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CERTAIN ELEMENTARY FAMILIES OF AUTOMATA

M. P. Schutzenberger*
Harvard Medical School, Harvard University

We attempt to relate the difficulty of the decision problem of certain algorithms
(automata) with the underlying algebraic structure. In particular we discuss the con-
nection between “"push-down storage” and "extension of a free group by a finite monoid.”

I. INTRODUCTION

This note is concerned with the definition of families of sets of
words in a finite input alphabet X.

In contrast with the more usual approach, the motivation for this
study is purely formal, the purpose being to obtain sets of words as
near as possible to the family of the so-called "regular events" 25
by their definition and by their closure properties under the elemen-
tary set-theoretic operations.

As an illustration let us consider the case of X reduced to a
single letter x. Then a set of words F! ={ x1, x12, ..., xM, .. } can
be identified with the function from the natural numbers into {0, 1}
which, for each n, takes values 1 or 0 according to x! € F'! or
not.

However, if one considers a process which produces the words of
F' (as opposed to a process which recognizes or accepts them), more
detailed information than " x™ is produced at least once" may be of
some significance. Accordingly one may want to consider a numeri-
cal function (which we denote by (a, x)) expressing how many differ-
ent ways (eventually zero) each word x is produced. A strictly
equivalent procedure is to consider the generating function

a-= Z (a,xM)x"

n>0

of the sequence (a, xo), (a, x1), (a, x2), o, (a,x™, ... With this
notation, F' is the set of those x" such that (a,x™) = 0, that is,
the support of the function a.

* Presently with the Faculte des Sciences, Poitiers, France.
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140 MATHEMATICAL THEORY OF AUTOMATA

In the present case, where (a, x®)> 0 for all n, simple rela-
tions exist between the algebraic operations on generating functions
and the elementary set-theoretic operations on their supports. In
the more general case where (a, x™) can be a negative integer, some
analytic properties of the function a of x are reflected in the com-
binatorial nature of its support.

For instance, Skolem has proved43 that if a is a rational func-
tion of x, it has an ultimately periodic support30i.e., its support is a
regular event. No corresponding result is known for a algebraic, but
when the coefficient ring has non-zero characteristics, examples27
show that the support is not necessarily a regular event. Moreover,
the classical gap theorems 15 show that sets like {x™“: n> 0} cannot
be the support of an algebraic function over the field of complex
numbers.

For the general case of X consisting of a finite number of
variables, we need to define a non-commutative counterpart of the
algebraic functions. This is done inSection Il under certainrestrictive
hypotheses.

Then the algorithms by which the successive coefficients are
computed can be reformulated in terms of automata, i.e., of repre-
sentation of the free monoid F generated by X. As expected, these
representations are among the most elementary from the point of
view of the theory of monoids.

Indeed, the "algebraic" generating functions are associated
with homomorphisms of F into a free group, i.e., with a special
case of a so-called "push down storage. " °/»

In Section IV we list several problems concerning the sup-
ports which have been proved to be unsolvable.

Another presentation of this material but with a definitely dif-
ferent emphasis is given elsewhere by N. Chomsky and myself. 13
In fact, most of the remarks developed here (and especially the ones
dealing with push down storage) are results of this collaboration over
a period of many years.

II. FORMAL POWER SERIES

Let X be the finite input alphabet, F be the set of all words
in the letters of X, and denote by (a, f) a mapping from F into the
rational integers. To this mapping one associates the formal power
series a = L{(a, f). f:f € Ft, which is an element of the completion
of the free module generated by F. The set R(X) of all such power
series is a ring with addition a +a' = L {((a, f) (a',f)).f: feF} ;
non-commutative multiplication aa' = L {(a,f) (a',f').f" : f, ', feF;
f' = ff'} (where ff' is the concatenation of f and f'); and multi-
plication by a scalar n.a= T {n(a, f).f: feF} . These are, of course,
the usual operations when X consists of a single variable.

An element a of R(X) is quasi-regular if the coefficient of the
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empty word in it is zero. Then a has a quasi-inverse

a¥ = Z a”
n>0

which satisfles a*¥a +a= a+ aa* = a¥. R(X) also admits a Hadamard

product (cf. reference 39) aoa' =L {(a, f)(a', f). f:f € Fp. All these
operations are continuous in the usual topology of R(X). The subset
RPOS(X) of the power series having non-negative coefficients is a
semi-ring (i. e., it is closed under addition, multiplication and multipli-
cation by a non-negative scalar) which contains the quasi-inverse of
its quasi-regular elements.

