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AN EXTENSION PROBLEM IN THE THEORY OF INCOMPLETE BLOCK DESIGNS

By M. P. SCHUTZENBERGER
Institut National d’Hygiéne
Centre de génétique de I’Hopital St. Louis, Paris

[Received June, 1950]

SUMMARY

By generalization of concepts of projective geometry, two combinatorial methods
have been studied which may allow the extension of a block design -into another
one. As an application a new infinite family of block designs has been given.

LET A be the incidence matrix of an incomplete block design with parameters (A, &, r, v, b). By
definition A4 is a v X b matrix the elements of which are 0 or 1 and satisfy—

b
(1) foranyj: Z at=r;
i=1

14
2) foranyi: X aif=k,;
j=1

b
) foranyjandj (j +j) = afay =
i=1

i=
It is easily proved that these hypothesis imply—
@) vr = bk
and
G) Ny =1 =rtk—1).
If a submatrix A’ of A represents another block design with parameters (A, &/, #’, v/, b") we
shall say that A is an extension of A’, and we shall partition A4 into the four following submatrices:
A =|af| for 1<i<d and 1<j<V,
B =|af| for ¥ +1<i<band 1<;j<V,
C=|ai| for 1<i<band vV +1<j<v,
D=|af| for ¥ +1<i<band vV +1<j<w
Two types of extension are already known when A is a square matrix and B and D are de-
generated into a single column: the block intersection (B has only unit elements and D zero

elements) and the block section (B has only zero elements and D unit elements) (see R. C. Bose,
1939). In this paper we shall try to generalize two methods used in the finite projective geometries.

I. ALGEBRAIC EXTENSIONS
We shall say that A is an algebraic extension of A’ if B and C may be partitioned, respectively,
into x and y unit submatrices and z and ¢ lines with zero elements only.
Obviously, unless 4 = A’, x + 0. We assume further that y + 0. For 1 <; < and
1 < i< b’ we have
‘ 1if1<x<x
6) a¥’+eti—n+e —
0 otherwise
‘ 1if1<y <y
D @y yi—1y+v = .
8 0 otherwise

@ A=N; b=b +xv+2z; v=Vv +yb + t; .r=r’+x; k=K + v
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Let us consider the submatrices E;* of D defined by
Ef=| a3y with 1 <x'<x; 1<y <py; 1<i<¥; 1<j<V.

From (3) and (8) it follows that each row of E;? contains exactly A’ — g;* unit elements. Hence,
ifv4+1<j<Vv +yb,

b +xv ’ >0ifz>1
ODr— 2 af=r—1—kKN—-1) =N —k’)——x+r +k =2V —1= )
i=1 1 =0ifz=0.
If t > 1, we may write for j > v/ + yb’ + 1
b+ xv vV b4xv
A0) r=r"+x> X af= X ( = afa;®)=2NV.
i=b+1 i=1 i=p'+1

Apart from these last inequalities little may be said on the general algebraic extensions within
our merely arithmetic approach. We shall confine ourselves to a more restrictive case: A4 will
be called a quadratic extension of A’ if z=t=0. We prove:

If B has no columns with only zero elements, then C has no rows with only zero elements

By (9), z = 0 implies

A x=Nv —¢r — k' +1

but this value is not compatible with (10) so that # = 0. From (4), (5) and (11) it follows that

B & — x

(12)y (/___ I))\,—l"k/'—l.

Hence, all quadratic extensions. of a given matrix A’ have the same parameters and are square
matrices when A’ itself is a square matrix.

Conversely, if the square matrix A may be represented as a quadratic extension of both A’, and
A’,, these two matrices are square matrices and have the same parameters.

The first part of the statement (which holds for any algebraic extension), follows from (7)
and the equation

%
Za,ia‘= a’a,'—xforl i<i’<Wb.
j=1 j=1

The second part follows from (11) since by (5), whenr, = k;and ry = ko, r =X, +r1 = X3 + 12
is equivalent to (r; — ro)(ry + 75 —2) = 0.
‘ . Applications -
When A’ is the incidence matrix of a plane projective geometry with co-ordinates in a Galois
field GF(p™) (then: N =1; kK'=¢r =p" +1; v"=b"= p* 4 p 4+ 1), it may be proved by
enumeration methods that there is an algebraic extension of A’ corresponding to the extension

of the GF(p™) into GF(p™®) (with m = 2 if the extension is a ‘“‘quadratic” one).
A few other applications are given in Figs. 1, 2, 3 and 4.

Remark

We assumed that y =+ 0; the very simple example of the incidence matrix of points with
lines in a finite d-dimensional projective geometry (with 4 corresponding to d — 1 dimensions)
shows that when this condition is not fulfilled, z = 0 does not imply necessarily ¢ = 0.

II. DIMENSION EXTENSIONS

Throughout this section it will be assumed that \' + 0, and that 4’ is not a matrix with unit
elements everywhere. Let us suppose that B may be partitioned into (x — 1) matrices identical
with A’, z columns with only zero elements and a column with unit elements only: for 1 <j <’

(afif i'=x"+x—1DE—1) (with 1 <i<bd and 1 < x<x—1)
(13) g+ = { 1if i=b—b

0 otherwise
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That implies—
) r=xr' +1; A=xN+1; b=bx+z+1;k>v

We now prove that if B has no columns with only zero elements, A is a square matrix.

