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Abstract

M. P. Schützenberger was extremely influential in theoretical com-
puter science. We propose a general short survey on combinatorics of
words and sequences, where we point to some of his contributions.

1 Introduction

Thue is often considered as the father of combinatorics of words. In two papers
at the beginning of the 20th century Thue addressed the question of finding an
infinite sequence on two symbols that is cube-free, i.e., that does not contain
three consecutive identical blocks. May be Thue should be considered as a
grandfather of combinatorics of words, since his work was later followed and
largely extended by other researchers: among the fathers of combinatorics of
words, Schützenberger certainly had a special and important rôle.

Combinatorics on words deal with finite or infinite sequences taking there
values in a finite set. Finite such sequences are called words. Structures
are added: concatenation of words (leading to the study of finitely generated
free monoids), morphisms of monoids, topology on monoids, infinite sequences
viewed as limits of words and their morphisms, periodicity and periodicity-like
properties of infinite sequences... We will visit some of the concepts and results
which go from Thue’s discovery to recent papers. To keep this survey short,
we will not give all proofs but either hints and sketches or precise references.
We will only give a succinct bibliography. The interested readers can consult,
e.g., the books [2, 5, 9, 10, 11, 12, 13, 14] and the references therein. Of course
one should absolutely not forget [4] and its rich bibliography.

2 Basic definitions

We begin with basic definitions.
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Definition 2.1

• A finite set A is called an alphabet. In case the cardinality of A is equal
to 2, A is called a binary alphabet (e.g., A = {0, 1}). The elements of
an alphabet are called letters.

• A word on the alphabet A is a finite sequence taking its values in A. If
w = (wj)0≤j≤n−1 is a word on A, it is written w = w0w1 · · ·wn−1, and
n is called the length of w, and denoted by |w|. The word with no letter
is called the empty word and denoted by ∅; its length is 0.

The set of all words on A is denoted by A∗, and the set of non-empty
words is denoted by A+.

• A language on A is a subset of A∗.

• A sequence on A, i.e., an element (an)n≥0 ∈ AN, is sometimes called an
infinite word on A. The set of all sequences on A is denoted by Aω, and
we let A∞ denote A∗ ∪Aω.

• If v = v0v1 · · · vm−1 and w = w0w1 · · ·wn−1 are two words on the alpha-
bet A, the concatenation of v and w, denoted by v.w or vw, is defined
by vw = v0v1 · · · vm−1w0w1 · · ·wn−1. Note that the concatenation of a
finite word and of an infinite word can be defined analogously.

• If t, v, w, z are four words on A and if v = twz, w is called a factor (or
subword) of v, t is called a prefix of v and z is called a suffix of v. A prefix
or a suffix of a word, different from the word itself, is called proper. Note
that these definitions still make sense if z (hence v) is an infinite word.

• If w is a word on A and if k is an integer, then wk is the concatenation
of k copies of the word w (i.e., wk = w.w. · · · .w). Or, equivalently, wk

can be defined by induction: w0 = ∅, and wk+1 = wk.w for all k ≥ 0.

• A word (or a sequence) is called square-free, cube-free, resp. k-free, if it
contains no prefix which is a square, a cube, resp. a k-th power.

• A word w = w0w1 · · ·wn−1 is called a palindrome if it has the property:

w = w0w1 · · ·wn−1 = wn−1wn−2 · · ·w1w0.

Proposition 2.2 The concatenation is associative in A∗. The empty word
is the identity element. Hence (A∗, .) is a monoid. (This is actually the free
monoid generated by A.)

Proof. Straightforward.
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Remark 2.3

• A word w = w0w1 · · ·wn−1 is equal to the concatenation of its letters,
namely:

w0w1 · · ·wn−1 = w0 . w1 . · · · . wn−1

• The concatenation is not commutative in general if the cardinality of
the alphabet A is at least 2, e.g., on the binary alphabet {0, 1}, we have
00.011 = 00011 6= 01100 = 011.00.

