic field,

which is reversed when the current polarity is reversed. These write field

reversals, in turn, induce reversals in the orientation of the magnetization

along the recorded track on the disk. During the data recovery process, the

read head senses the recorded pattern of magnetization along the track.

Each transition in magnetization direction produces a correspondingly

oriented pulse in the readback voltage.

Two problems should be avoided. The first is called intersymbol

interference. If polarity changes are too close together, the induced magnetic

Fig. 12.24. A sliding block decoder.

548 M.-P. Béal et al.

Fig. 12.25. The [1, 3]-constraint.

fields tend to interfere and the pulses in the readback signal are harder to

detect. The second problem is called clock drift. This problem arises when

the pulses are separated by intervals of time which are too large. When the

read head senses a pulse it sends information through a phase lock loop

which keeps the bit clock running accurately; if the separation between

pulses is too large, the clock can lose synchronization and skip through

a complete bit period.

Several values of the parameters d, k are of practical importance. The

simplest case is the constraint [1, 3]. This means that the blocks 11 and 0000

are forbidden. The binary sequences satisfying this constraint are those

which label paths in the graph of Fig. 12.25.

We consider an encoding of all binary sequences by sequences satisfying

the [1, 3]-constraint. This encoding is not realizable by a sequential encoder

without modifying the output alphabet, because there are more binary

source sequences of length n than admissible binary channel sequences of

length n. However, it is possible to operate at rate 1:2, by encoding a source

bit by one of the 2-bit symbols a = 00, b = 01, or c = 10. A particular way

of doing this is the modified frequency modulation (MFM, see [47]) code of

Fig. 12.26, which was used on floppy disks for many years.

Observe that the second bit of the output is always equal to the input

bit, and so the decoder can operate symbol by symbol, producing a 1-bit

input from a 2-bit output. The first bit of the output is chosen in such a

way that there are no consecutive 1’s and no block of four 0’s.

Fig. 12.26. The MFM code. Here the state names reflect the input bit.

Variable-Length Codes and Finite Automata 549

Fig. 12.27. The [2, 7]-constraint.

Fig. 12.28. The squared [2, 7]-constraint.

A more complex example is the [2,7]-constraint illustrated in Fig. 12.27.

Again, the sequences satisfying the constraint are the labels of paths in the

graph.

For the purpose of coding arbitrary binary sequences by sequences

satisfying the [2, 7]-constraint, we again consider a representation obtained

by changing the alphabet to a = 00, b = 01, and c = 10, as shown in

Fig. 12.28.

The result of the development that follows will be the sequential

transducer for encoding known as the Franaszek encoder depicted in

Fig. 12.31. It must be checked that this encoder satisfies the [2, 7]-constraint

and that, for practical applications, it admits a sliding block decoder.

A direct verification is possible but complicated.

The encoder design process we now describe is the one historically

followed by Franaszek [21]. It starts with the graph in Fig. 12.28, which

represents the [2,7]-constraint of Fig. 12.27 in terms of the alphabet a, b, c.

More precisely, Fig. 12.28 represents the set of [2,7]-constrained sequences

Fig. 12.29. The poles.

550 M.-P. Béal et al.

C P

ba 10

ca 11

aba 000

cba 010

aca 011

acba 0010

aaca 0011

Fig. 12.30. The Franaszek code.

obtained by writing each such sequence as a string of non-overlapping 2-bit

pairs.

Next, choose the two vertices 2 and 3 (called the poles or the principal

states). The paths of first return from 2 or 3 to 2 or 3 are represented in

Fig. 12.29.

Observe that the set C of labels of first return paths is independent of

the starting vertex. Thus all concatenations of words in C are produced by

paths in the graph of Fig. 12.29 and thus admissible for the [2,7]-constraint.

The set C is a prefix code called the Franaszek code, shown in the first

column of Fig. 12.30.

It happens that the set C has the same length distribution as the

maximal binary prefix code P of words appearing in the right column.

The pair of prefix codes of Fig. 12.30 is used as follows to encode

a binary word at rate 1:2. A source message is parsed as a sequence of

codewords in P , possibly followed by a prefix of such a word. For example,

the word

011011100101110111100010011 · · ·

is parsed as

011 | 011 | 10 | 010 | 11 | 10 | 11 | 11 | 000 | 10 | 011 · · · .

Next, this is encoded row-by-row using the correspondence between P and

C as follows:

aca | aca | ba | cba | ca | ba | ca | ca | aba | ba | aca.

Variable-Length Codes and Finite Automata 551

3 2

1

6

4 5

0|a

1|b

1|a

1|c

0|b

0|c

0|a

0|a

1|a

1|a

0|c

1|a

Fig. 12.31. The Franaszek encoder.

This stands for the channel encoding

001000 | 001000 | 0100 | 100100 | 1000 | 0100 | 1000 |

1000 | 000100 | 0100 | 001000.

Figure 12.31 represents an implementation of this transformation, up to

some shift. The encoder is a deterministic transducer which outputs one

symbol for each input symbol. State 1 is the initial state, and all states

are terminal states. All inputs of at least 2 symbols produce an output

sequence that begins with ba, followed by the sequence generated by the

encoder described above, up to the last two symbols. For example, for the

input word 011011, the corresponding path in the deterministic encoder is

1
0|b−−→ 2

1|a−−→ 5
1|a−−→ 6

0|c−−→ 2
1|a−−→ 5

1|a−−→ 6 .

Hence, the output is ba|aca|a, which, following the initial ba, corresponds

to one codeword aca followed by the beginning of a second occurrence

of aca.

This encoder can be obtained as follows from the pair (C, P) of prefix

codes. Consider first the transducer of Fig. 12.32. This is obtained by

composing a decoder for P with an encoder for C, and merging common

prefixes. We omit the details.

We build a deterministic transducer by determinization of the

transducer of Fig. 12.32, by the algorithm presented in Sec. 12.8. In this

case, we are able to maintain a constant rate of output by keeping always

in the pairs of the sequential transducer an output word of length 2 (this

552 M.-P. Béal et al.

Fig. 12.32. The construction of the Franaszek encoder.

Fig. 12.33. Initial part of the Franaszek encoder.

represents the two symbols to be output later). Thus, the output is delayed

with two symbols.

The states of the result are given in Table 12.3. In this table, and

also in Fig. 12.31, we only report the states which have an output delay of

exactly two symbols. They correspond to the strongly connected part of the

encoder. In particular, the initial state (ε, 1) is not represented. Figure 12.33

gives the states reached by the first two symbols.

Figure 12.34 represents the decoder, which can be realized with a sliding

window of size 4. Indeed, the diagrams of Fig. 12.34 show that for any

content xyzt of the window, we can define the output r corresponding to

the first symbol. An inspection of Figure 12.31 shows that if y = b, then

r = 0. In the same manner, if y = c, then r = 1. If y = a, then four cases

arise. If z = a, then r = 0. If z = c, then r = 0 or 1 according to t = b or a.

Table 12.3. The states of the Franaszek encoder.

state 1 2 3 4 5 6

content ba,1 ac,4 ab,6 ac,4 cb,6 ca,1
aa,2 ac,3 ab,6 ac,3

aa,5

output ba ca

Variable-Length Codes and Finite Automata 553

Finally, if z = b, then r = 0 if z = b and r = 1 otherwise (the x in the last

frame stands for b or c).

There are many approaches to the design of encoder–decoder pairs

for input constraints. The approach illustrated above was extended to a

technique called the method of poles, developed by Béal [6–8].

Another approach is the state-splitting algorithm, also known as the

ACH algorithm [1], which transforms a finite-state graph representation of

a constraint into a sliding-block decodable finite-state encoder. The rough

idea is as follows.

