Solution to Exercise 8.1.7

a) Assume that $Q(x)=(1-\alpha x)(1-\beta x)$ for some rational numbers α and β. Since $b=\alpha \beta$ and $a=\alpha+\beta$, both α and β are positive. To show that they are integers, set $\alpha=p / q$. Then $b=p / q(a-p / q)=p(q a-p) / q^{2}$. If $\operatorname{gcd}(p, q)=1$, then q divides p and therefore $q=1$. Thus $f(x)$ has star height 1 .
b) Assume $f(x)$ is \mathbb{N}-rational and has star height 1 . Then it is a sum of products series of the form $P(x) /(1-N(x))$, where $P(x) \in \mathbb{Z}[x], N(x) \in \mathbb{N}[x]$ and $N(0)=0$. Reducing to the same denominator, $f(x)$ is the quotient of a polynomial by a product of polynomials of the form $1-N(x)$. Since $Q(x)$ is irreductible and $\mathbb{Z}[x]$ is factorial, it divides one of these polynomials, therefore $Q(x) P(x)=1-N(x)$ for some $P(x)$ as required.
c) Similar to (a).
d) Set $M(x)=1-N(x)$. Then $M(0)=1, M(x)$ is strictly decreasing for increasing real positive x, and $M(1)<0$. Therefore $M(x)$ has a positive root. Since the derivative of $M(x)$ is always strictly negative, the root is simple. Thus $Q(x)$ cannot divide $M(x)$.
e) Set $Q(x)=(1-\alpha x)(1-\beta x)$ for some rational numbers α and β. Since $b=\alpha \beta$ and $a=\alpha+\beta$, one gets

$$
b=\alpha \beta=(\alpha-1)(\beta-1)+\alpha+\beta-1 \geq \alpha+\beta-1=a-1
$$

in contradiction avec the condition $a \geq 2+b$.