The support, supp. a, of any a € R(X) is { fe F:(af)# 0}.
For any a, a' € RPOS(X):

supp. (a+ a') = supp. a U supp. a';
supp. (a0 a') = supp. a N supp. a';
supp. (a a') = (supp. a) (supp. a')

(= the "set product" of supp. a and supp. a').
If, further, a is quasi-regular,
supp. (a¥) = (supp. a)* <= U { (supp. a)n :n> 0})

where in the right member (supp. a)* denotes Kleene's star operation. 25
In fact these relations express the existence of a natural homo-
morphism (of semi-ring) sending RP°5(X) onto the semi-ring B(X) of
formal power series with boolean coefficients. For obvious reasons
the direct study of RPP5(X) is far more elementary than that of B(X).

DEFINITION 1: Rpol(X) is the ring of the integral power series
having a finite support. In other words, Rpol(X) is the free (associa-
tive) algebra generated by X.

DEFINITION 2: RE?IS (X) denotes the least semi-ring which
contains every power series of the form E{f:f € F'} where F' is
an arbitrary regular event.

DEFINITION 3: R?Zf (X) denotes the least semi-ring that con-
tains X and the quasi-inverse of each of its quasi-regular elements.

Now let Y = { yj} (1 <j<N) be a set of N <o new variables
and consider an N-tuple p = (p;) of elements of R 01X UY) Itis
a proper positive system if it satisf]ies the conditions that for all j, j' <N:
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1) ;€ RP°x U v);
2) pj is quasi regular;
3) (p,y.)=0.
pJ yJ

If, further, each g € supp. P; has the form f or fyjn f' with
f and f' belonging to the monoid generated by X, then p is a (two-
sided) linear system. A linear system in which every ' is the empty
word is a right linear system.

Let u= (u;) be an N-tuple of quasi-regular elements of R(X)
and define a homomorphism Ay: R(X UY) = R(X) by A, vy, = ujs
Ayx = x(x € X, y. € Y). Itis trivial that any proper positive system
p determines a unique quasi-regular N-tuple u such that for all
j <N, u; = A p;. Hence, u can be called "the solution" of p and
we note that its coordinates belong to RPOS(X).

DEFINITION 4: Rgfs (X) is the least semi-ring that contains

X and the coordinates of %he solution of every proper positive system.

Clearly this definition is equivalent to the definition of the con-
text free languages of Chomsky, 8, 9 and the coefficients in the solution
precisely express the number of ways in which a word can be produced
by the grammar corresponding to the system p. 18,

It is trivial that RPPS(X) contains the quasi-inverses of its
quasi-regular elements. ence, RP9P(X) is a sub-semi-ring of

pos pos pos
Ralg (X). More accurately, an element of Ralg (X) belongs to 3394+ (X)
if and only if it is a coordinate of a proper positive linear right sys-
tem. Thus, for any a € Rggf(x), supp. a is a regular event. 8

Furthermore, Rgiols(X) is a sub-semi-ring of R?g?(X) and
0s

ae Rggts(X) belongs to Rgﬂ (X) if and only if for all € > 0 and

f,f', ' ¢ F one has nlimoo (1+ 6)-n (a, f'fnf") = 0. The subset of
-

Rgfgs(X), corresponding to the two-sided linear system, is not a semi-
. pos
ring and Ralg
which includes all these elements and the quasi-inverse of each of its
quasi-regular members.
It is clear that if A is the endomorphism of R(X) induced by

(X) contains as a proper subset the least semi-ring

a mapping A X; = a; with a; € Rggf (X), the restriction of A to

Rg?g(x) [resp. to Rpos(x)] is an endomorphism. Hence, as a

rat
variant of Jungen's theorem, 13 one verifies that RE?ls(X) and RSZ:(X)
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are closed for the Hadamard product and that a € Rrat (X),

a' e Ralg (X) implies aoa' € RPPS(X). It is well known?3 that
pos
Ralg

to a single letter or with a more classical definition of the Hadamard

alg
(X) is not closed for the Hadamard product (even with X reduced

product. 21,4, 7) In fact one has even the stronger result that for some
pairs a, a' € Rp (X) the intersection of the supports of a and a'

cannot be the support of a power series of the form a" -a™ where

1
a",a" ¢ Rpg(X) (Take for instance a = E{x?xgxg :n,n' > 0}
=L { X4 x2x3 tn,n > 0}) However, as in the commutative case,

if p is an N-tuple of elements of Rpos

(X U Y) satisfying conditions
(1), (2) and (3) above, the system {yj =

regular "solution" whose coordinates still belong to Rpos(X).
alg

pj} has a unique quasi-

DEFINITION 5: Rpjj(X) (resp. R,.4(X), R,1,(X)) is the least

pos

alg
ring containing Rp 1 X) (resp. Rrat X), R (X))

