Operations preserving regular languages*

J. Berstel¹, L. Boasson², O. Carton², B. Pettazoni³, J.-E. Pin²

¹ IGM, Université de Marne-la-Vallée
² LIAFA, Université de Paris VII
³ Lycée M. Berthelot, Saint-Maur

*Presented at FCT’2003, Malmö.
Filters

Filter: increasing sequence \((s_n)_{n \geq 0}\) of integers

Example: \(s = 0, 1, 4, 9, 16, 25, \ldots\)

Filtering a word \(w = a_0 \cdots a_n\) by \(s\) yields

\[
 w[s] = a_{s_0} a_{s_1} \cdots a_{s_k} \quad \text{where} \quad s_k \leq n < s_{k+1}
\]

Example: \(w = abracadabra\)

\[
\begin{array}{ccccccccccc}
 w & a & b & r & a & c & a & d & a & b & r & a \\
 s & 0 & 1 & 4 & 9 \\
 w[s] & a & b & c & r
\end{array}
\]

\[w[s] = abcr\]

Filtering a set \(L \subset A^*\) of words: \(L[s] = \{w[s] \mid w \in L\}\)
Some examples

Let $L = (ab)^*$.

$s_n = 3n + 1 \quad abababababababababa \cdots$
$s_n = n^2 \quad ababababababababababa \cdots$
$s_n = n! \quad ababababababababababababa \cdots$
$s_n = n(n + 1) \quad abababababababababa \cdots$
Filtering problem

A filter preserves regular sets if, for any regular language L, the language $L[s]$ regular.

Problem: characterize filters preserving regular sets.

Regulator: A relation $R : A^* \rightarrow B^*$ such that $R(L)$ is regular for every regular L.

Examples: the following filters are regulators:

- $\{2n \mid n \geq 0\}$, (it is a rational transduction)
- $\{n^2 \mid n \geq 0\}$, (! it is not a rational transduction)
- $\{2^n \mid n \geq 0\}$, (!!!!)
- $\{n! \mid n \geq 0\}$. (!?!)

But $\{\binom{2n}{n} \mid n \geq 0\}$ is not a regulator.
A counter-example

Let \(L = (ab)^* \). Let \(s \) be the filter with support
\[\mathbb{N} \setminus \{n(n + 1) \mid n \geq 0\} = \{1, 3, 4, 5, 7, 8, 9, 10, 11, 13, \ldots\} \]

\(ababababababababababababababa \cdot \cdot \cdot \)

\(L[s] \) is the set of prefixes of the infinite word
\(b(ab)^0b(ab)^1b(ab)^2b(ab)^3 \cdot \cdot \cdot \)

and \(L[s] \) is not regular. Thus \(s \) is not a regulator.
Ultimately periodic sequences

- A sequence s is **ultimately periodic modulo** p if the sequence $s_n \mod p$ is ultimately periodic.

- A sequence s is **ultimately periodic with threshold** t if the sequence $\min(s_n, t)$ is ultimately periodic.

The sequence

$$01020103010201040102010301020105 \cdots$$

is ultimately periodic with threshold t, for each t.

The sequence s where s_n is the number of 1’s in the binary expansion of n

$$0111223122323341223 \cdots$$

is not ultimately periodic with threshold 1.
A sequence \(s \) is residually ultimately periodic (r.u.p.) if it is both

- ultimately periodic modulo \(p \) for each \(p > 0 \),
- ultimately periodic with threshold \(t \) for each \(t \geq 0 \).

Proposition 1 A sequence \(s \) is r.u.p. iff, for each morphism \(\varphi \) from \(\mathbb{N} \) onto a finite semigroup, the sequence \(\varphi(s_n) \) is ultimately periodic.
Solution of the filtering problem

Theorem 2 A filter \((s_n)_{n \geq 0}\) preserves regular sets iff the sequence
\[\partial s_n = s_{n+1} - s_n \] is residually ultimately periodic.

