Operations preserving recognizable languages*

J. Berstel1, L. Boasson2, O. Carton2, B. Pettazoni3, J.-E. Pin2

1 IGM, Université de Marne-la-Vallée
2 LIAFA, Université de Paris VII
3 Lycée M. Berthelot, Saint-Maur

*Presented at FCT’2003, Malmö.
Filters

Filter: increasing sequence \((s_n)_{n \geq 0}\) of integers

Example: \(s = 0, 1, 4, 9, 16, 25, \ldots\)

Image of a word \(w = a_0 \cdots a_n\)

\[w[s] = a_{s_0}a_{s_1} \cdots a_{s_k} \quad \text{where} \quad s_k \leq n < s_{k+1} \]

Example: \(w = \text{abracadabra}\)

\[
\begin{array}{c|cccccccccc}
\hline
w & a & b & r & a & c & a & d & a & b & r & a \\
\hline
s & 0 & 1 & 4 & 9 \\
\hline
w[s] & a & b & c & r \\
\hline
\end{array}
\]

\[w[s] = abcr \]

Image of a set \(L \subset A^*\) of words: \(L[s] = \{w[s] \mid w \in L\}\)
Filtering problem

A filter preserves recognizable sets if, for any recognizable language L, the language $L[s]$ recognizable.

Problem: characterize filters preserving recognizable sets.

Examples: the following filters preserve recognizable sets:

- $\{2n \mid n \geq 0\}$, (it is a rational transduction)
- $\{n^2 \mid n \geq 0\}$, (! it is not a rational transduction)
- $\{2^n \mid n \geq 0\}$, (!!)
- $\{n! \mid n \geq 0\}$. (!?!)

But $\left\{ \binom{2n}{n} \mid n \geq 0 \right\}$ does not preserve recognizable sets.
The filter \(s = \{ n^2 \mid n \geq 0 \} \)

This filter does not preserve context-free languages, and so is not a rational transduction.

Let \(L = \{ ca^n ba^{n+1} \mid n \geq 1 \} \). The language \(M = L[s] \cap ca^+ba^+ \) is not context-free.

```
0 1 4 9 16 25 36 49 64 81 100
```

```
c a a b a
  c a a b a
  c a a a b a
  c a a a a b a a
  c a a a a a b a a
```

General form of words in \(M \): \(ca_1a_4 \cdots a_k^2b_{(k+1)^2}a^\lambda \), where \(\lambda \) is the number of squares between \((k+1)^2\) and \(2(k+1)^2\).

\[
\lambda = \lambda_k = \lfloor \sqrt{2}(k+1) \rfloor - (k+1)
\]

and the set \(\{(k, \lambda_k) \mid k \geq 1\} \) is not “semilinear”.
Solution of the filtering problem

Let \(r \geq 0 \) be a threshold and \(q \geq 1 \) a period. Two integers \(k \) and \(k' \) satisfy

\[
k \equiv_{r,q} k' \quad \text{iff} \quad \begin{cases} k = k' & \text{if } k < r \text{ or } k' < r \\ k \equiv k' \mod q & \text{otherwise.} \end{cases}
\]

\((s_n)_{n \geq 0}\) is residually ultimately periodic, if for any threshold \(r \) and period \(q \geq 1 \), there exist \(t \geq 0 \) and \(p \geq 1 \), such that

\[
s_n \equiv_{r,q} s_{n+p} \quad \text{for all } \quad n \geq t
\]

i.e. the sequence \(s_n \mod r, q \) is ultimately periodic.

Theorem 1 A filter \((s_n)_{n \geq 0}\) preserves recognizable sets iff the sequence \(\partial s_n = s_{n+1} - s_n \) is residually ultimately periodic.
Example

Recall

\[k \equiv_{r,q} k' \iff \begin{cases} k = k' & \text{when } k < r \text{ or } k' < r \\ k \equiv k' \mod q & \text{otherwise.} \end{cases} \]

The representative of \(k \) is \(k \) itself if \(0 \leq k < r \), and is the unique integer \(\bar{k} \equiv k \mod q \) and \(r \leq \bar{k} < r + q \) otherwise.

For \(r = 7, q = 5 \), integers greater than 12 are reduced to one among \(7, 8, 9, 10, 11 \mod 5 \).