One starts with a finite-state graph representation of the constraint

and then chooses a feasible encoding rate p:q; here, feasibility means that

p/q does not exceed the capacity of the constraint, which is a measure

of the “size” or “complexity” of the constraint and generalizes the notion

of capacity of a variable-length code given in Sec. 12.5. The capacity can

be computed explicitly, and for a feasible code rate, one can compute a

vector, called an approximate eigenvector, which effectively assigns non-

negative integer weights to the states of the graph [45]. Next, one replaces

the original representation with a new one whose symbols are q-bit strings,

just as in the transformation of Figs. 12.27 and 12.28. Then by an iterative

sequence of state splittings, guided by an approximate eigenvector, one

is guaranteed to arrive at a final representation upon which a sequential

finite-state encoder can be built. The splittings are graph transformations

in which states are split according to partitions of outgoing edges. In the

final representation, each state has at least 2p outgoing edges, enabling

an assignment of p-bit input labels and therefore a sequential finite-state

encoder at rate p:q. It is also guaranteed, under mild conditions, that such

an encoder is sliding-block decodable.

b

0

c

1

a a

0

a c a

1

a c b

0

a a b

0

x a b

1

Fig. 12.34. The associated sliding block decoder.

554 M.-P. Béal et al.

The state splitting algorithm has been modified in many ways. For

instance, one could consider finite-state variable-length representations

of input constraints or transform fixed-length representations into more

compact variable-length representations. There is a variable-length version

of the state splitting algorithm, which again iteratively splits states. In this

setting, instead of aiming for a graph with sufficient out-degree at each

state, the sequence of state splittings results in a final representation in

which the lengths of outgoing edges at each state satisfy a reverse Kraft

inequality. This technique was introduced in [2] and further developed in

[33]. In the latter reference, the method was illustrated with two examples,

one of which is an alternative derivation of the Franaszek code described

above.

The theory and practice of coding for constrained channels is very

well developed. For more information, the reader may consult Béal [7],

Immink [39], Lind–Marcus [45], and Marcus–Roth–Siegel [47] (or the latest

version at http://www.math.ubc.ca/˜marcus/Handbook/index.html).

12.9.1. Exercises

Exercise 12.9.1. A code C over the alphabet A is a circular code if, for

any words u, v on the alphabet A, the cyclically shifted words uv and vu

can be in C∗ only when u and v are. Let C be a circular code and let x be

a word of C. Show that a set D of words of the form xiy, for i ≥ 0 and y

in C\x, is a circular code.

Note: The terminology circular code stems from the fact that the unique

decipherability property holds for words written on a circle (see [10]).

Exercise 12.9.2. Use Exercise 12.9.1 to show that the set C = {ba, ca,

aba, cba, aca, acba, aaca} appearing in the first column of Fig. 12.30 is a

circular code.

12.10. Codes for Constrained Sources

In the same way as there exist codes for constrained channels, there exist

codes for constrained sources. As for constraints on channels, the constraints

on sources can be expressed by means of finite automata. This leads us to

use encodings with memory.

We limit the presentation to two examples, the first drawn from

linguistics, and the second reflecting a more general point of view.

Variable-Length Codes and Finite Automata 555

The first example gives an interesting encoding from a constrained

source to an unconstrained channel [31]. It starts with a simple substitution,

which is not UD, but it appears to be UD by taking into account the

constraints on the source. The example is taken from the field of natural

language processing where codings and automata are heavily used (see, for

instance, [56]).

Example 12.22. We start with a source alphabet composed of a sample

set of six syllable types in the Turkish language. The concatenation of

syllables is subject to constraints that will be explained below. The types

of syllables are denoted by A to F as follows (with the syllables written in

italics in the example):

Symbol Structure Example

A 0 açik (open)

B 10 baba (father)

C 01 ekmek (bread)

D 101 altin (gold)

E 011 erk (power)

F 1011 türk (turkish)

The structure of a syllable is the binary sequence obtained by coding 0 for

a vowel and 1 for a consonant. We consider the structure of a syllable as its

encoding. The decoding is then to recover the sequence of syllables from the

encoding. Thus, the source alphabet is {A, . . . , F}, the channel alphabet is

{0, 1}, and the encoding is A �→ 0, . . . , F �→ 1011.

There are linguistic constraints on the possible concatenations of

syllable types, which come from the fact that a syllable ending with a

consonant cannot be followed by one which begins with a vowel. These

constraints are summarized by the following matrix, where a 0 in entry x, y

means that x cannot be followed by y:

M =



















A B C D E F

A 1 1 1 1 1 1

B 1 1 1 1 1 1

C 0 1 0 1 0 1

D 0 1 0 1 0 1

E 0 1 0 1 0 1

F 0 1 0 1 0 1



















.

556 M.-P. Béal et al.

Fig. 12.35. A 2-state encoder reflecting the legal concatenations.

The encoding can be realized in a straightforward manner with a 2-state

transducer given in Fig. 12.35, which reflects the legal concatenations of

source symbols.

The decoder is built by applying the methods of Sec. 12.8 to this

transducer. We start by exchanging input and output labels in Fig. 12.35. In

a second step, we introduce additional states in order to get literal output.

An edge is broken into smaller edges. For instance, the edge 0
011|E−−−−→ 1 is

replaced by the path 0
0|−−−→ E1

1|−−−→ E2
1|E−−→ 1. Each state xi stands for the

prefix of length i of the encoding of x. The state xi can be used for several

edges, because the arrival state depends only on x. The transducer is given

in Fig. 12.36.

0 D1 D2 10|A
1|− 0|− 1|D

1|−
C1

0|−

1|C

B1

1|−
0|B

1|−

E1 E2

0|−
1|−

1|E

F1 F2 F3

1|−

0|− 1|−

1|F

1|−

Fig. 12.36. Literal decoder for phonetization.

Variable-Length Codes and Finite Automata 557

Fig. 12.37. A sequential transducer for the phonetization.

Table 12.4. The states of the transducer for the phonetization.

state 0 1 2 3 4 5 6 7 8

content ε, 0 A, 0 A, B1 C, B1 CB, 0 ε,B1 B, 0 B, B1 D, D1,
ε, C1 C, 1 C, D1 C, D2 ε, D1 ε, D2 B, D1, D, F1

ε, E1 ε, E2 C, F1 C, F2 ε, F1 ε, F2 B, F1 D, B1

A, D1 E, 1 D, 1 F, 1
A, F1 ε, F3

output A C E CB B D F

It happens that the resulting transducer can be transformed into a

sequential one. The result is shown in Fig. 12.37. The correspondence is

given in Table 12.4. The value of the output function is given in the node.

The decoder is deterministic in its input and it outputs the decoded

sequence with finite delay (this means that it uses a finite lookahead on

the input). On termination of a correct input sequence, the last symbol to

be produced is indicated by the corresponding state. This coding is used

in [31] to build a syllabification algorithm, which produces for each word a

parsing in syllables.

This kind of problem appears more generally in the framework of

hyphenation in text processing software (see [16], for example), and also

in “text-to-speech” synthesis [17].

The next example of codes for constrained sources is from [14]. It

illustrates again how an ambiguous substitution can be converted into a

UD encoding.

558 M.-P. Béal et al.

The three examples below have decoders, which are local (that is

realizable by a sliding block decoder) for the first one, sequential for the

second one, and simply unambiguous for the third one.

Example 12.23. Consider the constrained source on the symbols A, B, C

with the constraint that B cannot follow A. We consider the substitution

that maps A, B, and C to 0, 1, and 01, respectively. The mapping is realized

by the transducer on the left-hand side of Fig. 12.38. It is easily seen that the

constraint implies the unique decipherability property. Actually, a decoder

can be computed by using the determinization algorithm. This yields the

sequential decoder represented on the right-hand side of Fig. 12.38. It is

even (1, 0)-local since the last letter determines the state.

We now give a second, slightly more involved example. The source has

four symbols A, B, C, D with the constraints of concatenation given by the

matrix

M2 =









A B C D

A 1 0 1 0

B 0 1 0 1

C 1 1 1 1

D 1 1 1 1









.

