Solution to Exercise 4.2.2

We start with the identity to be proven, and transform it by algebraic operations and inversions. The actual proof is obtained by going backwards. Let $x=1-a$ and $y=b$. We have to prove that

$$
\frac{1}{2}(x+i y)^{-1}+\frac{1}{2}(x-i y)^{-1}=\left(x+y x^{-1} y\right)^{-1}
$$

Multiply both sides by 2 , by $x+y x^{-1} y$ on the left and by $x+i y$ on the right. This gives

$$
x+y x^{-1} y+\left(x+y x^{-1} y\right)(x-i y)^{-1}(x+i y)=2(x+i y) .
$$

Writing $x+i y=x-i y+2 i y$, and cancelling x on both sides, we obtain:

$$
y x^{-1} y+x+y x^{-1} y+\left(x+y x^{-1} y\right)(x-i y)^{-1} 2 i y=x+2 i y
$$

Now cancel x again and divide by y on the right (NB: backwards, this will be multiplication by y, so we do not invert noninvertible series, as predicted by Theorem 2.1):

$$
2 y x^{-1}+2 i\left(x+y x^{-1} y\right)(x-i y)^{-1}=2 i
$$

Multiply by $x-i y$ on the right:

$$
2 y x^{-1}(x-i y)+2 i\left(x+y x^{-1} y\right)=2 i(x-i y)
$$

That is:

$$
2 y-2 i y x^{-1} y+2 i x+2 i y x^{-1} y=2 i x+2 y
$$

Formidable!

