## Solution to Exercise I.3.4

Let $(M,+)$ be a commutative monoid, with the subinvariant ultrametric $d$.
Given $a, b \in M$, and a fixed $\epsilon>0, a \sim b$ denotes that $a, b$ are $\epsilon$-near of each other, this means $d(a, b)<\epsilon$. Observe that $\sim$ is an equivalence relation using the fact that $d$ is an ultrametric:

1. Obviously $\sim$ is reflexive and symmetric.
2. If $a \sim b$ and $b \sim c$, then $d(a, c) \leq \max (d(a, b), d(b, c))<\epsilon$, hence $a \sim c$. Hence $\sim$ is transitive.
3. Also note that if $a \sim b$ then by the fact that $d$ is subinvariant we get $a+c \sim b+c$ for all $c$.
4. Moreover if $c \sim a$ and $c \sim a+b$, then $c \sim c+b$. This is because $d(c, c+b) \leq$ $\max (d(c, a+b), d(a+b, c+b)) \leq \max (d(c, a+b), d(a, c))<\epsilon$.

Now suppose $\sum a_{n}=L$, then given any permutation $\pi$ of the elements of this series, we have $\sum a_{\pi(n)}=L$.

Proof. Fix $\epsilon>0$. There exists $K$ such that for all $n, \ell>K$ we have $S_{n} \sim L$ and $S_{n} \sim S_{\ell}$, where $S_{n}$ is the partial sum of $n$ terms. Fix any $n_{1}>K$. Take any $n_{3}, n_{2}$ such that $n_{3}>n_{2}>n_{1}$. We have the following:

1. We have $S_{n_{1}} \sim S_{n_{2}}$ and $S_{n_{1}} \sim S_{n_{3}}$. By the above item number 4, we get $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}+1}+\ldots+a_{n_{3}}$.
2. Similarly $S_{n_{1}} \sim S_{n_{2}-1}$ and $S_{n_{1}} \sim S_{n_{3}}$ entail that $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}+\ldots a_{n_{3}}$.
3. and thus from $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}+1}+\ldots a_{n_{3}}$ and $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}+\ldots a_{n_{3}}$ conclude that $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}$.

So far we have shown that for any $n_{1}, n_{2}$ such that $n_{2}>n_{1}>K$ we have $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}$. We can generalize this iteratively and inductively as follows. Take any finite set $I \subset \mathbb{N}$, such that for all $i \in I$ we have $i>n_{1}$. Then we have

$$
S_{n_{1}} \sim S_{n_{1}}+\sum_{i \in I} a_{i} .
$$

Let's see this in the simple case $I=\left\{n_{2}, n_{3}\right\}$, where $n_{3}>n_{2}>n_{1}>K$. By the basis of the induction: $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}$. Since $S_{n_{1}} \sim S_{n_{3}}$ and $S_{n_{1}} \sim S_{n_{3}-1}$, by the transitivity of $\sim$ we get $S_{n_{3}} \sim S_{n_{1}}+a_{n_{2}}$ and $S_{n_{3}-1} \sim S_{n_{1}}+a_{n_{2}}$. Now again by the item number 4 above, we have $S_{n_{1}}+a_{n_{2}}+a_{n_{3}} \sim S_{n_{1}}+a_{n_{2}}$. Since $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}$, by the transitivity of $\sim$ we get $S_{n_{1}} \sim S_{n_{1}}+a_{n_{2}}+a_{n_{3}}$.

Now let $M$ be large enough such that $\{\pi(1), \pi(2), \ldots, \pi(M)\} \supseteqq\left\{1, \ldots, n_{1}\right\}$. Take any $\ell>M$. We have:

$$
\sum_{1 \leq i \leq \ell} a_{\pi(i)}=S_{n_{1}}+\sum_{i \in I} a_{i}
$$

for some finite set $I$.Thus

$$
\sum_{1 \leq i \leq \ell} a_{\pi(i)} \sim S_{n_{1}}
$$

and since $L \sim S_{n_{1}}$, we get by transitivity:

$$
\sum_{1 \leq i \leq \ell} a_{\pi(i)} \sim L
$$

This completes the proof.

