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Cambridge, Massachusetts

Let L be the average value of a measure of quantization noise, and let H be
the negentropy of the quantized signal. Some reciprocal relationship exists be-
tween these quantities, since, for example, increasing the number of possible
quantized values reduces L but increases H. We give a lower bound to L as a
function of H and show that it may be realized up to a constant factor. Roughly
speaking, this shows that every bit added to H multiplies L by a factor depending
on the dimensionality of the message and the measure of quantization noise used.

I. INTRODUCTION

Let the message ¢ bean n-dimensional continuous variate with a prior:
probability density f(£). Before it can be transmitted through a discrete
channel it has to be replaced by a quantized signal [£], that is, by some
approximate quantity taking only a finite number of distinet values.

We assume here that the channel is perfectly noiseless so that the only
source of error lies in the quantization £ — [£]. The accuracy is usually
measured by the average L of some given nondecreasing function
£(1¢ — [£]|) over the a prior: distribution of £. We shall consider only
those functions ¢ which are of the form ¢ | § — [£] |*(@ > 0) and our re-
sults will consequently cover the case of the so-called rms criterion
(a = 2).

Shannon’s theory of noiseless communication indicates that the natu-
ral measure of the cost of transmission is the negentropy H of the quan-
tized signal [£]. With these conventions, the optimum is obtained when,
for a given value of H (or of L), the other quantity is as small as possible.
Intuitively, some general relationship must presumably exist between
H and L, since any action which tends to decrease one of them (for in-
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stance the multiplication of the number of different values of [¢]) has
exactly the opposite effect on the other.

Under some broad conditions we give here a lower bound to the value
of L as a function of H and we show that this bound may be reached up
to a constant proportionality factor. Loosely speaking, these two results
mean that every bit of information allows on the average a reduction of
L by a factor no more but not less than 27", whatever be the density
function f(¢). In particular, L = KN—*/» with K, a constant, for every
quantization with N different quantized values [£].

II. HYPOTHESES

We state first our hypotheses:

A. The message is an n-dimensional variate (n < «) admitting a con-
tinuous, bounded density f(¢) in its domain of variation £ = {£:f(¢) > 0}

Further,

FRCEFCEINED

B. There exists a finite 6 for which

fE LE M) dE < wo.

A quantization £ — [£] will be identified with a partition W = {E;} of
E; each E; is the set of the £’s admitting the same quantized value
[¢(] = a;. For any W we define:

HW) = —Y_P;log P;

where
Pi= [ @ a
and ‘
Lom) = [ eis— @170 df = ¥ P
where

L{ = P7 | ci&— [0 ds

Finally, we say that a sequence of quantizations W; = {Ey}, W. =
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{Eo} -+, W; = {E;} -, is systematically convergent if, for all j, every
E;,,,; is entirely contained in some E;» and if limjse L(W;) = 0.

First inequality. If f(£) satisfies A, there exists a constant K with the
property that L(W) = K (exp —a/n) H(W)forall possible quantizations
of &

Second inequality. If f(£) satisfies A and B, there exists a constant K’
and a systematically convergent sequence {W;} with the property that
L(W;) £ K’ (exp —a/n) H(W,) for all j.

III. PROOF OF THE INEQUALITIES

In what follows g1 , g2, « - - denote geometric constants which are func-
tions of @ and n only; k1 , k2, - - - denote nonzero finite constants whose
values depend upon f(£) but not upon the quantization considered.

We shall use twice the fact that for any partition W = {E;} the sum
| — D P, log f: |, where f; is the value of f({) at some inner point of E;,
is uniformly bounded. This results immediately from the hypotheses by
the following inequalities

| 22 Pilog 1/f: | = | 30 Pilog f*/f; — 30 Pilog f* |
< 3 Pijlog £/ | + log *1 < [ 5 [ log £4/5(®) | di + | log J* |

< [ 5 108 1/5) d& + 2 | g 1+ |

where

* = sup 7).