Though the concatenation is not commutative, it may happen that two
words commute, for example: 01.0101 = 0101.01. Here the two words are 01
and 0101 = (01)2. A theorem of Lyndon and Schützenberger states that this
is “essentially” the only case where this happens. More precisely:

Theorem 2.4 (Lyndon, Schützenberger) Let v and w be two non-empty
words on A. Then vw = wv if and only if there exist a word z and two positive
integers i and j such hat v = zi and w = zj.

Proof. (sketch) One direction is clear. The other direction uses induction on
the length of vw.

3 Morphisms

Given a structure (here monoids generated by a finite set), a natural question
is to look at maps which preserve this structure. This motivates the following
definition.

Definition 3.1

• Let A and B be two alphabets. Let (A∗, .) and (B∗, .) be the two monoids
generated by A, resp. B (the concatenation in the two monoids is denoted
by the same symbol for simplicity). A map h from A∗ to B∗ is called
a morphism (or a morphism of monoids), if for all words v ∈ A∗ and
w ∈ B∗ one has h(v.w) = h(v).h(w).

• A morphism h from (A∗, .) to (B∗, .) is called non-erasing if for each
a ∈ A, one has h(a) 6= ∅.

• Let ` ≥ 1 a positive integer. A morphism h from (A∗, .) to (B∗, .) is
called `-uniform if for each letter a ∈ A one has |h(a)| = `. A morphism
is called uniform (or a morphism of constant length) if it is `-uniform for
some ` ≥ 1.

Remark 3.2 Since a word is the concatenation of its letters (see above), a
morphism on A∗ is totally determined by its values on A.
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4 Topology on infinite sequences on a finite set

Let A be a finite set. The set of infinite sequences with values in A, denoted
by Aω can be equipped with a topology. Intuitively two sequences are “close”
if they have a “long” common prefix. More precisely Aω is the product of
infinitely many copies of A; it can thus be equipped with the product topology,
where each A is equipped with the discrete topology. The set Aω is then a
compact set (by Tychonoff’s theorem). It is not difficult to see that this
topology is metrizable, see the following definition and remark.

Definition 4.1 Let A be a finite set. If x = (xn)n≥0 and y = (yn)n≥0 are
two infinite sequences on A, i.e., two elements of Aω, then we define

d(x,y) =

{
0 if x = y,

2−min{n≥0, xn 6=yn}.

Remark 4.2

• We leave it to the reader to prove that d is a distance and that it defines
the product topology on Aω.

• The set A∗ of all finite words on A can be considered as a subset of
(A ∪ {�})ω (where � is a new letter not in A) by identifying each word
v = v0v1 · · · vn−1 with the infinite sequence v0v1 · · · vn−1�� · · ·�· · · . Since
Aω can also be considered a subset of (A∪ {�})ω, and since this last set
can be equipped with a metrizable topology similar to the one above,
one sees that A∞ = A∗∪Aω is a subset of the metrizable set (A∪{�})ω.

• Given two alphabets A and B, a morphism f from A∗ to B∗ can be
extended to A∞ by defining for any infinite sequence with values in
A, say u = u0u1 · · ·un · · · , its image f(u) := f(u0)f(u1) · · · f(un) · · · ,
where the f(ui)’s are first concatenated, then rewritten as finite se-
quences of letters: for example, if f(0) = 01 and f(1) = 0, then
f(01001100011100001111 · · · ) = 0100101000101010000101010000 · · · ; the
reader will have noted that this is exactly extending f by continuity.