The sequence \(\partial s_n = s_{n+1} - s_n\) is the differential of \(s\). A sequence \(s\) is differentially residually ultimately periodic (d.r.u.p.) if \(\partial s\) is r.u.p.
Properties of r.u.p. sequences

Theorem 3 (Zhang 98, Carton-Thomas 02) Let \((u_n)_{n \geq 0}\) and \((v_n)_{n \geq 0}\) be r.u.p. sequences. The following sequences are also r.u.p.:

- \(u \cdot v_n\) (composition), \(u_n + v_n, u_n v_n, u^n_n\),
- \(u_n - v_n\) provided \(u_n \geq v_n\) and \(\lim_{n \to \infty} (u_n - v_n) = +\infty\),
- (generalized sum) \(\sum_{0 \leq i \leq v_n} u_i\),
- (generalized product) \(\prod_{0 \leq i \leq v_n} u_i\).
Examples of r.u.p. sequences

- The sequences n^k and k^n (for fixed k).
- The exponential tower $k^{k^{k^{\cdots}}}$ of height n.
- The family of r.u.p. is not closed under quotient. Indeed, define
 \[u_n = \begin{cases}
 1 & \text{if } n \text{ is prime} \\
 n! + 1 & \text{otherwise}
 \end{cases}. \]
 Then u_n is not r.u.p., but nu_n is r.u.p.
- For any (even non-recursive) strictly increasing function $\varphi : \mathbb{N} \to \mathbb{N}$, the sequence $u_n = n! \varphi(n)$ is r.u.p. non-recursive.
- If $\lim_{n \to \infty} u_n = +\infty$, then u is ultimately periodic with threshold t for each $t \geq 0$.
A sequence \(s \) is d.r.u.p. if its sequence of differences \(\partial s \) is r.u.p.

- D.r.u.p. sequences have closure properties very similar to r.u.p. sequences.
- Every d.r.u.p. sequence is r.u.p.
- There are r.u.p. sequences which are not d.r.u.p.

Let \(b_n \) be a sequence of 0 and 1’s which is not ultimately periodic. Then \(b_n \) is not r.u.p. because it is not ultimately periodic with threshold 1.

The sequence \(u_n = (\sum_{0 \leq i \leq n} b_i)! \) is r.u.p. but \(\partial u_n \) is not r.u.p. because \(\min(\partial u)_n, 1) = b_n. \)

- If \(s \) r.u.p. and \(\lim \partial s_n = \infty \Rightarrow s \) then it is d.r.u.p.
Sequences which are not r.u.p.

- Spectra: \(\lfloor \alpha n \rfloor \mid n \geq 1 \) for irrational \(\alpha \).
- The sequence of positions of 1’s in the Thue-Morse sequence.
- The sequence of Catalan numbers.
Proposition 4 A filter s preserving regular sets is ultimately periodic for each $p > 0$.

Let $A = \{0, 1, \ldots, p - 1\}$. Set

$$x = (01 \cdots (p - 1))^\omega$$

so $x(i) \equiv i \pmod{p}$, and set

$$y = x[s] = x(s_0)x(s_1) \cdots x(s_i) \cdots$$

At position i, one gets

$$y(i) = x(s_i) \equiv s_i \pmod{p}.$$

Let L be the set of prefixes of x. Then L is regular. The set $L[s]$ is the set of prefixes of y. It is regular only if y is ultimately periodic. Thus s is ultimately periodic modulo p.
Proposition 5 If a filter \(s \) preserves regular sets, then \(\partial s \) is ultimately periodic with threshold \(t \) for each \(t \geq 0 \).

Set \(d_i = \min(t, s_{i+1} - s_i - 1) \). We show that the infinite word \(d = d_0d_1 \cdots \) is ultimately periodic.