We consider the encoding assigning 0, 1, 01, and 10 to A, B, C, and D,

respectively. The decoder is given in Fig. 12.39. This transducer is sequential

with output function indicated in the states. However, it is not local in input

since there are two cycles labeled by 01.

Fig. 12.38. An encoder and a local decoder.

Fig. 12.39. A sequential decoder.

Variable-Length Codes and Finite Automata 559

Fig. 12.40. An encoder and an unambiguous decoder.

The third example uses the same substitution but a different set of

constraints, given by the matrix

M3 =









A B C D

A 1 0 1 1

B 0 1 1 1

C 0 1 1 1

D 1 0 1 1









.

The substitution is realized by the transducer shown in the left-hand side of

Fig. 12.40. The transducer shown in the right-hand side is a decoder. It can

be checked to be unambiguous. However, it is not equivalent to a sequential

transducer because a sequence 0101 · · · has two potential decodings as

ADDD · · · and as CCCC · · · .

These examples are variable-length, and in fact variable-rate, codes. In

applications where error propagation may be a problem, one can use fixed-

rate block codes [38] or fixed-rate sliding-block codes [20]. The construction

of the latter is dual to the state splitting method mentioned in the previous

section.

The connection between variable-length codes, unambiguous automata,

and local constraints has been further developed in [9, 52, 53].

12.11. Bifix Codes

Recall that a set of words C is a suffix code if no element of C is a proper

suffix of another one. A set of words is called a bifix code if it is at the

same time a prefix code and a suffix code. Bifix codes are also known as

reversible variable-length codes (RVLC). The idea to study bifix codes goes

back to [26, 59]. These papers already contain significant results. The first

systematic study is in [60, 61]. The development of codes for video recording

has renewed the interest in bifix codes [27, 69, 70].

560 M.-P. Béal et al.

One example is given by prefix codes which are equal to their reversal.

The reversal of a word w = a1 · · · an, where a1, . . . , an are symbols, is the

word w̃ = an · · · a1 obtained by reading w from right to left. The reversal

of a set C, denoted C̃, is the set of reversals of its elements. For example,

01∗0 is a bifix code since it is prefix and equal to its reversal.

The use of bifix codes for transmission is linked with the possibility

of limiting the consequences of errors occurring in the transmission using

a bidirectional decoding scheme as follows. Assume that we use a binary

bifix code to transmit data and that for the transmission, messages are

grouped into blocks of N source symbols, encoded as N codewords. The

block of N codewords is first decoded by using an ordinary left-to-right

sequential decoding (Fig. 12.41). Suppose that the codewords x1 up to xi−1

are correctly decoded, but that an error has occurred during transmission

that makes it impossible to identify the next codeword in the rest of the

message. Then a new decoding process is started, this time from right to

left. If at most one error has occurred, then again the codewords from xN

down to xi+1 are decoded correctly. Thus, in a block of N encoded source

symbols, at most one codeword will be read incorrectly.

These codes are used for the compression of moving pictures. Indeed,

there are reversible codes with the same length distribution as the Golomb–

Rice codes, as shown in [68]. The AVC standard mentioned previously

recommends the use of these codes instead of the ordinary Golomb–Rice

codes to obtain an error resilient coding (see [55]). The difference from the

ordinary codes is that, in the base, the word 1i0 is replaced by 10i−11 for

i ≥ 1. Since the set of bases forms a bifix code, the set of all codewords is

also a bifix code. Figure 12.42 represents the reversible Golomb–Rice codes

of orders 0, 1, 2.

There is also a reversible version of the exponential Golomb codes,

denoted by REGk, which are bifix codes with the same length distribution.

The code REG0 is given by

REG0 = {0} ∪ 1{00, 10}∗{0, 1}1 .

Fig. 12.41. The transmission of a block of codewords.

Variable-Length Codes and Finite Automata 561

Fig. 12.42. The reversible Golomb–Rice codes of orders 0, 1, 2.

It is a bifix code because it is equal to its reversal. This comes from the

fact that the set {00, 10}∗{0, 1} is equal to its reversal because it is the set

of words of odd length which have a 0 at each even position, starting at

position 1.

The code of order k is

REGk = REG0{0, 1}k.

The codes REGk are represented for k = 0 and 2 in Fig. 12.43.

We now consider the length distribution of bifix codes. In contrast

to the case of codes or of prefix codes, it is not true that any sequence

(un)n≥1 of non-negative integers such that
∑

n≥1 unk−n ≤ 1 is the length

distribution of a bifix code on k letters. For instance, there is no bifix code

on the alphabet {a, b}, which has the same distribution as the prefix code

{a, ba, bb}. Indeed, such a code must contain a letter, say a, and then the

only possible word of length 2 is bb. On the other hand, the following result

provides a sufficient condition for a length distribution to be realizable by

a bifix code [4].

Fig. 12.43. The reversible exponential Golomb codes of orders 0 and 1.

562 M.-P. Béal et al.

Proposition 12.1. For any sequence (un)n≥1 of non-negative integers

such that
∑

n≥1

unk−n ≤ 1

2
(12.17)

there exists a bifix code on an alphabet of k letters with length distribution

(un)n≥1.

Proof. We show by induction on n ≥ 1 that there exists a bifix code Xn

of length distribution (ui)1≤i≤n on an alphabet A of k symbols. It is true

for n = 1 since u1k
−1 ≤ 1/2 and thus u1 < k. Assume that the property is

true for n. We have by Inequality (12.17)

n+1
∑

i=1

uik
−i ≤ 1

2

or equivalently, multiplying both sides by 2kn+1,

2(u1k
n + · · · + unk + un+1) ≤ kn+1

whence

un+1 ≤ 2un+1 ≤ kn+1 − 2(u1k
n + · · · + unk). (12.18)

Since Xn is bifix by the induction hypothesis, we have

Card(XnA∗ ∩ An+1) = Card(A∗Xn ∩ An+1) = u1k
n + · · · + unk.

Thus, we have

Card((XnA∗ ∪ A∗Xn) ∩ An+1)

≤ Card(XnA∗ ∩ An+1) + Card(A∗Xn ∩ An+1)

≤ 2(u1k
n + · · · + unk).

It follows from Inequality (12.18) that

un+1 ≤ kn+1 − 2(u1k
n + · · · + unk)

≤ Card(An+1) − Card((XnA∗ ∪ A∗Xn) ∩ An+1)

= Card(An+1 − (XnA∗ ∪ A∗Xn)).

This shows that we can choose a set Y of un+1 words of length n + 1

on the alphabet A, which do not have a prefix or a suffix in Xn. Then

Xn+1 = Y ∪ Xn is bifix, which ends the proof. �

Variable-Length Codes and Finite Automata 563

Table 12.5. Maximal 2-realizable length distributions of length N = 2, 3,
and 4.

N 2 3 4

u1 u2 u(1/2) u1 u2 u3 u(1/2) u1 u2 u3 u4 u(1/2)

2 0 1.0000 2 0 0 1.0000 2 0 0 0 1.0000
1 1 0.7500 1 1 1 0.8750 1 1 1 1 0.9375

1 0 2 0.7500 1 0 2 1 0.8125
1 0 1 3 0.8125
1 0 0 4 0.7500

0 4 1.0000 0 4 0 1.0000 0 4 0 0 1.0000
0 3 1 0.8750 0 3 1 0 0.8750

0 3 0 1 0.8125
0 2 2 0.7500 0 2 2 2 0.8750

0 2 1 3 0.8125

0 2 0 4 0.7500
0 1 5 0.8750 0 1 5 1 0.9375

0 1 4 4 1 .0000
0 1 3 5 0.9375
0 1 2 6 0.8750
0 1 1 7 0.8125
0 1 0 9 0.8125

0 0 8 1.0000 0 0 8 0 1.0000
0 0 7 1 0.9375
0 0 6 2 0.8750
0 0 5 4 0.8750
0 0 4 6 0.8750
0 0 3 8 0.8750
0 0 2 10 0.8750
0 0 1 13 0.9375
0 0 0 16 1.0000

The bound 1/2 in the statement of Proposition 12.1 is not the best

possible. It is conjectured in [4] that the statement holds with 3/4 instead

of 1/2. Some attempts to prove the conjecture have led to improvements

over Proposition 12.1. For example, it is proved in [71] that 1/2 can be

replaced by 5/8. Another approach to the conjecture is presented in [15].

