Solution to Exercise I.1.4

a) Representing (a, b) by $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)$ gives the first statements. Regarding the congruence, if $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right)$ and $(x, y) \in K \times K$, then for some $c, a+b^{\prime}+c=a^{\prime}+b+c$. Thus $a+x+b^{\prime}+y+c=a^{\prime}+x+b+y+c$, which shows that $(a+x, b+y) \equiv$ $\left(a^{\prime}+x, b^{\prime}+y\right)$, that is $(a, b)+(x, y) \equiv\left(a^{\prime}, b^{\prime}\right)+(x, y)$. Moreover, let $d=c x+c y$; then

$$
\begin{aligned}
a x+b y+a^{\prime} y+b^{\prime} x+d & =\left(a+b^{\prime}+c\right) x+\left(b+a^{\prime}+c\right) y \\
& =\left(a^{\prime}+b+c\right) x+\left(a+b^{\prime}+c\right) y \\
& =a^{\prime} x+b^{\prime} y+a y+b x+d .
\end{aligned}
$$

Therefore $(a x+b y, a y+b x) \equiv\left(a^{\prime} x+b^{\prime} y, a^{\prime} y+b^{\prime} x\right)$, that is $(a, b)(x, y) \equiv\left(a^{\prime}, b^{\prime}\right)(x, y)$. Finally, L is a ring since $(a, b)+(b, a) \equiv(0,0)$.
b) One has $p \circ i(b)=p \circ i(c) \Longleftrightarrow p(b, 0) \equiv p(c, 0) \Longleftrightarrow(b, 0) \equiv(c, 0) \Longleftrightarrow$ $\exists a, a+b=a+c$. This proves the injectivity statement. If p is injective, K is embedded in a ring. If K may be embedded in a ring, it must necessarily be regular.
c) Since K is regular, we have $(a, b) \equiv\left(a^{\prime}, b^{\prime}\right) \Longleftrightarrow a+b^{\prime}=b+a^{\prime}$. Suppose now that L has no zero divisor and that $a c+b d=a d+b c$. Then $(a, b)(c, d)=$ $(a c+b d, a d+b c) \equiv(0,0)$. This implies that $a=b$ or $c=d$. The converse is proved similarly.

Now, it is well-known from the construction of the field of fractions, that a commutative ring is embeddable in a field if and only if it without zero divisors.
d) is clear.
e) In K, one has $a c+b d=a d+b c$, but not $a=b$ nor $c=d$ since I has no element of degree 1. Note that K is regular since it is a subsemiring of a ring. Moreover, if $P, Q, R \in \mathbb{N}[a, b, c, d]$ and $P Q \equiv P R \bmod I$, then $(a-b)(c-d)$ divides $P(Q-R)$ in $\mathbb{Z}[a, b, c, d]$. If $P \neq 0$, then $a-b$ cannot divide P, since P has nonnegative coefficients. Thus $(a-b)(c-d)$ divides $Q-R$ and $Q \equiv R \bmod I$. Thus K is simplifiable.