5 Complements

Before speaking of particular infinite sequences, e.g., morphic, automatic or
Sturmian sequences, we will mention the paper of Cori and Perrin [7], which
gives some of the contributions of Schützenberger and some of his influential
ideas. As indicated in [7], Schützenberger had more than 300 publications ap-
peared between 1943 et 2000. They have been collected and analyzed, and can
be accessed at http://www-igm.univ-mlv.fr/~berstel/Mps/index.html.
The numerous contributions of Schützenberger made him a pioneer in the
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development of mathematics that were necessary for computer science, from
combinatorial algorithms to automata and to formal grammars, from semi-
groups to codes, from formal languages to algebraic combinatorics, from the
repetition threshold of an alphabet to Lyndon words and to factorizations of
free monoids. As written by Lichnerovicz (cited in [7]): Schützenberger avait
le génie de la “préscience” – du génie tout court : il a su dégager très tôt les
fondements algébriques et combinatoires qui doivent sous-tendre tout le champ
de l’informatique.

6 Complexity of an infinite sequence

A “measure” of how complicated a sequence on a finite alphabet is consists
of counting the number of distinct factors of each length: a sequence where
all possible words of all possible lengths occur (e.g., a “random” sequence) is
intuitively more complicated than the sequence 000 · · · which has exactly one
word of each length. This suggests the following definition.

Definition 6.1 Let A be an alphabet and u = (un)n≥0 be a sequence in Aω.
The (block-)complexity of the sequence u is the function (p(k))k≥0 defined by:
for each k ≥ 0, pu(k) = p(k) is the number of factors of u of length k. [In
particular p(0) = 1 since the empty word is the only factor of u of length 0.]

A first result on the complexity of a sequence was given by Morse and
Hedlund.

Proposition 6.2 Let u = (un)n≥0 be a sequence with values in the alphabet
A of cardinality ≥ 2. Let (p(k))k≥0 be the complexity of u. Then the following
conditions are equivalent:

(i) The function p is increasing, i.e., p(k + 1) > p(k) for all integers k.

(ii) The function p is unbounded.

(iii) For all integers k we have p(k) > k.

(iv) The sequence u is not ultimately periodic.

Proof. See, e.g., [2, Theorem 10.2.6, p. 302].

Remark 6.3 The penultimate item of Proposition 6.2 above shows that if
pu(k) ≤ k for some k, then the sequence u is ultimately periodic. In other
words the complexity pu of any non-ultimately periodic u satisfies p(k) ≥ k+1.

Remark 6.4 Other complexities can be defined where, instead of counting
the number of all factors of each length, one restricts to factors of a special
type, or to classes of factors for some equivalence relation. For example, the
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palindrome complexity counts the number of palindrome factors of each length:
it can be proved that, e.g., the palindrome complexity of the Golay-Shapiro
sequence is zero for large values of length (more precisely, the Golay-Shapiro
sequence does not contain palindromes of length ≥ 15). Another example
is the abelian complexity which counts the number of factors of each length
without taking into account the order of letters: in other words it counts the
number of equivalence classes for the relation where two words are equivalent
if one can be obtained from the other by permuting its letters.

7 Morphic sequences

Consider the morphism h defined on {0, 1} (hence on {0, 1}∗) by h(0) = 01,
h(1) = 0. Let us compute the first iterates of h at 0:

h(0) = 0
h2(0) = h(h(0)) = h(01) = h(0)h(1) = 010
h3(0) = h(h2(0)) = h(010) = h(0)h(1)h(0) = 01001

. . .

Looking at the sequence of words (h(0), h2(0), h3(0), . . .) = 01, 010, 01001, . . .,
we see (and it can be proved) that each word hk(0) is a prefix of hk+1(0),
hence that this sequence of words converges (in the topology of (A ∪ {�})ω
indicated above) to an infinite binary sequence 0 1 0 0 1 0 1 · · · , called the
(binary) Fibonacci sequence (the readers will certainly have noticed –and they
can prove– that the sequence of lengths of the words h(0), h2(0), h3(0), . . ., i.e.,
1, 3, 5, · · · is precisely the usual Fibonacci sequence of integers).