For convenience, we call a sequence (un) of integers k-realizable if there

is a bifix code on k symbols with this length distribution.

We fix N ≥ 1 and we order sequences (un)1≤n≤N of integers by setting

(un) ≤ (vn) if and only if un ≤ vn for 1 ≤ n ≤ N . If (un) ≤ (vn) and

(vn) is k-realizable then so is (un). We give in Table 12.5 the values of the

maximal 2-realizable sequences for N ≤ 4, with respect to this order. Set

u(z) =
∑

n≥1 unzn. For each value of N , we list in decreasing lexicographic

order the maximal realizable sequence with the corresponding value of the

sum u(1/2) =
∑

un2−n. The distributions with value 1 correspond to

564 M.-P. Béal et al.

Fig. 12.44. A maximal bifix code of degree 3.

maximal bifix codes. For example, the distribution (0, 1, 4, 4) highlighted

in Table 12.5 corresponds to the maximal bifix code of Fig. 12.44.

It can be checked in this table that the minimal value of the sums u(1/2)

is 3/4. Since the distributions listed are maximal for componentwise order,

this shows that for any sequence (un)1≤n≤N with N ≤ 4 such that u(1/2) ≤
3/4, there exists a binary bifix code C such that u(z) =

∑

n≥1 unzn is the

generating series of lengths of C.

For a maximal bifix code C which is a regular set, the generating

series of the lengths of the words of C satisfies fC(1/k) = 1, where

k is the size of the alphabet. The average length of C with respect

to the uniform Bernoulli distribution is (1/k)f ′
C(1/k). Indeed, setting

fC(z) =
∑

n≥1 unzn, one gets f ′
C(z) =

∑

n≥1 nunzn−1 and thus

(1/k)f ′
C(1/k) =

∑

n≥1 nunk−n. It is known that the average length

of a regular maximal bifix code is an integer, called the degree of the

code [26, 61].

For example, the maximal bifix code C represented in Fig. 12.44 has

degree 3. One has

fC(z) = z2 + 4z3 + 4z4,

f ′
C(z) = 2z + 12z2 + 16z3,

and thus fC(1/2) = 1 and (1/2)f ′
C(1/2) = 3.

Table 12.6 lists the length distributions of finite maximal bifix codes

of degree d ≤ 4 over {a, b}. For each degree, the last column contains the

number of bifix codes with this distribution, with a total number of 73 of

degree 4. Note that for the highlighted distribution (0, 1, 4, 4), there are two

distinct bifix codes. One is the code of Fig. 12.44, and the other is obtained

by exchanging 0 and 1.

We have seen (Eq. (12.16)) that the Golomb–Rice code of order k has

average length k+2 for the uniform Bernoulli distribution on the alphabet.

Variable-Length Codes and Finite Automata 565

Table 12.6. The length distributions of binary finite maximal bifix codes
of degree at most 4.

d 1 2 3 4

2 1 0 4 1 0 0 8 1 0 0 0 16 1
0 0 1 12 4 6
0 0 2 8 8 6
0 0 2 9 4 4 8
0 0 3 5 8 4 6
0 0 3 6 4 8 4
0 0 3 6 5 4 4 4
0 0 4 3 5 8 4 4

0 1 4 4 2 0 1 0 5 12 4 2
0 1 0 6 8 8 2
0 1 0 6 9 4 4 4
0 1 0 7 5 8 4 4
0 1 0 7 6 5 4 4 2
0 1 0 8 2 9 4 4 2
0 1 1 3 9 8 4 4
0 1 1 4 6 8 8 4
0 1 1 4 6 9 4 4 4
0 1 1 5 3 9 8 4 4
0 1 2 2 4 9 12 4 2

1 1 3 73

The same holds of course for the reversible one. The fact that the average

length is an integer is a necessary condition for the existence of a reversible

version of any regular prefix code, as we have already mentioned before. The

average length of the Golomb code G3 is easily seen to be 7/2 for the uniform

Bernoulli distribution. Since this is not an integer, there is no regular bifix

code with the same length distribution (0, 1, 3, 3, . . .). Actually, one may

verify that there is not even a binary bifix code with length distribution

(0, 1, 3, 3, 2).

12.11.1. Exercises

Exercise 12.11.1. The aim of this exercise is to describe a method, due

to Girod [28] (see also [58]), which allows a decoding in both directions

for any finite binary prefix code. Let C be a finite binary prefix code and

let L be the maximal length of the words of C. Consider a concatenation

c1c2 · · · cn of codewords. Let

w = c1c2 · · · cn0L ⊕ 0Lc̃1c̃2 · · · c̃n, (12.19)

where c̃ is the reverse of the word c and where ⊕ denotes addition mod 2.

Show that w can be decoded in both directions.

566 M.-P. Béal et al.

12.12. Synchronizing Words

A word v is said to be synchronizing for a prefix code C if for any words

u, w, one has uvw in C∗ only if uv and w are in C∗. Thus, the decoding of

a message where v appears has to break at the end of v. A prefix code is

said to be synchronized if there exists a synchronizing word. An occurrence

of a synchronizing word limits the propagation of errors that have occurred

during the transmission, as shown in the following example.

Example 12.24. Consider the prefix code C = {01, 10, 110, 111}. The

word 110 is not synchronizing. Indeed, it appears in a non-trivial way

in the parsing of 111|01. On the contrary v = 0110 is synchronizing.

Indeed, the only possible parsings of v in some context are · · · 0|110| · · ·
and · · · |01|10| · · · . In both cases, the parsing has a cut point at the end

of v. To see how an occurrence of v avoids error propagation, consider the

message in the first row below and the corrupted version below it produced

when an error has changed the third bit of the message from 0 to 1.

0 1|0 1|1 0|1 1 1|0 1|1 0|0 1|0 1,

0 1|1 1 1|0 1|1 1 0|1 1 0|0 1|0 1.

After the occurrence of 0110, the parsings on both rows become identical

again. Thus, the occurrence of the word v has stopped the propagation of

the error. Note that it can also happen that the resulting message does not

have a decoding anymore. This happens, for example, if the second bit of

the message is changed from 1 to 0. In this case, the error is detected and

some appropriate action may be taken. In the previous case, the error is

not detectable and may propagate for an arbitrary number of bits.

Example 12.25. The word 010 is synchronizing for the prefix code C

used in the Franaszek code (see Fig. 12.30).

A synchronizing word can also be defined for a deterministic

automaton. Let A be a deterministic automaton. A word w is said to be

synchronizing for A if all paths labeled w end at the same state. Thus

the state reached after reading a synchronizing word is independent of the

starting state. A deterministic automaton is said to be synchronized if there

exists a synchronizing word for the automaton.

An automaton is strongly connected if any pair of states is connected by

some path. Let i be a state of a strongly connected deterministic automaton

A. Let C be the prefix code of first returns from i to i. Then C has

Variable-Length Codes and Finite Automata 567

a synchronizing word if and only if A is synchronized. First, let v be a

synchronizing word for C. Then any path labeled v ends at state i. Indeed,

if p
v−→ q let u, w be such that i

u−→ p and q
w−→ i. Then uvw is in C∗, which

implies that uv is in C∗. This implies that q = i since the automaton is

deterministic. Thus, v is synchronizing for the automaton A. Conversely, if

v is synchronizing for A, then since A is strongly connected, there is a word

w such that all paths labeled vw end at state i. Then, vw is a synchronizing

word for C.