From (4), (5) and (14) a straightforward computation shows that & > v is equivalent to
xr'(V — k) (xr' — v + 1) <0 so that x < (W — 1)/r’. Then by (14), again, » <’; but in
any design (see R. A. Fisher, 1940) k < rif v + k. Thusr=k=Vv; b=v=1+ b’(v’ — D/
A=1F+ N = D).

At the same time, these equations show that the bth column of A has in D zero elements
only.
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Fi6. 1.—Quadratic extension of A’: ¥ =k'=r =v =0b'=3 into A: '2=3; k=r=7;
v = b = 15. (Ais the incidence matrix of a space projective geometry with co-ordinates in GF(2);
the same construction holds for any A’'(¥ =k’ =¢r' =v = b’ =p" + 1).)
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FiG. 2. ——Quadratlc extension of A”: ¥ =4; k'=3; r=4; v=3; b’=4 into A: 1=4;
k=35; r=10; v=11; b = 22 (this solution is not 1som0rph1c to twice the (A=2; k=r=35;
v = 11) des1gn) .
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Fic. 3.—Kiummer’s configuration as quadratic extension of: A’: 4’ =2; k' =r" = 3;
V=b=4into A: 1=2; k=r=6; v=>b=16.
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FiG. 4.—Quadratic extension of A’: ' =2; k'=3; =35, v=6; b'=10 into 4: ¥ =2;
k=4; r=10; v=16; b =40.
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F16. 5.—Dimension extension of A’: ' =2; k'=r =5; v =8 =11; into A: 1=235;
k=r=11; v=b=23. (Notice that the group of automorphisms of this solution is not
transitive in the rows nor in the columns, so that this solution is not isomorphic with the cyclic
one as given by R. C. Bose, 1939.)

B having no columns with zero elements only, let us assume further that a row of C has unit
elements only: thenr” < A, thatis tosay (k" — 1) > r'(r¥ — 1). Using once more the condition
v’ > k’, one obtains—

W) A=r=kK=xN+1r=k=vV=b=x*N+x+1;b=v=xN+x2+x+ 1.

Instead of this last condition on C and of z = 0, we may start conversely from a condition
on a single row of 4. We prove that, if (13) holds, (15) follows-from the existence of a row of A
having in C unit elements only and in D zero elements only.

This new condition implies A = r’ and r = b’. From (14) one deduces ' = xA" + 1 and
b'=xr'+1=x*\ 4+ x + 1, so that k'(—ri_——bz;\), =xN 4 1=r. Thus A" must be a
square matrix. As r = v, k > v would imply k£ > r so that A, too, must be a square matrix
and direct computation shows then that z =4. At the same time it has been proved that C
has a single row with only unit elements. Further, we see that the transposed matrix of C (apart
from its last row) must represent a design with parameters: A, = (x — 1N; ky=k';

= (x — 1)r’. These conditions are obviously fulfilled if C may be partitioned into (x — 1)
matrices identical with 4’ and a row with unit elements only, that is to say, for 1 <i<';
1<j<v,if

af ifj/=x"4+@—-1DG—Dwith 1 <x"'<x-—1
16) a'y 45 =

1ifj/=v—v
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Now we can define a dimension extension of A’ as an extension satisfying (13), z = 0 and (16).
‘Let us consider the submatrices E;* of D defined for i and j smaller than v’ 4+ 1 by the following
relation:

Ej = | 1% | with : x" and x” smaller than x and

i* = v'k+ G—Dx—1; j*=v +G— D —1).

We prove: Ej has zero elements only if aji = 1 and it is a permutation matrix if aj = 0. That
follows from the equation,

’

A4
Z a,a,*_l_ﬁ' =A— 2 a’,a *+a:’ = 0
i=v +1 i=1
the corresponding equality for the rows j* + x” and j* + x” (1 < x’ < x” < x — 1), and the
transposed equation of this last one for the columns i* + x” and i* + x”.
From these results on E; it follows that (3) between the j™ and (j'* + x’)th rows is satisfied
fl1<j=+=*<Vv and1<x < x — 1, for one has

2 a,a Ly = 2 ai,-aij'*+mf + z ltlijaij'*+m’ =V +»(I" - 7") =\

i=1 i=1 i=v 4

Applications

(i) Let A be the incidence matrix of points with (d — 1) dimensional hyperplanes in a finite
projective geometry of d dimensions with co-ordinates in a GF(p™). The consideration of any
block intersection of 4 shows that A is the dimension extension (with x = p") of the corresponding
matrix A’ for a number of dimensions d’ = d — 1.

(i) When x = 2, the matrices E;* are degenerated into 1 X 1 matrices, so that D (apart from
its last row and column) is the incidence matrix of the complement design of 4. In order to
prove that such an A is a balanced design we need only to prove that'(3) holds between any two
jMand j'th rows for v + 1 <j <j-<v — 1. As the parameter )’ of the complementary design
of A’ is given by A’ = v/ — 2+’ 4 )/, one has

v Vv
S afayi= I afayt + 2 afai =N+ =2 +N)=2"F 1=
i=1 - i=1 i=v 41

Obviously, the construction which led from A’ to A may be applied again to 4. Thus an

infinite family of designs may be obtained each time that a design with A = 2 + 2¢—1 — 1,
=k’ =2+ 4 2¢ — 1, is known. For p = 0, one obtains the matrices corresponding to
the finite projective geometries with co-ordinates in GF(2). For p. = 1, the two first designs of
the family are given in Fig. 5.
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