Definition 7.1 Let A be an alphabet. A non-erasing morphism from A∗ to
A∗ is said to be prolongable on some letter a ∈ A, if there exists a non-empty
word w ∈ A∗ such that h(a) = aw.

Proposition 7.2 Let A be an alphabet and a be a letter in A. Let h be a non-
erasing morphism, prolongable on a, then the sequence of words (hk(a))k≥1
converges to an infinite sequence denoted by h∞(a) which is a fixed point of
the (extension to Aω of the) morphism h. The sequence h∞(a) is called an
iterative fixed point of the morphism h.

Proof. (sketch) Suppose that h(a) = aw. It is easy to see that one has
hk(a) = awh(w)h2(w) · · ·hk−1(w). So hk(a) is a prefix of hk+1(a) and |hk(a)|
tends to infinity, which proves the claim.

Definition 7.3

• A sequence with values in the alphabet A is said to be pure morphic if
it is an iterative fixed point of a non-erasing prolongable morphism from
A∗ to A∗.
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• A sequence (xn)n≥0 with values in the alphabet A is said to be morphic if
there exist an alphabet B, a pure morphic sequence (zn)n≥0 with values
in B, and a map ψ from B to A such that xn = ψ(zn) for all n ≥ 0.
The sequence (xn)n≥0 is also called the pointwise image of the sequence
(zn)n≥0 under the map ψ.

Remark 7.4

• A pure morphic sequence is in particular morphic.

• The pointwise image of a sequence under a map ψ can also be seen as
the image of this sequence under the 1-uniform morphism defined by ψ
(see Definition 3.1).

Example 7.5 The binary Fibonacci sequence defined at the beginning on this
section is the iterative fixed point of the morphism h(0) = 01, h(1) = 0. It is
pure morphic.

8 Automatic sequences

In this section we will focus on morphic sequences corresponding to morphisms
of constant length (see Definition 3.1).

8.1 Definitions

Definition 8.1 Let ` be an integer ≥ 2. A sequence is said to be `-automatic,
if it is an iterative fixed point of a non-erasing prolongable morphism of con-
stant length `. A sequence is called automatic (or uniformly morphic) if it is
`-automatic for some ` ≥ 2.

Remark 8.2 The terminology “automatic” comes from an equivalent defini-
tion (that we will not give here) through finite automata with output function.

A somehow simpler (but equivalent) definition is given in the following
proposition.

Proposition 8.3 Let ` be an integer ≥ 2. A sequence (xn)n≥0 is `-automatic
if and only if the set of subsequences {(x`in+a)n≥0, i ≥ 0, a ∈ [0, `i − 1]} is
finite.

Proof. See, e.g., [2, p. 185–186].

Remark 8.4

• The set of subsequences {(x`in+j)n≥0, i ≥ 0, a ∈ [0, `i − 1]} of the
sequence (xn)n≥0 is called the `-kernel of the sequence (xn)n≥0.
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• To have a graphical view of Proposition 8.3 above, take ` = 2. Then
construct a tree starting from the sequence (xn)n≥0. Then draw two
branches, say a left branch going from (xn)n≥0 to the sequence (x2n)n≥0
and a right branch going from (xn)n≥0 to the sequence (x2n+1)n≥0, i.e.,
the two branches go to the subsequences of (xn)n≥0 of even and of odd
indices. “Split” in the same way the sequences (x2n)n≥0 and (x2n+1)n≥0,
thus drawing branches, going respectively from (x2n)n≥0 to (x4n)n≥0 and
to (x4n+2)n≥0, and from (x2n+1)n≥0 to (x4n+1)n≥0 and to (x4n+3)n≥0. If
(xn)n≥0 is any sequence one obtains in general an infinite tree, in which
it may happen that some leafs are equal: if two leaves are equal, suppress
the youngest one and the whole subtree that it generates; the resulting
simplified tree has all its leaves distinct, but it might still be infinite,
or even equal to the initial tree. Proposition 8.3 characterizes the 2-
automatic sequences as sequences having a finite simplified tree.

