Solution to Exercise I.1.4

a) Representing (a, b) by $\begin{pmatrix} a & b \\ b & a \end{pmatrix}$ gives the first statements. Regarding the congruence, if $(a, b) \equiv (a', b')$ and $(x, y) \in K \times K$, then for some c, a + b' + c = a' + b + c. Thus a + x + b' + y + c = a' + x + b + y + c, which shows that $(a + x, b + y) \equiv (a' + x, b' + y)$, that is $(a, b) + (x, y) \equiv (a', b') + (x, y)$. Moreover, let d = cx + cy; then

$$ax + by + a'y + b'x + d = (a + b' + c)x + (b + a' + c)y$$

= $(a' + b + c)x + (a + b' + c)y$
= $a'x + b'y + ay + bx + d$.

Therefore $(ax+by, ay+bx) \equiv (a'x+b'y, a'y+b'x)$, that is $(a, b)(x, y) \equiv (a', b')(x, y)$. Finally, L is a ring since $(a, b) + (b, a) \equiv (0, 0)$.

b) One has $p \circ i(b) = p \circ i(c) \iff p(b,0) \equiv p(c,0) \iff (b,0) \equiv (c,0) \iff \exists a, a+b = a+c$. This proves the injectivity statement. If p is injective, K is embedded in a ring. If K may be embedded in a ring, it must necessarily be regular.

c) Since K is regular, we have $(a, b) \equiv (a', b') \iff a + b' = b + a'$. Suppose now that L has no zero divisor and that ac + bd = ad + bc. Then $(a, b)(c, d) = (ac + bd, ad + bc) \equiv (0, 0)$. This implies that a = b or c = d. The converse is proved similarly.

Now, it is well-known from the construction of the field of fractions, that a commutative ring is embeddable in a field if and only if it without zero divisors.

d) is clear.

e) In K, one has ac+bd = ad+bc, but not a = b nor c = d since I has no element of degree 1. Note that K is regular since it is a subsemiring of a ring. Moreover, if $P, Q, R \in \mathbb{N}[a, b, c, d]$ and $PQ \equiv PR \mod I$, then (a-b)(c-d) divides P(Q-R) in $\mathbb{Z}[a, b, c, d]$. If $P \neq 0$, then a-b cannot divide P, since P has nonnegative coefficients. Thus (a-b)(c-d) divides Q-R and $Q \equiv R \mod I$. Thus K is simplifiable.