Define a prefix code over \(B = \{0, 1, \ldots, t\} \cup \{a\} \) by

\[
P = \{0, 1a, 2a^2, \ldots, ta^t, a\}
\]

The language \(P^*[s] \) is regular, and so is \(R = P^*[s] \cap \{0, 1, \ldots, t\}^* \).

\[
d = x[s]
\]

for the word \(x \) defined by \(x(s_i) = d_i \) and \(x(m) = a \) if \(m \neq d_i \), for \(i \geq 0 \). \(x \in P^\omega \) because \(d_i \leq s_{i+1} - s_i - 1 \). So each prefix of \(d \) is in \(R \).

\[
\begin{array}{cccc}
a & \cdots & a & \cdots \\
s_0 & & s_1 & & s_2 \\
\end{array}
\]
A filter preserving regular sets is drup (3)

\[x = a^{s_0}d_0a^{s_1-s_0-1}d_1a^{s_2-s_1-1} \ldots d_ia^{s_{i+1}-s_i-1} \ldots \]

The word \(d_0d_1 \ldots d_{n-1} \) is the maximal word of length \(n \) in \(R \) (for the order \(0 < 1 < \cdots < t \)). Indeed, if \(d_i < d'_i \) then \(d_i < t \), so \(d_i = s_{i+1} - s_i - 1 \) and \(d'_i \) is not followed by \(d'_i \) letters \(a \).

The word \(d \) is read in a trim automaton recognizing \(R \) by taking at each state the edge with maximal label. Thus it is ultimately periodic.
Transductions are relations from A^* into B^* and later into some monoid M.

Inverse filtering transduction: Let $s = (s_n)_{n \geq 0}$ be a sequence of integers. Define τ_s

$$\tau_s(a_0 \cdots a_n) = A^{s_0}a_0A^{s_1-s_0-1} \cdots A^{s_n-s_{n-1}-1}a_nA^{\leq s_{n+1}-s_n-1}$$

One has

$$L[s] = \tau_s^{-1}(L).$$
Transducers

Let A be an alphabet and M be a monoid.

$$\mathcal{T} = (Q, A \times \mathfrak{P}(M), E, I, F)$$

Transitions: $q \xrightarrow{a|R} q'$ where $a \in A$ and $R \in \mathfrak{P}(M)$.

Initial and final labels: The entries of the vectors $I, F \in \mathfrak{P}(M)^Q$.

A transducer realizes a transduction τ from A^* to M defined as follows. For $w = a_1 \cdots a_n$,

$$\tau(w)$$

is the union of all products $I_0R_1 \cdots R_nF_n$ for all paths

$$I_0 \xrightarrow{a_1|R_1} q_0 \xrightarrow{a_2|R_2} q_1 \xrightarrow{} q_2 \cdots \xrightarrow{a_n|R_n} q_{n-1} \xrightarrow{F_n} q_n$$
A transducer

\[\tau(ab) = a^*b^*(ab \cdot b^* \cup b \cdot ba \cdot a^*) \]
Let M be a monid.

$\text{Rat}(M)$ denotes the set of rational subsets of M obtained from the singletons using the operations union, product and star.

$\text{Rec}(M)$ denotes the set of recognizable subsets of M, that is subsets P of M for which there exists a morphism φ of M onto a finite monoid F, and a subset Q of F such that $P = \varphi^{-1}(Q)$.
A transduction is **rational** if it can be realized by a finite transducer with output labels that are rational subsets of M.

Theorem 6 Let τ be a rational transduction from A^* to M. If K is a regular language over A, then $\tau(K)$ is rational subset of M. If L is a recognizable subset of M, then $\tau^{-1}(L)$ is a regular language over A.

In order to show that d.r.u.p. filters preserve regular sets, it would be sufficient to show that the inverse filtering transduction is a rational transduction.

However, the inverse filtering transduction is **not** rational.
A transduction τ from A^* to B^* is residually rational if for any morphism μ from B^* into a finite monoid M, $\mu \circ \tau$ is rational.

$$
\begin{array}{c}
A^* \\
\mu \circ \tau
\end{array} \xrightarrow{\tau} \begin{array}{c}
B^* \\
\mu
\end{array} \xrightarrow{\mu} M
$$

Theorem 7 If τ is residually rational and $L \subseteq B^*$ is regular, then $\tau^{-1}(L)$ is also regular, i.e. τ^{-1} is a regulator.