8.2 Examples

The first “trivial” examples are given in Proposition 8.5 below.

Proposition 8.5 All ultimately periodic sequences are `-automatic for any
integer ` ≥ 2.

Proof. Left to the reader.

Now we give a few famous examples of 2-automatic sequences.

8.2.1 The Prouhet-Thue-Morse sequence

The Prouhet-Thue-Morse sequence, also called the Thue-Morse sequence, is the
most famous automatic sequence. It was introduced by Thue, as an example
of a sequence on two symbols that has no cubes (i.e., no block composed of
three identical consecutive blocks): the two papers of Thue in 1906 and 1912
seem to be the first papers addressing a question in combinatorics on words.
This sequence was rediscovered several times, in particular by Morse in 1921.
Its first occurrence in the literature actually goes back to Prouhet in 1851 (for
a survey on this sequence, see [1]).

The Thue-Morse sequence on the alphabet {0, 1} is the iterative fixed point
beginning with 0 of the morphism h defined by h(0) = 01, h(1) = 10. One
sees that

h(0) = 01
h2(0) = h(h(0)) = h(01) = 0110
h3(0) = 01101001
h4(0) = 0110100110010110 . . .
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so that the Thue-Morse sequence on {0, 1} is the sequence

h∞(0) = 0 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1 1 0 1 0 0 1 · · ·

This sequence is not only cube-free but it is also overlap-free, i.e., it does not
contain any factor wwa where w ∈ {0, 1}∗ and a ∈ {0, 1}.

8.2.2 The Golay-Shapiro sequence

The Golay-Shapiro sequence, also called the Rudin-Shapiro sequence, was dis-
covered independently by Golay and Shapiro in 1951, and studied by Rudin
in 1959 (see, e.g., [3, Remark 1, p. 206]). One remarkable property of this
sequence is the following. If (an)n≥0 is a binary sequence with values in {0, 1},
then

√
N ≤ sup

θ∈[0,1]

∣∣∣∣∣∣
∑

0≤n≤N−1
(−1)ane2iπnθ

∣∣∣∣∣∣ ≤ N
(while the upper bound is trivial, the lower bound is obtained by comparing
the L∞ and L2 norms of the sum). Furthermore, for (Lebesgue) almost all
sequences (an)n≥0, the upper bound can be replaced by O(

√
N logN). But if

(rn)n≥0 is the Golay-Shapiro sequence, then

√
N ≤ sup

θ∈[0,1]

∣∣∣∣∣∣
∑

0≤n≤N−1
(−1)rne2iπnθ

∣∣∣∣∣∣ ≤ C√N
where C = 2+

√
2. In other words this sequence almost behaves like almost all

sequences, i.e., like a “random” sequence. But (rn)n≥0 is 2-automatic (hence
quite non-random), namely it can be defined as follows. Let A = {a, b, c, d},
define the morphism σ on A by:

σ(a) = ab, σ(b) = ac, σ(c) = db, σ(d) = dc

and let ψ be the map: ψ(a) = ψ(b) = 0, ψ(c) = ψ(d) = 1. Then define
the sequence v = (vn)n≥0 by v = σ∞(a). The Golay-Shapiro sequence is the
pointwise image of the sequence v by the map ψ (i.e., rn = ψ(vn) for all n ≥ 0).

8.2.3 The (regular) paperfolding sequence

Repeatedly folding a strip of paper yields, when the paper is unfolded, a
sequence of folds consisting of “peaks” and “valleys”. This sequence turned
into a binary sequence on {0, 1} is 2-automatic. It can be also constructed as
follows. Let A = {a, b, c, d}, and let τ be the morphism defined on A by:

τ(a) = ab, τ(b) = cb, τ(c) = ad, τ(d) = cd.