It follows from the definition of the semi-rings considered that
each element of these rings can be expressed (in infinitely many ways)
as the difference of two elements of the corresponding semi-rings.
Hence, one could obtain directly R ;;(X), R, 4(X) or Ralg(x) by re-

placing in definitions 2 and 3 the word semi-ring by the word ring or by
omitting condition (1) in the definition of a proper system.

I stress once more that the only motivation I can offer for intro-
ducing the rings R, ;;(X), R (X), and Ralg(X) is the strictly per-

sonal opinion that their definition is, in a sense, as simple as possible
and, accordingly, that some reasonable families of sets of words are
likely to include (or be included in) the corresponding families of
supports.

Let a be the canonical homomorphism sending R 01(X) onto
the ring of the ordinary (i. e., commutative) polynomials with integer
coefficients. Clearly, one can extend a to epimorphisms of Rrat(X)
and Ralg(X) onto the ring of the Taylor series expansions (with integer
coefficients) of the ordinary rational and algebraic functions because,
pos
alg
the quantity (a, f)K_IfI (where |f| denotes the length of f) remains
bounded over all f € F.

If X consists of a single letter, Rnil(X) = a Rnil(X) is a

for any a € R (X), there exists a finite constant K > 0 such that

rather classical object of study. I have no direct characteri-
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zation of @ R_;;(X) in the general case.
More specifically, let @ be an ordinary rational function of the

(commuting) variables >_(1, §2, - ,?{M (1 <M < o) and assume that

the coefficients of its Taylor series expansion @ = L 3 X
M2 oonm U (A A L
X)Xy ... Xy are integers satisfying identically 8nysng’ * Ny

<(k + n; +ny+.. 4 nM)! (nll)_1 (n2l)_1 .o (nM!)- for some fixed

finite k. What supplementary conditions are needed to insure that
a = aa for at least one a € Rnﬂ(X)?

III. THE QUOTIENT MONOID OF AN AUTOMATON

Now we describe algorithms by which the coefficients in these
formal power series can be computed.

For this purpose F (the set of all input words) is considered as
the free monoid generated by the input alphabet X (with the concat-
enation as product). Then if an automaton G is given by a set of
states S and the so-called "next state" functionl? (S,X)—=+ S, one
may identify o with the representation of F by mappings S —* S
that extends (S,X) -* S in a natural fashion. Thus G determines a
homomorphism o of F onto a quotient monoid oF (the "quotient
monoid of the automaton") by:

for all f, f' € F, of = of" if and only if for all s € S, s.f =
s.f' (i. e., if for any choice of an initial state s € S, the
states s.f and s.f' reached after reading f or f' are
the same).

In other words, if of = of' the automaton ¢ offers no possibil-
ity of distinguishing between them. Hence, the set F0 of the words
accepted by ¢ has the closure property F; = o-lo Fo. 2,

For instance, Bar Hillel and Shamir have pointed out that the
regular events are characterized by this closure property with respect
to the homomorphisms o of F into a finite monoid. This allows one
to translate into algebraic language certain of the operations performed
on the sets of words. Thus, trivially, if Fy = oil oy Fy and F, =
051 09 Fg are two subsets of F having the closure property with
respect to the homomorphisms o4 and O, their union and inter-
section are closed with respect to the homomorphism gt F—

o 1F X0 2F.

As another example, G being a given automaton, let
{F"l 1 sigN'} and {F'l' 1 _<_i_§N“} be two partitions of F into a
finite number of regular events and let 7 be an arbitrary mapping
into F of the set of all triples (i', x, i") (1<i' <N', x € X,
1<i" <N"). Consider now a device 7T (see reference 22) which

associates with each input word f = X Xg. .. Xp, the word
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= 1 " 1 in ! in
Tf 7(11, Xy 11) 7(12, X 12) . . . 7@, %y, i) where, for
j, i " d i . & !
each j, lj and ij are determined by X X, XJ-I € F1'- and
n 3
xj+1 ceeX 1% € Fi'!' Finally, we cascade t and o in the sense