The set of squares has representatives

\[0, 1, 4, 9, 11, 10, 11, 9, 11, 10, 11, \cdots \]

It is ultimately periodic for this \(r \) and this \(q \).
Proposition 2 \(s \) is residually ultimately periodic if and only if

1. \(s \) is ultimately periodic for each \(p > 0 \),
2. \(s \) is ultimately periodic with threshold \(t \) for each \(t \geq 0 \)

By definition, \(s \) is ultimately periodic with threshold \(t \) iff the sequence \((\min(s_n, t))\) is ultimately periodic.

Examples: The sequence of squares.

The sequence

\[01020103010201040102010301020105\cdots\]
Removal problem

Let S be a relation over \mathbb{N} and $L \subseteq A^*$. Define

$$L/S = \{ u \mid \exists v \ (|u|, |v|) \in S \text{ and } uv \in L \}$$

Example: Let $S = \{(n, n) \mid n \in \mathbb{N}\}$. Then L/S is the set of first halves of words in L.

A relation S preserves recognizable sets over \mathbb{N} if, for any recognizable $K \subseteq \mathbb{N}$, the set $S(K)$ is recognizable over \mathbb{N} (i.e. a finite union of arithmetic progressions and of a finite set).

Theorem 3 (Seiferas, McNaughton)

L/S is recognizable for any recognizable set L iff S^{-1} preserves recognizable sets over \mathbb{N}.
Transductions are relations from A^* into B^* and later into some monoid M.

Filtering transduction: Let $s = (s_n)_{n \geq 0}$ be a sequence of integers. Define τ_s

$$\tau_s(a_0 \cdots a_n) = A^{s_0}a_0A^{s_1-s_0-1} \cdots A^{s_n-s_{n-1}-1}a_nA^{s_{n+1}-s_n-1}$$

One has

$$L[s] = \tau_s^{-1}(L).$$

Removal transduction: Let S be a relation over \mathbb{N}. Define τ_S

$$\tau_S(u) = \bigcup_{(|u|,n) \in S} uA^n.$$

One has

$$L/S = \tau_S^{-1}(L).$$
Let A be an alphabet and M be a monoid.

$$\mathcal{T} = (Q, A \times \mathcal{P}(M), E, I, F)$$

Transitions: $q \xrightarrow{a|R} q'$ where $a \in A$ and $R \in \mathcal{P}(M)$.

Initial and final labels: The entries of the vectors $I, F \in \mathcal{P}(M)^Q$.

A transducer realizes a transduction τ from A^* to M defined as follows. For $w = a_1 \cdots a_n$,

$$\tau(w)$$ is the union of all products $I_0R_1 \cdots R_nF_n$ for all paths

$$I_0 \xrightarrow{a_1|R_1} q_0 \xrightarrow{a_2|R_2} q_1 \xrightarrow{\cdots} q_{n-1} \xrightarrow{a_n|R_n} q_n \xrightarrow{F_n}$$
Rational transductions

A transduction is **rational** if it can be realized by a finite transducer with output labels that are rational subsets of M.

Theorem 4 Let τ be a rational transduction from A^* to M. If K is a recognizable subset of A^*, then $\tau(K)$ is rational subset of M. If L is a recognizable subset of M, then $\tau^{-1}(L)$ is a regular language over A.

However, the filtering transduction and the removal transduction are **not** rational.
A transduction τ from A^* to B^* is residually rational if for any morphism μ from B^* into a finite monoid M, $\mu \circ \tau$ is rational.

\[
\begin{array}{c}
A^* \xrightarrow{\tau} B^* \\
\downarrow \mu \circ \tau \\
\downarrow \mu \\
M
\end{array}
\]

Theorem 5 If τ is residually rational and $L \subseteq B^*$ is recognizable, then $\tau^{-1}(L)$ is also recognizable.

Proof. Let $\mu : B^* \rightarrow M$ be the syntactic morphism of L. Then

$$\tau^{-1}(L) = (\mu \circ \tau)^{-1}(P),$$

where $L = \mu^{-1}(P)$.
Proposition 6 The filtering transduction is residually rational.

Recall that $\tau_s : A^* \rightarrow A^*$ is

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{d_1} a_1 \cdots a_{n-1} A^{d_n} a_n A^{d_{n+1}}$$

where $d_n = s_{n+1} - s_n - 1$.