Let x = (xn)n≥0 be the sequence x = τ∞(a) and let ϕ be the map defined by:
ϕ(a) = ϕ(b) = 0, ϕ(c) = ϕ(d) = 1. Then the (regular) paperfolding sequence
is the sequence p = (pn)n≥0 defined as the pointwise image of the sequence x
by the map ϕ.
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8.2.4 The Baum-Sweet sequence

While it is well known that the continued fraction expansion of a real number
quadratic over the rationals is (ultimately) periodic (Lagrange’s theorem),
nothing is known for algebraic numbers of degree ≥ 3: no example is known
with bounded partial quotients, nor with unbounded partial quotients. If the
field of rationals is replaced with the 2-element field and the real numbers with
the field of Laurent power series in 1/X over the 2-element field, there is also
a theory of continued fractions, where the partial quotients are polynomials,
and where “bounded partial quotients” means “partial quotients of bounded
degree” (i.e., there are only finitely many distinct partial quotients). In this
setting Lagrange’s theorem still holds. But more is known for the case of
algebraic Laurent series of large degree: Baum and Sweet gave in 1976 the
first example of a Laurent formal power series, algebraic of degree 3, whose
sequence of partial quotients is bounded. The sequence of its coefficients, say
(bn)n≥0, is 2-automatic. It is defined as follows.

Let A = {a, b, c, d}. Let ρ be the morphism on A∗ such that

ρ(a) = ab, ρ(b) = cb, ρ(c) = bd, ρ(d) = dd.

Let ς be the morphism defined on A by: ς(a) = ς(b) = 1, ς(c) = ς(d) = 0.
Define the sequence z = (zn)n≥0 by z := ρ∞(a). The Baum-Sweet sequence is
the pointwise image of the sequence z by the map ς.

8.2.5 The Hanoi sequence

It was proved that the classical puzzle called “the Tower of Hanoi” can be
solved by using an infinite sequence on six symbols (corresponding to all pos-
sible directed moves that take a ring from the top of a peg to place it on the
top of another peg). This sequence called the Hanoi sequence has the property
that its prefixes of length 2n−1 give the moves that take n rings from the first
to the second peg is n is odd, and from the first to the third peg if n is even.
This sequence, say (Hn)n≥0 can be defined as follows. Let B be the alphabet
B = {a, b, c, a, b, c} and let ε be the morphism defined on B by

ε(a) = ac, ε(b) = cb, ε(c) = ba, ε(a) = ac, ε(b) = cb, ε(c) = ba.

Then the Hanoi sequence is the sequence (Hn)n≥0 = ε∞(a).

Remark 8.6 The reader can prove that all examples above are 2-automatic
sequences by proving that their respective 2-kernels are finite.

8.3 First properties of automatic sequences

Let us begin with basic properties of automatic sequences.
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Proposition 8.7

• If a sequence is `-automatic for some ` ≥ 2, the sequences obtained
respectively by inserting a finite number of terms, deleting a finite number
of terms, or changing a finite number of terms, are still `-automatic.

• If a sequence is `-automatic, any pointwise image of this sequence is still
`-automatic.

• Let ` ≥ 2 and m ≥ 1 be two integers. A sequence is `-automatic if and
only if it is `m-automatic.

• Let ` ≥ 2 be an integer. Let a, b be two nonnegative integers. If a
sequence (xn)n≥0 is `-automatic, then the sequence (xan+b)n≥0 is also
`-automatic.

• Let ` ≥ 2 be an integer. Let a ≥ 1 be a positive integer. Suppose that
the sequences (xan+b)n≥0 are `-automatic for all b ∈ [0, a − 1], then the
sequence (xn)n≥0 is `-automatic.

• Let ` ≥ 2 and k ≥ 1 be two integers. The image of an `-automatic by a
uniform morphism of length k is `-automatic.