that we take 7f instea(i of f as the input of 6. Denoting this com-
posite automaton by o', it is easily verified that the corresponding
homomorphism ¢' is a homomorghism into the extension of cF by a
finite monoid in the sense of Redei. 36 (Let A and B be two monoids
and denote by b2 (a € A, b € B) a representation of A by endo-
morphisms of B. If the mapping B: (A, A)—+> B is such that the prod-
uct (a,b) (a',b') = (aa', b, B(a, a')b'2) on (A, B) is associa-
tive, the corresponding monoid is called an extension of B by A).
Let us now consider the simplest type of infinite monoid, i.e.,
the infinite cyclic group. An automaton o such that oF is a sub-
monoid of this group consists of a single "counter.," It is described
by associating with each x € X a positive or negative integer ox
so that for each f = Xy Xg ven Xy, the counter records the total
ox +oxg9 + ... +o0x,. We say that an input word f is accepted if and
only if of does not belong to some specified finite subset of integers.
Then, trivially, the set Fg of the words accepted by & is the support
of a formal power series a € R ;;(X). It is easily shown that
conversely:

If ae Rrat(x) is such that I(a, f)l | 1+ |f|| -1 is bounded
over all f € F, then supp. a is the set of the words accepted by a
finite automaton o such that

1) oF is a submonoid of the extension of an infinite cyclic group
by a finite monoid.

2) f is accepted only if it does not belong to a certain prescribed
finite collection of cosets (i. e., if s f ¢ S' where the initial state
S, € S and the final finite subset S' of S are given).

With the same type of quotient monoid oF but with an opposite
definition of the rule for accepting words (that is, f being accepted if
and only if s f does belong to some prescribed finite collection of
integers), one easily shows that E{f:f € FG} belongs to REPS(X).

A well-known example of a set of this type is the set of all well-formed
formula in parenthesis free notation. Several theorems on a similar
but more general problem have been proved by Raney. 35

I mention that this last example can be converted into a classical
probabilistic problem, viz., finding the probability generating function
corresponding to the usual random walk problem for an arbitrary
(finite state) Markov process.

Following the customary hierarchy which ranks nilpotent groups
next above abelian groups in order of simplicity, we have:
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A necessary and sufficient condition that
F : i
o€ {supp. a:ae€ Rnil(X)} is that

1) oF be a submonoid of the extension by a finite monoid of a
free nilpotent group;

2) f is accepted if and only if of does not belong to some pre-
scribed finite subset of oF.

As mentioned above this is a weak form of a well-known result
in the theory of rational functions. A similar property holds for
{ supp. a: a € Rrat(X)} with (2) as before and (1) replaced by

1') oF is a submonoid of the ring Zy of the NxN-integral
matrices (N < ).

In this more general case, the automaton T consists of a finite
part 6, and of a "memory" in which an N-dimensional integral
vector v can be stored. When reading the input word

each successive letter Xi determines a bounded sequence of compu-

tation amounting to the multiplication of v by a certain NxN integral
matrix uxij. Thus, at the end of f, the memory contains the vector

v(f) = v, MXiy MXjo oee HXj o, and f is accepted if and only if v(f)

does not satisfy a finite number of linear equations. These are the
automata of the family A.

Let |v(F)| denote the length of the vector v(f). By construc-
tion, Iv(f)l does not grow faster than an exponential function of the
length, lfl, of the word f, but it may grow exactly at this rate.
Hence, since the number of distinct words of length k or less is
an exponential function of k, the memory V may be so well employed
that v(f) # v(f') for any two distinct words f and f', that is ¢ may
be an isomorphism. In other words, the mapping f — v(f) may
involve no compression of the data. Hence, it may be interesting to
define a subfamily by requirements implying oF # F.

The simplest condition is that Iv(f)l does not grow as fast as
an exponential function of |f|, that is:

(%) For any € > 0 there exists a finite K such that Iv(f)l
<(1+e)f! for all fe F of length > K.

Of course, this condition is equivalent to the one defining R,;1(X)
and it can be verified that for each a € Rpj1(X) there exists a natural
number d, the "degree" of a, having the following properties:

1) (a £)|f| 9 is bounded over all f e F;
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2) There are infinitely many words f such that I(a, f)l ,fl .
= 1.

Thus, the smallerthe "degree" of a, the "smaller" is the homo-
morphic image oF. In particular, d = 0 characterizes the (infinite)
regular events and the finite automata; d = 1 characterizes the ex-
ample described at the beginning of this section.