Example 12.26. Let A be the automaton represented in Fig. 12.45. Each

word w defines an action on the set of states, which is the partial function

that maps a state p to the state reached from p by the path labeled by the

input word w. The set of first returns to state 1 is the maximal prefix code

C = {00, 01, 110, 111} of Example 12.24. In Table 12.7 the actions of words

of length at most 4 are listed. The words are ordered by their length, and

within words of the same length, by lexicographic order. Each column is

reported only the first time it occurs. We stop at the first synchronizing

word, which is 0110.

The road coloring theorem. There are prefix codes which are not

synchronized. For example, if the lengths of the codewords of a non-empty

prefix code are all multiples of some integer p ≥ 2, then the code is

not synchronized. The same observation holds for a strongly connected

automaton. If the period of the underlying graph (i.e. the greatest common

Fig. 12.45. A synchronized deterministic automaton.

Table 12.7. The action of words on the states of the automaton A.

0 1 00 01 10 11 001 011 100 101 110 111 0011 0110

1 3 2 1 1 — 3 2 2 — — 1 1 3 1
2 — 3 — — 1 1 — — 3 2 3 2 — —
3 1 1 3 2 3 2 1 3 1 1 — 3 2 1

568 M.-P. Béal et al.

divisor of the lengths of its cycles) is not 1, then the automaton is not

synchronized. The road coloring theorem asserts the following.

Theorem 12.1. Let G be a strongly connected graph with period 1 such

that each vertex has two outgoing edges. Then there exists a binary

labeling of the edges of G, which turns it into a synchronized deterministic

automaton.

The road coloring theorem was proposed as a conjecture by Adler

et al. [3]. It was proved by Trahtman [65].

The name of this theorem comes from the following interpretation of

a synchronizing word: if one assigns a color to each letter of the alphabet,

the labeling of the edges of an automaton can be viewed as a coloring

of the edges of the underlying graph. One may further identify the vertices

of the graph with cities and the edges with roads connecting these cities.

A synchronizing word then corresponds to a sequence of colors, which leads

to a fixed city regardless of the starting point.

Example 12.27. Consider the automata represented on Fig. 12.46. These

automata have the same underlying graph and differ only by the labeling.

The automaton on the left is not synchronized. Indeed, the action of the

letters on the subsets {1, 3} and {2, 4} exchanges these sets as shown in

Fig. 12.47.

Fig. 12.46. Two different labelings: a non-synchronized and a synchronized automaton.

1, 3 2, 41

0

1

0

Fig. 12.47. The action on the sets {1, 3} and {2, 4}.

Variable-Length Codes and Finite Automata 569

On the other hand, the automaton on the right is synchronized. Indeed,

101 is a synchronizing word.

It is important to note that for equal letter costs, an optimal prefix code

can always be chosen to be synchronized (provided the greatest common

divisor of the lengths is 1). Indeed, the relabeling of an automaton accepting

such a code does not change its length distribution. The Franaszek code of

Sec. 12.9 is actually chosen in such a way that the code on the right-hand

side of Fig. 12.30 is synchronized (010 is a synchronizing word).

For unequal letter costs, it has been proved that the result holds for

finite maximal codes. Indeed, it is proved in [51] (see also [11]) that any

finite maximal prefix code is commutatively equivalent to a synchronized

prefix code.

12.13. Directions for Future Research

The field of variable-length codes and automata has a number of challenging

mathematical open problems. They are often formulated as conjectures,

some of which have been open for many years. Their solution would increase

our understanding of these objects and give rise to new algorithms. Let us

mention the following ones of particular importance.

The structure of finite maximal codes. It is not known whether it is

decidable whether a finite code is or is not contained in a finite maximal

code. In contrast, it is known that any finite code is contained in a regular

maximal code (see [11]).

Another open question is the status of the conjecture concerning the

commutative equivalence of any finite maximal code to a prefix code.

This conjecture would itself be solved if one could prove the factorization

conjecture asserting that for any finite maximal code on the alphabet A,

there exist two finite sets of words P, Q on the alphabet A such that any

word on the alphabet A has a unique expression of the form pc1c2 · · · cnq

with p ∈ P , ci ∈ C, and q ∈ Q.

Optimal prefix codes. There is still some work to be done to derive efficient

methods for building an optimal prefix code corresponding to a source with

an infinite number of elements.

Synchronized automata. It is conjectured that for any synchronized

deterministic automaton with n states, there exists a synchronizing word

of length at most (n− 1)2. This conjecture is known as Černy’s conjecture.

The length of the shortest synchronizing word has practical significance

570 M.-P. Béal et al.

since an occurrence of a synchronizing word has an error-correcting effect.

The best known upper bound is cubic. The conjecture is known to be true

in several particular cases.

Constrained channels. For a given constrained channel and allowable code

rate, the problem of designing codes that achieve the minimum possible

number of encoder states or the minimum sliding block decoder window

size remains open.

Bifix codes. No method similar to the Huffman algorithm is known for

building an optimal bifix code given a source with weights. It is perhaps

related to the fact that the length distributions of bifix codes are not well

understood. In particular, the question whether any sequence (un)n≥1 such

that
∑

n≥1 unk−n ≤ 3/4 is the length distribution of a bifix code over a

k-letter alphabet is still open.

12.14. Conclusion

We have described basic properties of variable-length codes, and some of

their uses in the design of optimal codes under various constraints. We have

shown some of the relations between codes, finite state automata and finite

transducers, both devices for encoding and decoding.

Optimal codes. Among variable-length codes, the most frequently used

are prefix codes. These codes are instantaneously decipherable codes. The

Elias, Golomb, and Golomb–Rice codes are examples of prefix codes that

are infinite, and that encode non-negative integers by an algorithm that

is easy to implement. Other prefix codes that encode integers have been

designed. For a systematic description, see [58]. Optimal prefix codes for

various constraints have been given in this chapter. It is interesting to note

that the general problem is still open, and the research is still going on (see

[29] for a recent contribution).

General codes. Prefix codes are special codes. Other families of codes have

been studied, and a general theory of variable-length codes addresses the

properties of these codes. In this context, it is natural to associate with

any code C an automaton that recognizes the set C∗ of all sequences of

codewords. Many properties or parameters of codes are reflected by features

of these automata.

It appears that properties of codes are combinatorial in nature;

however, they can also be described in an algebraic way based upon

Variable-Length Codes and Finite Automata 571

the structural properties of the associated automaton or the algebraic

properties of the transition monoid of the automaton, also called the

syntactic monoid. See [11].

Constrained channels. We have also briefly investigated constraints on the

channel. The theory of sliding block codes is much broader in scope than

we could convey here. Research is motivated by applications, as we have

illustrated by the example of the Franaszek code. For more information

along these lines, see [7, 45].

12.15. Solutions to Exercises

Solution to 12.6.1. One has li ≥ log 1/pi and thus

∑

i

2−ℓi ≤
∑

i

2
− log 1

pi =
∑

i

2log pi =
∑

i

pi = 1.

Let C be a prefix code with length distribution ℓi. Since ℓi ≤ log 1/pi + 1,

its average length W satisfies

W =
∑

piℓi ≤
∑

pi

(

log
1

pi

+ 1

)

= pi log
1

pi

+ 1 = H + 1.

Solution to 12.6.2. Each word of P followed by a letter is either in P or

in C, but not in both. Moreover, any non-empty word in C or P is obtained

in this way. This shows that PA ∪ {ǫ} = P ∪ C. Counting the elements on

both sides gives Card(P)Card(A) + 1 = Card(P) + Card(C).

Solution to 12.6.3. Let P be the set of words on the alphabet A which

do not have s as a factor. Then P is also the set of proper prefixes of the

words of the maximal prefix code X . Thus, we have P{0, 1}∪{ǫ} = X ∪P ,

whence fP (z)(1 − 2z) = 1 − fX(z). On the other hand, we have Ps = XQ

and thus zpfP (z) = fX(z)fQ(z). Combining these relations and solving for

fX gives the desired solution.

Solution to 12.6.4. One has Q = {ǫ, 01} and thus fQ(z) = 1 + z2.