• Let A be an alphabet equipped with an operation ∗ such that (A, ∗) is
a monoid. If the sequences (vn)n≥0 and (wn)n≥0 are `-automatic for
some integer ` ≥ 2, so are the sequences (xn)n≥0 and (yn)n≥0, where
xn = vn ∗ wn and yn = v0 ∗ v1 ∗ · · · ∗ vn for all n ≥ 0.

• Let u = (un)n≥0 be an automatic sequence. Then its complexity (pu(k))k≥0
satisfies p(k) = O(k).

8.4 The theorem of Christol

In two papers Christol (1979) and Christol, Kamae, Mendès France and Rauzy
(1980) established an unexpected link between pr-automaticity (p a prime
number), and algebraicity. We give a slightly simplified version of their result.

Theorem 8.8 (Christol / Christol, Kamae, Mendès France, Rauzy)
Let p be a prime integer, let r ≥ 1 be a positive integer, and let q = pr. Let Fq
be the q-element field and let (vn)n≥0 be a sequence with values in Fq. Then
the sequence (vn)n≥0 is q-automatic if and only if the formal power series∑

n≥0 vnX
n is algebraic over the field of rational functions Fq(X).

Proof. See, e.g., [2, Theorem 12.2.5, p. 356].

Remark 8.9 In order to “see” the meaning of the Christol theorem, let us
look at an explicit example. We take the Thue-Morse sequence t = (tn)n≥0,
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which (Section 8.2.1) satisfies t = h∞(0), where h is the morphism defined on
{0, 1} by h(0) = 01, h(1) = 10. Since the sequence t is a fixed point of (the
extension to {0, 1}ω) of this morphism, we have t2n = tn and t2n+1 = 1 − tn:
namely, the image of a sequence (zn)n≥0 by h is the sequence

z0 (1− z0) z1 (1− z1) · · · = (z′n)n≥0

where z′2n = zn and z′2n+1 = 1− z′n. Let F be the formal power series defined
by F = F (X) =

∑
n≥0 tnX

n. We have

F (X) =
∑
n≥0

t2nX
2n +

∑
n≥0

t2n+1X
2n+1

(by splitting the sum between even and odd indices)

=
∑
n≥0

tnX
2n +

∑
n≥0

(1− tn)X2n+1

(by using the properties of the sequence (tn)n≥0)

= F (X2) +
∑
n≥0

X2n+1 −XF (X2)

= (1−X)F (X2) +
X

1−X2

Now, identifying {0, 1} with the 2-element field F2, recall that +1 = −1 mod 2,
and note that we have F (X2) = F (X)2 and (1−X2) = (1 +X)2. So that the
previous equality can be written

F (X) = (1 +X)F (X)2 +
X

(1 +X)2

= −(1 +X)F (X)2 − X

(1 +X)2
·

In other words
(1 +X)3F 2 + (1 +X)2F +X = 0

which proves that F is algebraic over F2(X) of degree at most 2. But the fact
that (tn)n≥0 has no cube implies that it cannot be ultimately periodic, so that
F is quadratic over F2(X).

Remark 8.10 Of course the Christol theorem has nothing to do with the
Chomsky-Schützenberger theorem on context-free languages [6] which states:
If L is a context-free language admitting an unambiguous context-free gram-
mar, and if a(k) is the number of words of length k in L, then the formal
power series

∑∞
k=0 a(k)Xk is algebraic over the function field Q(X).
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8.5 More on automatic sequences?

The Christol theorem shows a deep link between automatic sequences and
number theory. There are many other number-theoretical results for these
sequences (automatic Dirichlet series, transcendence properties of reals given
by their base-b expansion or by their continued fraction expansion, distribution
modulo 1, etc.). Automatic sequences also occur in the theory of dynamical
systems, in physics, and even in music. We will not develop these points here;
the reader can consult, e.g., [2] and the references given therein.