An unsolved problem is to replace the rather obvious condition
(*) by one involving only the rate of growth of the number of distinct
vectors v(f) with the length of f.

Pushdown Storage

I am unable to construct a family of automata which would serve
for R,14,(X) in exactly the same fashion as the family A does for
Rrat(x)' However, under a certain relaxation of the conditions, such
a family has been devised by N. Chomskyl0 for RE?S(X). Related
results have been obtained independently by R. G. Evéy. The nearest
approximation to the desired results involves the following definition.

DEFINITION: A subset F' or F is a D-event if and only if
it is the intersection of a regular event with the kernel of a homo-
morphism of F into a free group. Then:

A necessary and sufficient condition that
a € Ry (X) isthat a= £{6f: fe F' for some homomorphism
G:F-'Rpol(X) and D-event F',.

(This, of course, provided that the infinite sum exists.)
The corresponding statement with R, 4(X) instead of Ralg(x)

and F' aregular (instead of D-) event is trival. In both statements
the regular event F" used can belong to the special subfamily of the
sets F" defined by two subsets V' and V" of (X,X) and the
condition:

=x, X,...x, €F" ifandonlyif (x, ,x., )e V!
1 2 'm 1 'm
and, for all j, (x,,x, Ye VI,
j jt1

In other words F" is the intersection of the complement of a
two-sided ideal with a quasi-ideal. It is to be noted that the results are
valid for any unital coefficient ring R (commutative or not) and
that 6:F—*R_1(X) can be restricted by the condition 6x = r.f with
re R, fe F for all x € X. Also the condition "F'!' is a D-event"
can be replaced by "F' is the inverse image of a finite set for some

homomorphism of F into the extension of a free group by a finite
monoid. "
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In a still more restricted manner the D-event F' can be given
the form F' = F" n F" with F" as above and F" defined in
the following fashion:

Let X={x;}, =1, £2,...,+N) where N > 2 ,
Clearly, there exists a unique epimorphism v of F(X) onto
the free group G generated by all x;'s with i > 0 that
identically satisfies <vx; vx_; = 1. Then F™ is precisely the
kernel of +«. ol

The fact that T {f: fe F'} belongs to RZI (X) for any D-
event F' follows from the construction which we now describe.

Let o be an automaton consisting of a finite set of states S
and of a tape (the "memory" of G) on which both writing and erasing
are possible. Let Z be the alphabet used on this tape &nd G be the
free monoid generated by Z. The automaton & is given by:

1) A homomorphism ¥ of G onto a finite monoid K;

2) A mapping o (S,K,X) - S;

3) A mapping x of (S,K,X) into the set of all subsets of K,
4) A mapping o': (S5,K,X) —*=G.

Thus, the state of G is a pair (s, g) € (S, G), and if the in-
coming input letter is x, the following operations are performed:

i) The finite part goes to s' = o' (s, ¥g, x);

ii) The word g is factored into a product g'g" where g is
the right factor of minimal degree such that ¥g" e x(s, yg, x). (g"
is the empty word if no such factor exists);

iii) g" is erased and replaced by the word o'(s,yg, x)(= g").

Thus, the "next state function" is (s, g)-x = (s', g'g"). No
essential gain in generality would accrue if the factorization g = g'g"
was determined by two finite state automata (with set of states S'
and S") and a condition of the form:

g' and g" are such that

1) sh.g' €S, s".g" € S" where §' © S' and S" C S" are
functions of se€ S, ¥g, and x;

2) g" has maximal or minimal length depending upon the triple
(s €8S, Yyge K, x € X).

In some sense, 0 can be considered as a very special case of
a "pushdown storage. " 31, 37 Here the essential restrictions are:

1) The memory consists of a single tape;

2) Any feedback from the memory to the finite part is via the
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image of g by a fixed homomorphism into a finite monoid;

3) For each input letter only a bounded number of erasing and
writing operations are permitted.

Now let (s €S, g, € G) be an initial state and S, = {(sl, i
g1, 1)} and Sy = {(SZ, i Eg, i)} be two finite sets of states. We define

= . . S - ft s
{teFis,e) 15, (s g) f¢5,

for all left factor f' of f} . Direct computation shows that

c{tte ¥ }e RO .

Clearly the D-events (or the inverse image of a finite set for a
homomorphism of F into the extension of a free group by a finite
monoid) are special cases of such sets F- This provides an inde-
pendent verification of certain results of Kesten24 concerning random
walks over free groups.