Let $R = \mu(A)$ be the image of A in a finite monoid M. Since $\mathcal{P}(M)$ is finite, there r and q such that

$$R^r = R^{r+q}.$$

Since $(d_n)_{n \geq 0}$ is residually ultimately periodic, there are t and p such that

$$R^{d_n} = R^{d_{n+p}} \quad \text{for every} \quad n \geq t.$$

Thus, $\mu \circ \tau_s$ is realized by the following transducer:
Filtering transducer

\[R^s_0 \xrightarrow{a|R^d_0} a\xrightarrow{R^d_1} \ldots \xrightarrow{a|R^{d+1}} \ldots a\xrightarrow{a|R_{t+n}} a\xrightarrow{a|R_{t+n+1}} \ldots \]
Removal transduction

Proposition 7 *The removal transduction is residually rational.*

Recall that the removal transduction is defined by

\[\tau_S(u) = \bigcup_{(|u|,m) \in S} uA^m. \]

Let \(R = \mu(A) \) be the image of \(A \) in a finite monoid \(M \). Since \(\mathcal{P}(M) \) is finite, there \(r \) and \(q \) such that

\[R^r = R^{r+q}. \]

Define \(r + q \) recognizable sets \(K_i \) of integers by

\[
K_i = \begin{cases}
\{i\} & \text{if } 0 \leq i < r \\
\{i + qn \mid n \geq 0\} & \text{if } r \leq i < r + q.
\end{cases}
\]
Since the sets $S^{-1}(K_i)$ are recognizable, there are t and p such that for any $0 \leq i < r + q$ and any $n \geq t$,

$$n \in S^{-1}(K_i) \iff n + p \in S^{-1}(K_i) \quad n \geq t$$

whence

$$S(n) \cap K_i \neq \emptyset \iff S(n + p) \cap K_i \neq \emptyset$$

Setting $R_n = R^{S(n)} = \bigcup_{m \in S(n)} R^m$, one gets $R_n = R_{n+p}$ for $n \geq t$.
Removal transducer
Proposition 8 A filter preserving recognizable sets is ultimately periodic for each $p > 0$.

Let $A = \{0, 1, \ldots, p - 1\}$, and let $u = a_0a_1\cdots$ be the infinite word defined by $a_i = s_i \mod p$:

\[
\begin{align*}
 s &= s_0 \ s_1 \ s_2 \ \cdots \\
 u &= a_0 \ a_1 \ a_2 \ \cdots
\end{align*}
\]

Set $v = (01\cdots(p - 1))\omega$. The letter at position s_i in v is a_i.

Let L be the set of prefixes of v. Then $L[s]$ is the set of prefixes of u.

Since $L[s]$ is regular, the infinite word u is ultimately periodic.
A filter preserving recognizable sets is drup (2)

Proposition 9 If a filter s preserves recognizable sets, then ∂_s is ultimately periodic with threshold t for each $t \geq 0$.

Set $d_i = \min(t, s_{i+1} - s_i - 1)$. We show that the infinite word $d = d_0d_1 \cdots$ is ultimately periodic.

Set $B = \{0, 1, \ldots, t\} \cup \{a\}$ and define a prefix code

$$P = \{0, 1a, 2a^2, \ldots, ta^t, a\}$$

The language $P^*[s]$ is recognizable, and so is $R = P^*[s] \cap \{0, 1, \ldots, t\}$.

The maximal word (for the order $0 < 1 < \cdots < t$) of length n in R is $d_0d_1 \cdots d_{n-1}$. The word d is read in a trim automaton recognizing R by taking at each state the edge with maximal label. Thus it is ultimately periodic.
A sequence s is **differentially residually ultimately periodic** if
$\partial s = (s_{n+1} - s_n)$ is residually ultimately periodic.

s drup \Rightarrow s rup.

s rup and $\lim \partial s_n = \infty$ \Rightarrow s drup.

s rup and ∂s bounded (s “syndetic”) \Rightarrow ∂s ultimately periodic.

The set of residually ultimately periodic sequences is closed under sum, product, exponentiation, composition (u^v_n) etc.

The set of differentially residually ultimately periodic sequences is closed sum, product, exponentiation, etc.

Sequences that are not rup:

Spectra $\{[\alpha n] \mid n \geq 1\}$ for irrational α.

The sequence of positions of 1’s in the Thue-Morse sequence.

The sequence of Catalan numbers.