Proof. Let $\mu : B^* \rightarrow M$ be the syntactic morphism of L. Then

$$
\tau^{-1}(L) = (\mu \circ \tau)^{-1}(P).
$$

where $P = \mu(L)$.
Theorem 8 A transduction $\tau : A^* \rightarrow B^*$ is residually rational if and only if τ^{-1} is a regulator.
Inverse of filtering transduction

Proposition 9 Let s be a d.r.u.p. sequence. Then the inverse τ_s of the corresponding filtering transduction is residually rational (and consequently the filtering transduction of s is a regulator).

$$\tau_s(a_0 \cdots a_n) = A^{s_0} a_0 A^{d_1} a_1 \cdots a_{n-1} A^{d_n} a_n (1 + A)^{d_{n+1}}$$

where $d_n = s_{n+1} - s_n - 1$.

Let $R = \mu(A)$ be the image of A in a finite monoid M. Since $\Psi(M)$ is finite, there r and q such that

$$R^r = R^{r+q}.$$

Since $(d_n)_{n \geq 0}$ is residually ultimately periodic, there are t and p such that

$$R^{d_n} = R^{d_{n+p}} \text{ for every } n \geq t.$$

Thus, $\mu \circ \tau_s$ is realized by the following transducer:
Filtering transducer

A transducer realizing $\mu \circ \tau_s$. Here $S = 1 + R = \mu(1 + A)$.

\[S_{d_{t+2}} \]
\[S_{d_{t+1}} \]
\[a|R_{d_{t+1}}^d \bar{a} \]
\[t + 2 \]
\[a|R_{d_{t+2}}^d \bar{a} \]
\[S_{d_{t+3}} \]
\[t + 1 \]
\[a|R_{d_{t}}^d \bar{a} \]
\[S_{d_{t}} \]
\[t \]
\[a|R_{d_{t-1}}^d \bar{a} \]
\[\ldots \]
\[a|R_{d_{t-n+1}}^d \bar{a} \]
\[t + n - 1 \]
\[t + n - 2 \]
\[a|R_{d_{t-n+2}}^d \bar{a} \]
\[t + n - 3 \]
\[a|R_{d_{t-n+3}}^d \bar{a} \]
\[S_{d_{t+n-3}} \]
\[S_{d_{t+n-1}} \]
\[S_{d_{t+n-2}} \]
\[S_{d_{t+n}} \]
Filtering transducer

$R^s_0 \rightarrow a \mid R^d_0 \overline{a} \rightarrow a \mid R^d_1 \overline{a} \rightarrow \cdots \rightarrow a \mid R^d_{t-1} \overline{a} \rightarrow a \mid R^d_t \overline{a} \rightarrow \cdots \rightarrow a \mid R^d_{t+n-1} \overline{a} \rightarrow a \mid R^d_{t+n-2} \overline{a} \rightarrow a \mid R^d_{t+n-3} \overline{a}$
Removal problem

Let S be a relation over \mathbb{N} and $L \subseteq A^*$. Define

$$L/S = \{u \mid \exists v \ (|u|, |v|) \in S \text{ and } uv \in L\}$$

Example: Let $S = \{(n, n) \mid n \in \mathbb{N}\}$. Then L/S is the set of first halves of words in L.

A relation S of \mathbb{N}^2 is said to preserve recognizable sets over \mathbb{N} if, for any recognizable $K \subseteq \mathbb{N}$, the set $S(K)$ is recognizable over \mathbb{N} (i.e. a finite union of arithmetic progressions and of a finite set).

Theorem 10 (Seiferas, McNaughton)

L/S is recognizable for any recognizable set L iff S^{-1} preserves recognizable sets over \mathbb{N}.
Removal transduction

Proposition 11 If S preserves recognizable sets over \mathbb{N}, then the inverse of the removal transduction is residually rational.

The inverse of the removal transduction is defined by

$$
\tau_S(u) = \bigcup_{(|u|,m) \in S} uA^m.
$$