It is conjectured that, conversely, if the inverse image F' of
a finite set for some homomorphism ¢ of F into a group is such
that Z{f:fe F'} € Ral (X), then ¢F is a submonoid of the exten-
sion by a finite group of a free group.

IV. SOME PROBLEMS CONCERNING THE SUPPORTS
We have defined six families of sets B; ={ supp. a €: a € R%(X)}
(i = nothing or pos, j= rat, nil, or alg), and we know that BE;S

=R POS _ the family 3& of regular events. It can easily be proved
rat y

that Rnﬂ d {supp a:ae€ Rnﬂ(X) Deg a < d} is a strictly increas-
ing function of d and that 3& nil, 2 contains sets which do not belong to

pos (e. g. {xy zP: n #mp}) Conversely,{xy' n>0}GRpS

alg
but 1t does not belong toi‘& (cf reference 16).

Simple examples show that none of these families (except RrPoS(x),
of course) is closed under complementation. rat

The first question is to determine whether or not F' =F for a
given set F' described as a member of one of these families; or, in
other words, whether or not the corresponding automaton accepts all
the possible input words.

It is trivial that to any diophantine equation E of degree d
there corresponds at least one element a € Rpi1(X) of the same
"degree" such that E has a solution if and only if 0 = (a, f) for at
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least one f € F, that is, if and only if supp. a F.

Conversely, for d = 0,1 the problem of determining if supp. a
= F admits elementary solutions. The same problem for d = 2
(corresponding to the quadratic case for diophantine equations) relates
to a question on (infinite) nilpotent monoids of class 1. For d = 3
the problem is at least as unsolvable as the ordinary diophantine
problem.

For a € Rpa¢(X), a theorem of Markov shows that the same
problem is unsolvable. 28 A fortiori, a similar negative result holds
for Ralg(x) and even for Rpos (X). However, in this case many
more undecidability propertles can be established because of the fol-
lowing construction due to Bar Hillel, Perles and Shamir. 1

For each f = Xj, X Xi € F we denote by F the word

ig -
X cee Xig X4 and, given a homomorphism a: F-+ F we consider
the two-sided linear equation y = x + E{ xy ax:x € X  where X,

is a new letter not contained in X.

Its solution is the power series a € Rp <X U { o})

a-= E{?xoaf:fe F.

Repeating the same construction with a second homomorph1sm
:F—> F, we obtain the power series a' = E{fx o f:fe
The power series a + a' also belongs to RPOS XU{ }

Clearly, a + a' has at least one coefficient 2 2 1f and only if the
supports of a and a' have a non-empty intersection; this last ques-
tion is equivalent to Post's correspondence problem.33

Hence, trivially, the problem of determining whether an arbi-
tary be Rgfs (X) is or is not the generating function of its support
(i.e., if an arb1trary context free grammar is or is not amb1guous32)
is unsolvable.

In fact, Post's problem can be translated in many ways into
the terminology used in this paper. For example, to any (one-way)
two tapes finite automaton, one can associate a linear system whose
solution is L ?Xo f' ¢ where the summation is over all accepted pairs
(f, ') of words. An especially simple case is the following.

Let us consider the equation

y=x +E{a‘wxyaIX'x € X}
o :
(with @, ' as above) whose solution is
ar = x_+z{et Txgef: fe FOOJ

Let al be the special case corresponding to « = o' = the iden-
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tity mapping. The support of af is the so-called mirror-image language
of Chomsky. 8 Again a" + ag has at least one coefficient larger than
one if and only if the Post's problem for ¢ and o' has a solution

Assume now that ¢ and o' are homomorphisms into the sub-
monoid F' of F generated by X' ¢ X and that

1) All the words ax have the same fixed degree d.

2) For allx,x' € X if ax and ox' belong to the same proper
left ideal of F then o'x = o'x'.

With this hypothesis, for anyfixed word f' e F', the problem
of determining if the supports of a" and a’c'f have a non-empty in-
tersection is precisely the so-called "Tag problem." 29

Many other unsolvability properties have been established by
Bar Hillel, Perles and Shamirl using these constructions, and the
remark that when a (or a') is a monomorphism of F(X) into F(X')
(that is, when, e.g., the set{a'x:x € X} is a set of code words having
the unique decipherability property), then the generating function of
the complement of supp. a" in F(X') is also the solution of a linear
system.
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