Solution to 12.6.5. Since zp +2zfX(z) = fX(z)+fU (z), the result follows

from (12.12). Prefix synchronized codes were introduced by Gilbert [24],

who conjectured that for any n ≥ 1, the maximal cardinality is obtained

for an unbordered word such as 11 · · ·10 (a word is called unbordered if

no non-empty prefix is also a suffix). This conjecture was solved positively

572 M.-P. Béal et al.

by Guibas and Odlyzko [32] who also showed that the generalization to

alphabets with k symbols is true for k ≤ 4 but false for k ≥ 5.

Solution to 12.6.6. Consider the cost on B defined by cost(b) = − log π(b).

Then cost(c) = − log π(c) for each codeword and thus a code with minimal

cost (with equal weights) will have maximal average length with respect

to π.

Solution to 12.7.1. One has, using the fact that
∑

n≥0 npnq = p/q,

H = −
∑

n≥0

pnq log(pnq) = −
∑

n≥0

pnq log pn −
∑

n≥0

pnq log q

= −
∑

n≥0

npnq log p − log q = −p/q log p − log q,

whence the result. If p2k

= 1/2 then p = 2−2−k

. For x ≥ 0, we have

2−x ≥ 1 − x ln 2 ≥ 1 − x. Thus

q = 1 − p = 1 − 2−2−k ≤ 2−k.

Taking the logarithm of both sides gives log(1/q) ≥ k. On the other hand,

since log x ≥ x − 1 for 1 ≤ x ≤ 2, we have p/q log(1/p) ≥ 1. Combining

these inequalities, we obtain H ≥ k + 1, whence H + 1 ≥ k + 2 = λGRk
.

Solution to 12.7.2. We use an induction on m. The property clearly

holds for m = 3. Let m ≥ 4 and set w0 = wm−1 + wm. The sequence

w0 ≥ w1 ≥ · · · ≥ wm−2 is quasi-uniform since wm−3 +wm−2 ≥ wm−1 +wm.

By the induction hypothesis, an optimal binary tree for the sequence w0 ≥
w1 ≥ · · · ≥ wm−2 has leaves of heights k and possibly k +1 for some k ≥ 1.

The leaf corresponding to w0 has to be at height k since it has maximal

weight. We replace it by two leaves of level k + 1 with weights wm−1 and

wm. The result is clearly an optimal binary tree with leaves at height k and

k + 1. This argument appears in [22].

Solution to 12.8.1. Suppose that c1c2 · · · cn = c′1c
′
2 · · · c′m. We may

suppose that the length of the word c2 · · · cn is larger than d, padding both

sides on the right by an appropriate number of words c from C. Then, the

condition implies that c1 = c2, and so on.

Solution to 12.8.2. The set C is the code of Example 12.4. It is not weakly

prefix since for any n, (10)(00)n is a prefix of (100)(00)n.

The code C′ is weakly prefix. Indeed, the decoding of a word beginning

with 001 · · · has to start with 001.

Variable-Length Codes and Finite Automata 573

Solution to 12.8.3. Suppose first that C has a sequential decoder. Let d be

the maximal length of the values of the output function. Then C is weakly

prefix with delay dL, where L is the maximal length of the codewords.

Conversely, if C is a weakly prefix code, the determinization algorithm

gives a sequential decoder.

Solution to 12.9.1. First, observe that D, viewed as a code over the

alphabet C, is a prefix code. Thus D is a code. Assume now that u, v are

such that uv and vu are in D∗. Then, since C is circular, u and v are in

C∗. Set u = x1 · · ·xn and v = xn+1 · · ·xn+m. Since uv is in D∗, we have

xn+m �= x and thus v is in D∗. Similarly, since vu is in D∗, we have xn �= x

and thus u is in D∗. Thus D is circular.

Solution to 12.9.2. We use repeatedly Exercise 12.9.1 to form a sequence

C0, C1, . . . of circular codes. To form Ci+1, we choose one element xi in Ci

and select words of the form xk
i y with y �= xi. We start with C0 = {a, b, c},

which is obviously circular, and we choose x0 = c. Then C1 = {a, b, ca, cb}
is a circular code. Choosing next x1 = cb, we build C2 = {a, b, ca, cba}.
Then, we choose x2 = b to obtain C3 = {a, ba, ca, cba}. A final choice of

x3 = a shows that C is of the required form.

Note: this construction is used in a more general setting in the study

of circular codes [10].

Solution to 12.11.1. The definition of w being symmetrical, it is enough

to show that w can be decoded from left to right. By construction, c1 is

a prefix of w and the first codeword can therefore be decoded. However,

this also identifies the prefix of length L + |c1| of the second term of

the right-hand side of (12.19). Adding this prefix to the corresponding

prefix of w gives a word beginning with c1c2 and thus identifies c2,

and so on.

12.16. Questions and Answers

Question 12.1. Compute the entropy of the source consisting of the

five most frequent words in English with the normalized weights given in

Table 12.8. Compare the result with the average length of the prefix code

of Example 12.1.

Answer. One obtains H = 2.197. The average length is λ = 2.29. Thus,

the average length is slightly larger than the entropy.

574 M.-P. Béal et al.

Table 12.8. Normalized weights of the five most frequent
English words.

A AND OF THE TO

0.116 0.174 0.223 0.356 0.131

Question 12.2. What is the result of the Huffman algorithm applied

to the five most frequent words in English with the frequencies given in

Question 12.1? What is the average length?

Answer. The result is represented in Fig. 12.48. The average length in this

case is λ = 2.247 (which is smaller than for the code of Example 12.1).

Question 12.3. What is the result of the Garsia–Wachs algorithm applied

to the coding of the five most frequent words in English with the distribution

given in Question 12.1?

Answer. The result of the combination step is the tree of Fig. 12.49. The

recombination step gives the tree of Example 12.1.

Question 12.4. Consider the source having six symbols of costs 3, 4, . . . , 8

respectively. Show that the capacity C of this source satisfies C > 1/2.

Answer. One has C = log(1/ρ) where ρ is the positive root of f(z) = 1

with f(z) = z3 +z4 +z5 +z6 +z7 +z8. Since f(z) = z2(z +z2)(1+z2 +z4),

we have f(
√

2/2) > 0.5 × 1.2 × 1.75 > 1. This shows that ρ <
√

2/2 and

thus C > 1/2.

Fig. 12.48. The result of Huffman’s algorithm.

Fig. 12.49. The result of the Garsia–Wachs algorithm.

Variable-Length Codes and Finite Automata 575

Fig. 12.50. An unambiguous decoder.

Question 12.5. What is the value of m corresponding to (12.14) for the

geometric distribution such that p = 0.95? What values of p correspond to

m = 8?

Answer. Since −(log(1+p)/ log p) = 13.35, we obtain m = 14. For m = 8,

we have 9.11 < p < 9.22.

Question 12.6. Write the encoding of the first 10 integers for the Golomb

code G4.

Answer. The following table is obtained:

n codeword

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
8 1000
9 1001

Question 12.7. Is the encoding of a, b, c, d, e by 00, 10, 100, 11, 110 UD?

Compute a decoder for this encoding.

Answer. There are only two possibilities to obtain two factorizations

starting at the same point. Both alternate indefinitely and never come to

576 M.-P. Béal et al.

Table 12.9.

name output

1 (ε, e) ε
2 (a, e), (ε, 0) a
3 (aa, e), (a, 0), (ε, 00) aa

coincide. Thus, the code is UD.

1
2101020

1020
1, 1

2111020
1020

1.

The method described in Sec. 12.8 gives the unambiguous transducer of

Fig. 12.50.

Question 12.8. Design a sequential transducer decoding the weakly

prefix code C = {0, 001}.

Answer. The general method gives the unambiguous transducer of

Fig. 12.51 with a = 0 and b = 001. The procedure described in Sec. 12.8

applied to the transducer of Fig. 12.51 gives the sequential transducer of

Fig. 12.52. We obtain three states given in Table 12.9 with the values of

the output function in the last column.