FirsT INEQUALITY

We take a fixed arbitrary number p (0 < p < 1) and, for each E; of
W we define a value f; and a subset E; of E; by the relations:

B/ ={kE:; f® 2 fi}; f J@dt =p f,, f®) di = pPs.
We have

PL zinf [ cle—zf@de=c [ &=z [70 d

Zc| |t¢—x"fOdtzcfi| [E—m [“di = of:Ls".
E; E;
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It is a classical result that for a fixed value of meas(E.'), the sum L,”
is a minimum when E; is an n-dimensional sphere with radius p; cen-
tered at z;. Consequently, P.L{ = cgifip.""* where p; is defined by
meas(E/) = g¢.p." and where ¢, and g, are geometric constants. If we
now define f; by the equality f; meas(E,) = pP; = [, f() dt, we can
eliminate p; and meas(E;"). Thus we obtain

P:[Li, g Pil+a/ncgsp1+a/nf1_fi—l-a/n'

Taking into account the remark made at the beginning of this section,
we find that

Li = cgs(p/f*)' """,

and

— S Pilog L < (%) HW) + logky — 3 P; log fi

I\

(%) H(W) — log K.

This concludes the proof, since we have
L(W) = >.P.L{ = exp — Y P;log L/ [= K exp — a/nH(W)]
because of the convexity of the function log 1/z.

SECOND INEQUALITY

The construction of a systematically convergent sequence can be
carried out in many ways. We indicate here one method which is prob-
ably among the simplest ones. In the first place we observe that the
classical inequality on the absolute moments

‘:fE LT dST/a < l:fE g ) ds](aw)-l [.L © ds]o(‘“’o’_l

gives under the hypothesis B
) td alat6) "1 6(a+0) "1
[ieimwas|[ s soa [[ 0]

—n[[ e

for any subset E’ of E.
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Let us take now an arbitrary length d and construct a connected do-
main F around the origin made up of the juxtaposition of n-dimensional
cubes C;, with d the length of the side of each cube. We can make F big
enough so that

e= [ 1@ a

satisfies the relation ¢”**’ < d*. We consider the quantization W in
which, [£] = z;, the center of C;, when £eC; and [§] = O when £E — F.
We have

HW) = — > P;log P; — eloge — P;log fi + nlog 1/d — e log e
(where, again, f; is the value of f(£) at some inner point of C;), that is,
nlog 1/d = HW) — ks + eloge.

Had we considered instead of F some domain F’ for which

d=[ swas | s@da-e

the last inequality would still have been valid, for x log 1/z is a decreas-
ing function of z. Consequently d” < K” exp — H(W) for some K”.
We compute now L(W).

SPL = JE[@da+Te [ e—alm o
but, for any C;:

[1e—ars@des [ |suple— oo

soad [ J© &= ga P
and
[ 161 @ de S ke < by a®

Thus
L(W) = > P;.L/ < K"d* < K’ exp — a/nH(W).

By construction the constant K’ can be chosen such that it does not
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depend upon W. We consider now the partition W = W as the first term
of the sequence {W;} and we take a second value d’ such that d is equal
to some multiple of d’.

We subdivide every C; into smaller cubes C; with length of the side d’
and we add new cubes of the same size around F' so as to obtain a domain
F’ for which, as above,

f f(E) df < dl(a+0)a0'—1.

Obviously the partition W, = W’ satisfies L(W’) < L(W); L(W') <
K’ exp — a/nH(W’), and this concludes the proof since we can choose,
by iterating the same method, a sequence d, d’, --- converging to zero.

IV. REMARKS

i. The hypotheses 4 and B are sufficient but obviously not necessary
for the validity of the results. In the same manner, the assumption that
the “loss function” £(r), (r = |& — [¢]]), has the form ¢r® could be
weakened and the results would hold substantially, in an asymptotic
fashion, for any £(r) with lim,.o rd/dr log £(r) = a > 0. But this would
definitely not be true for arbitrary £(r) (as, for example, exp —1/r or
rlog 1/7) and the normalization function H(W) does not seem then to play
the same natural role.

ii. A more detailed computation allows one to get closer estimates of
the constants K and K’. However, they remain different and their ratio
tends to infinity with n. For n = 2, a better ‘“‘second inequality” can be
obtained by use of a covering of the plane with hexagons instead of
squares. Our present ignorance concerning the most elementary prop-
erties of the coverings of the space for » = 3 seems to lie at the root of
the discrepancy between K and K'.
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