9 Sturmian sequences and beyond

9.1 Sturmian sequences

Another famous class of infinite sequences studied by the word-combinatorists
is the class of Sturmian sequences. Recall from Remark 6.3 that the complex-
ity of any non-ultimately periodic sequence u satisfies pu(k) ≥ k + 1. The
“simplest” (in the sense of “having a minimal complexity”) sequences would
satisfy p(k) = k+1 for all k. Such sequences should be defined on a two-letter
alphabet (because p(1) = 2). It was proved by Morse and Hedlund, and Coven
that such sequences do exist.

Theorem 9.1 Let u = (un)n≥1 be a sequence defined on the binary alphabet
{0, 1}. Then the following conditions are equivalent.

(i) The complexity of u satisfies pu(k) = k + 1 for all k ≥ 0.

(ii) There exists an irrational α ∈ (0, 1) and a real θ ∈ [0, 1) such that{
either un = bα(n+ 1) + θc − bαn+ θc, for all n ≥ 1,

or un = dα(n+ 1) + θe − dαn+ θe, for all n ≥ 1.

Definition 9.2 If a sequence u satisfies the conditions in Theorem 9.1 above,
it is called a Sturmian sequence of slope α and intercept θ. Furthermore, if
θ = 0, the sequence is called a characteristic sequence.

Remark 9.3 It can be proved that the binary Fibonacci sequence previously
described is (the possibly simplest example of) a Sturmian sequence.

A nice survey on Sturmian sequences is [12, Ch. 2] by Berstel and Séébold.

9.2 More on Sturmian sequences. Generalizations

We will not enter the numerous properties of Sturmian sequences which are
linked to billiards, to continued fraction expansions, to digital straight lines,
to rotations on the circle, to physics (quasicrystals)... A particular feature
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of Sturmian sequences is that several properties that are equivalent to their
definition can be generalized as tentative definitions of sequences on alpha-
bets of cardinality larger than 2, but these various possible definitions are
not all equivalent. The most studied generalization seems to be episturmian
sequences, which were first introduced in [8].

10 Multidimensional sequences

Is it possible to define “words” in several dimensions? Let us restrict to di-
mension 2. One possiblity is to consider “rectangular” or even “square” words
(more complicated patterns make the generalization of concatenation difficult).
Square words naturally extend to 2D-sequences, i.e., sequences (um,n)m,n∈N2 .
To give the flavor of word-combinatorial properties of such sequences, we give
one of the definitions of 2-automatic 2D-sequences. We also state a general-
ization of Christol’s theorem.

Definition 10.1 Let u = (um,n)m,n∈N2 be a 2D-sequence with values in some
alphabet A. Let ` ≥ 2 be an integer. Then the sequence u is said to be
`-automatic if its `-kernel is a finite set, where the `-kernel of the sequence u
is the set of subsequences

Ker(u) = {(u`im+a,`in+b)m,n∈N2 , i ≥ 0, a, b ∈ [0, `i − 1]}.

Theorem 10.2 (Salon) Let p be a prime integer, let r be a positive integer,
and let q = pr. Let Fq be the q-element field and let (vm,n)m,n∈N2 be a (double)
sequences with values in Fq. Then the sequence (vm,n)m,n∈N2 is q-automatic if
and only if the formal power series

∑
vm,nX

mY n is algebraic over the field of
rational functions Fq(X,Y ).

Remark 10.3 To give both an idea of concatenation of 2D-square words and
of 2D-uniform morphisms, we propose to look at the morphism

0→ 0 1
1 0

1→ 1 0
0 1

·

Iterating this morphism as in the one-dimensional case gives:

0→ 0 1
1 0

→

0 1 1 0
1 0 0 1
1 0 0 1
0 1 1 0

→ · · ·

where the reader can see that in the last array the two 2 × 2 top squares,

namely
0 1
1 0

and
1 0
0 1

are the images of the two elements of the first line

of the penultimate array, and similarly that the two 2× 2 bottom squares are
the images of the two elements of the second line of the penultimate array.
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