Question 12.9. What is the labeled graph corresponding to the [1,7]-

constraint?

Fig. 12.51. An unambiguous decoder.

Fig. 12.52. A sequential transducer.

Variable-Length Codes and Finite Automata 577

Fig. 12.53. The [1,7] constraint.

Fig. 12.54. The reversals of the codes RGRk , for k = 0, 1, 2.

Answer. The graph is the same as for the [2, 7]-constraint with one more

arrow to allow the block 101. See Fig. 12.53.

Question 12.10. What is the reversal of the reversible Golomb–Rice code

of order 1?

Answer. The expression of the reversal of RGRk is R̃GRk = RGR0{0, 1}k

since RGR0 is its own reversal. The corresponding trees are represented in

Fig. 12.54.

12.17. Keywords

The following list of keywords is a kind of dictionary of terms used in this

chapter with an explanation of each entry.

Finite automaton

A finite set of states, together with two distinguished subsets called the sets

of initial and terminal states, and a set of edges which are triples consisting

of a pair of states and a symbol in some (finite) alphabet A.

Unambiguous automaton

A finite automaton such that, for every pair of states and every word over

the alphabet, there is at most one path (i.e. sequence of edges) from the

first state of the pair to the second that is labeled with the word.

578 M.-P. Béal et al.

Deterministic automaton

A finite automaton with a unique initial state such that, for each state and

each symbol in an alphabet, there is at most one edge starting in that state

and labeled with that symbol.

Determinization algorithm

An algorithm that transforms any finite automaton into an equivalent

deterministic finite automaton.

Regular set

A set of words generated by paths in a finite automaton, starting in an

initial state and ending in a terminal state.

Transducer

A finite state automaton with output realizing a relation between words on

an input alphabet A and words on an output alphabet B. It is similar to an

automaton, but edges are quadruples consisting of a pair of states, a word

over A, and a word over B. The main purpose for transducers is decoding.

In this case, A is the channel alphabet and B is the source alphabet.

Literal transducer

A transducer such that each input label is a single letter.

Unambiguous transducer

A literal transducer whose associated input automaton is unambiguous.

Deterministic transducer

A literal transducer whose associated input automaton is deterministic.

Sequential transducer

A deterministic transducer and an output function. This function maps the

terminal states of the transducer into words on the output alphabet. The

function realized by a sequential transducer is obtained by appending to

the value of the deterministic transducer the image of the output function

on the terminal state.

Alphabetic coding

An order preserving encoding. The source and the channel alphabets are

ordered, and the codewords are ordered lexicographically.

Variable-Length Codes and Finite Automata 579

Optimal source coding

An encoding that minimizes the weighted cost. The weights are on the

source alphabet and the costs on the channel alphabet.

Code

A set of non-empty words over an alphabet A such that every concatenation

of codewords is uniquely decipherable.

Prefix (suffix) code

A set of non-empty words over an alphabet A such that no word in the set

is a proper prefix (suffix) of another one.

Reversible code

A code which is prefix and which is also prefix when the words are read

from right to left. Such a code is also called bifix.

Maximal code

A code (the image of an encoding) that is not strictly contained in another

code.

Constrained channel

A communication channel that imposes constraints on the channel symbol

sequences that can be transmitted.

Constrained source

A source that imposes constraints on the sequences of source alphabet

symbols that it generates.

Symbolic dynamics

The study of symbolic representations of dynamical systems and code

mappings between such representations.

Sliding block decoder

A decoder that operates on strings of channel symbols with a window of

fixed size. The decoder uses m symbols before the current one and a symbols

after it (m is for memory and a for anticipation). According to the value

of the symbols between time n − m and time n + a, the value of the nth

source symbol is determined.

State splitting algorithm

An algorithm that transforms a finite-state graph representation of a

constraint into a sliding-block decodable finite-state encoder.

580 M.-P. Béal et al.

Commutative equivalence

A relation between two codes in which there is a one-to-one correspondence

between codewords such that corresponding pairs of words have the same

number of occurrences of each alphabet symbol (that is, they are anagrams).

Channel capacity

The maximum amount of information that can be transmitted over

the channel per unit cost. In many applications, the cost of a symbol

corresponds to the number of channel uses or the time required to transmit

it. The capacity is then a measure of the amount of information that can

be transmitted over the channel per channel use.

Binary source entropy

A measure of the average number of bits per symbol required to represent

a source with weighted source symbols.

Generating series

The power series whose coefficients are the number of words or the

probabilities of words of each length.

Synchronizing word

A word for a finite automaton such that all paths labeled by this word end

in the same state.

Geometric distribution

A probability distribution π on the set of non-negative integers such that

π(n + 1)/π(n) is constant.

Acknowledgments

The authors would like to thank Frédérique Bassino, Julien Clément, Éric

Incerti, Claire Kenyon, Éric Laporte, and Olivier Vénard for their help in

the preparation of this text, and the anonymous referees for their helpful

comments.

Variable-Length Codes and Finite Automata 581

References

1. R. L. Adler, D. Coppersmith and M. Hassner, Algorithms for sliding block
codes, IEEE Trans. Inform. Theory 29, 1 (1983), 5–22.

2. R. L. Adler, J. Friedman, B. Kitchens and B. H. Marcus, State splitting for
variable-length graphs, IEEE Trans. Inform. Theory 32, 1 (1986), 108–113.

3. R. L. Adler, L. W. Goodwyn and B. Weiss, Equivalence of topological Markov
shifts, Israel J. Math. 27, 1 (1977), 48–63.

4. R. Ahlswede, B. Balkenhol and L. H. Khachatrian, Some properties of fix-
free codes, Proc. 1st Int. Seminar on Coding Theory and Combinatorics,

Thahkadzor, Armenia (1996), pp. 20–33.
5. R. B. Ash, Information Theory, Dover Publications Inc., New York (1990),

Corrected reprint of the 1965 original.
6. M.-P. Béal, The method of poles: A coding method for constrained channels,

IEEE Trans. Inform. Theory 36, 4 (1990), 763–772.
7. M.-P. Béal, Codage symbolique, Masson (1993).
8. M.-P. Béal, Extensions of the method of poles for code construction, IEEE

Trans. Inform. Theory 49, 6 (2003), 1516–1523.
9. M.-P. Béal and D. Perrin, Codes, unambiguous automata and sofic systems,

Theor. Comput. Sci. 356, 1–2 (2006), 6–13.
10. J. Berstel and D. Perrin, Theory of Codes, Academic Press (1985).
11. J. Berstel, D. Perrin and C. Reutenauer, Codes and Automata, Cambridge

University Press (2009).
12. J. Berstel and C. Reutenauer, Rational Series and their Languages, Springer-

Verlag (1988).
13. V. Bruyère and M. Latteux, Variable-length maximal codes, Automata,

Languages and Programming, (Paderborn, 1996), Lecture Notes in Computer

Science, Vol. 1099, Springer-Verlag (1996) pp. 24–47.
14. M. Dalai and R. Leonardi, Non prefix-free codes for constrained sequences,

IEEE Int. Symposium on Information Theory (2005), pp. 1534–1538.
15. C. Deppe and H. Schnettler, On q-ary fix-free codes and directed deBrujin

graphs, IEEE Int. Symposium on Information Theory 2(006), pp. 1482–1485.
16. J. Désarménien, La division par ordinateur des mots français: Application à

TEX, Tech. Sci. Informa. 5, 4 (1986), 251–265.
17. T. Dutoit, An Introduction to Text-To-Speech Synthesis, Kluwer (1997).
18. S. Eilenberg, Automata, Languages and Machines, Vol. A, Academic Press

(1974).
19. P. Elias, Universal codeword sets and representations of the integers, IEEE

Trans. Inform. Theory 21, 2 (1975), 194–203.
20. J. L. Fan, B. H. Marcus and R. M. Roth, Lossless sliding-block compression

of constrained systems, IEEE Trans. Inform. Theory 46, 2 (2000), 624–633.
21. P. A. Franaszek, Run-length-limited variable length coding with error

propagation limitation, US Patent 3,689,899, 1972.
22. R. G. Gallager and D. C. van Voorhis, Optimal source codes for geometrically

distributed integer alphabets, IEEE Trans. Inform. Theory 21, 2 (1975),
228–230.

582 M.-P. Béal et al.

23. A. M. Garsia and M. L. Wachs, A new algorithm for minimum cost binary
trees, SIAM J. Comput. 6, 4 (1977), 622–642.

24. E. N. Gilbert, Synchronization of binary messages, IRE Trans. Inform.

Theory 6 (1960), 470–477.
25. E. N. Gilbert, Coding with digits of unequal cost, IEEE Trans. Inform.

Theory 41, 2 (1995), 596–600.
26. E. N. Gilbert and E. F. Moore, Variable length binary encodings, Bell Sys.

Tech. J. 38 (1959), 933–967.
27. D. Gillman and R. Rivest, Complete variable length fix-free codes, Design.

Codes Cryptogr. 5 (1995), 109–114.
28. B. Girod, Bidirectionally decodable streams of prefix code words, IEEE

Commun. Lett. 3, 8 (1999), 245–247.
29. M. J. Golin, C. Kenyon and N. E. Young, Huffman coding with unequal

letter costs, ACM Symposium Theory on Computing (2002), pp. 785–791.
30. S. W. Golomb, Run-length encodings, IEEE Trans. Inform. Theory, 12, 3

(1966), 399–401.
31. G. Gönenç, Unique decipherability of codes with constraints with application

to syllabification of Turkish words, COLING 1973: Computational and

Mathematical Linguistics: Proceedings of the International Conference on

Computational Linguistics, Vol. 1, Firenze, Italy (1973), pp. 183–193.
32. L. J. Guibas and A. M. Odlyzko, Maximal prefix-synchronized codes, SIAM

J. Appl. Math. 35, 2 (1978), 401–418.
33. C. D. Heegard, B. H. Marcus and P. H. Siegel, Variable-length state splitting

with applications to average runlength-constrained (ARC) codes, IEEE

Trans. Inform. Theory 37, 3, Part 2 (1991), 759–777.
34. T. C. Hu and M.-T. Shing, Combinatorial Algorithms, 2nd edn. Dover

Publications Inc., Mineola, NY, (2002).
35. T. C. Hu and A. C. Tucker, Optimal computer search trees and variable-

length alphabetical codes, SIAM J. Appl. Math. 21 (1971), 514–532.
36. T. C. Hu and P. A. Tucker. Optimal alphabetic trees for binary search,

Inform. Process. Lett. 67, 3 (1998), 137–140.
37. D. A. Huffman, A method for the construction of minimum redundancy

codes, Proceedings of the Institute of Electronics and Radio Engineers, Vol. 40,
No. 10, September 1952, pp. 1098–1101.

38. K. A. S. Immink, A practical method for approaching the channel
capacity of constrained channels, IEEE Trans. Inform. Theory 43, 5 (1997),
1389–1399.

39. K. A. S. Immink, Codes for Mass Data Storage Systems, 2nd edn. Shannon
Foundation Publishers (2004).

40. A. Itai, Optimal alphabetic trees, SIAM J. Comput. 5, 1 (1976), 9–18.
41. R. M. Karp, Minimum redundancy codes for the discrete noiseless channel,

IRE Trans. Inform. Theory 7 (1961), 27–38.
42. J. H. Kingston, A new proof of the Garsia-Wachs algorithm, J. Algorithms

9, 1 (1988), 129–136.
43. D. E. Knuth, The Art of Computer Programming, Volume III: Sorting and

Searching, 2nd edn. Addison-Wesley (1998).

Variable-Length Codes and Finite Automata 583

44. Z. Kohavi, Switching and Automata Theory, 2nd edn. McGraw-Hill
(1978).

45. D. Lind and B. Marcus, An Introduction to Symbolic Dynamics and Coding

Cambridge University Press, Cambridge (1995).
46. M. Lothaire, Applied Combinatorics on Words, Encyclopedia of Mathematics

and its Applications, Vol. 105, Cambridge University Press, Cambridge
(2005).

47. B. H. Marcus, R. M. Roth and P. H. Siegel, Constrained systems and coding
for recording channels, Handbook of Coding Theory, eds. V. S. Pless and W. C.
Huffmann, Elsevier (1998).

48. R. J. McEliece, The Theory of Information and Coding, student edn.
Encyclopedia of Mathematics and its Applications, Vol. 86, Cambridge
University Press, Cambridge (2004), with a foreword by Mark Kac.

49. K. Mehlhorn, An efficient algorithm for constructing nearly optimal prefix
codes, IEEE Trans. Inform. Theory 26, 5 (1980), 513–517.

50. N. Merhav, G. Seroussi and M. J. Weinberger, Optimal prefix codes for
sources with two-sided geometric distributions, IEEE Trans. Inform. Theory

46, 1 (2000), 121–135.
51. D. Perrin and M.-P. Schützenberger, Synchronizing prefix codes and

automata and the road coloring problem, Symbolic Dynamics and its

Applications (New Haven, CT, 1991), Contemporary Mathematics, Vol. 135,
American Mathematical Society Providence, RI (1992), pp. 295–318.

52. A. Restivo, Codes and local constraints, Theoret. Comput. Sci. 72, 1 (1990),
55–64.

53. C. Reutenauer, Ensembles libres de chemins dans un graphe, Bull. Soc. Math.

France 114, 2 (1986), 135–152.
54. R. F. Rice, Some practical universal noiseless coding techniques, Technical

Report, Jet Propulsion Laboratory (1979).
55. I. Richardson, H.264 and MPEG-4 Video Compression: Video Coding for

Next-generation Multimedia, Wiley (2003).
56. E. Roche and Y. Schabes, eds., Finite-State Language Processing, MIT Press

(1997).
57. J. Sakarovitch, Elements of Automata Theory, Cambridge University Press

(2009).
58. D. Salomon, Variable-Length Codes for Data Compression, Springer-Verlag

(2007).
59. M.-P. Schützenberger, On an application of semigroup methods to some

problems in coding, IEE Trans. Inform. Theory 2 (1956), 47–60.
60. M.-P. Schützenberger, On a family of submonoids, Publ. Math. Inst. Hungar.

Acad. Sci. Ser. A VI (1961), 381–391.
61. M.-P. Schützenberger, On a special class of recurrent events, Ann. Math.

Statist. 32 (1961), 1201–1213.
62. C. E. Shannon, A mathematical theory of communication, Bell Sys. Tech. J.

27 (1948), 379–423, 623–656.
63. P. W. Shor, A counterexample to the triangle conjecture, J. Combin. Theory

Ser. A 38 (1983), 110–112.

584 M.-P. Béal et al.

64. J. Teuhola, A compression method for clustered bit-vectors, Inf. Process. Lett.

7, 6 (1978), 308–311.
65. A. N. Trahtman, The road coloring problem, Israel J. Math. (2008), to appear.
66. B. P. Tunstall, Synthesis of noiseless compression codes. PhD Thesis, Georgia

Institute of Technology (1967).
67. B. Varn, Optimal variable length codes (arbitrary symbol cost and equal code

word probability), Inform. Contr. 19 (1971), 289–301.
68. J. Wen and J. Villasenor, Reversible variable length codes for efficient and

robust image and video coding, IEEE Data Compression Conference (1998),
pp. 471–480.

69. M. W. Y. Takishima and H. Murakami, Reversible variable length codes,
IEEE Trans. Commun. 43, 2/3/4 (1995), 158–162.

70. C. Ye and R. W. Yeung, Some basic properties of fix-free codes, IEEE Trans.

Inform. Theory 47, 1 (2001), 72–87.
71. S. Yekhanin, Improved upper bound for the redundancy of fix-free codes,

IEEE Trans. Inform. Theory 50, 11 (2004), 2815–2818.

