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1. LINGUISTIC MOTIVATION

We will be concerned here with several classes of sentence-generating
devices that are closely related, in various ways, to the grammars of both
natural languages and artificial languages of various kinds. By a language
we will mean simply a set of strings in some finite set ¥ of symbols called
the vocabulary of the language. By a grammar we mean a set of rules that
give a recursive enumeration of the strings belonging to the language. We
will say that the grammar generates these strings. (Thinking of natural
languages, we would call the generated strings sentences; in algebraic
parlance they would ordinarily be called words and the vocabulary would
be called an alphabet; regarding a grammar as specifying a programming
language, the strings would be called programs; we will generally use the
neutral term strings).

For a class of grammars to have linguistic interest, there must be a
procedure that assigns to any pair (o, G), where o is a string and G a
grammar of this class, a satisfactory structural description of the string
o with respect to the grammar G. In particular, the structural description
should indicate that the string o is a well-formed sentence of the language
L(G) generated by G, where this is the case. If it is, the structural descrip-
tion should contain grammatical information that provides the basis for
explaining how o is understood by speakers who have internalized the
grammar G; if it is not, the structural description might indicate in what
respects ¢ deviates from well-formedness.

* This work was supported in part by the U. S. Army Signal Corps, the Air Force
Office of Scientific Research, and the Office of Naval Research; and in part by the
National Science Foundation; and in part by a grant from the Commonwealth Fund.
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We will be concerned with only one aspect of the structural description
of a sentence, namely, its subdivision into phrases belonging to various
categories. Thus, for example, a structural description of the English
sentence “those torn books are completely worthless” should indicate
that those is a Determiner, torn and worthless are Adjectives, books is a
Noun, completely is an Adverb, those torn books is a Noun Phrase, com-
pletely worthless is an Adjective Phrase, are completely worthless is a Verb
Phrase, the whole string is a Sentence, as well as additional details regard-
ing subclassification. This information can be represented by a diagram
such as (1):

) T 8 |
v v
| NP | r vp |
v Y v v v
Det Adj N are 4P
v v v v v
those torn books D Adj

v v

completely worthless
or, equivalently, by a labelled bracketing of the string, as in (2):

(2) [s [np [pet those][aq; torn][x books]][vr are [4p [p completely]
[4as worthless] ]].

A major concern of the general theory of natural languages is to define
the class of possible strings (by fixing a universal phonetic alphabet); the
class of possible grammars; the class of possible structural descriptions;
a procedure for assigning structural descriptions to sentences, given a
grammar; and to do all of this in such a way that the structural descrip-
tion assigned to a sentence by the grammar of a natural language will
provide the basis for explaining how a speaker of this language would
understand this sentence (assuming no limitations of memory, attention,
etc.). The grammar, then will represent certain aspects of the linguistic
competence of the speaker of the language.

We will not be concerned here with the empirical question of adequacy
of the structural descriptions or the grammars that we will investigate.
In fact, the classes of grammars that we will consider, and the kinds of
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structural descriptions that they generate, are undoubtedly too narrow to
do justice to real human linguistic competence. Nevertheless, the systems
we consider (which, in effect, formalize traditional notions of parsing and
immediate constituent analysis) bear certain relations to the kinds of
systems that seem empirically adequate, and that are, for the time being,
too complex to permit abstract study.l)

In the representation (2), we have, aside from brackets, two kinds of
symbols: (i) symbols of the generated string (i.e., the six symbols those,
torn, books, are, completely, worthless)?); (ii) the symbols S, NP, Det,
Adj, N, VP, AP, D representing phrase-categories. Symbols of type (i) we
will call terminals; symbols of type (ii), non-terminals.

We will assume, below, a fixed stock of terminal and non-terminal
symbols from which the grammars of all languages are constructed. The
set of terminals can be regarded as constituting a potential common
vocabulary for all languages. Thinking of spoken language, we can regard
the set of terminals as defined by a universal phonetic alphabet (assuming,
as is natural, an upper bound on the length of morphemes?). Thin-
king again of natural language, we can regard the fixed set of non-
terminals as a universal set of categories from which the phrase types of
all languages are drawn. An important and traditional question of general
linguistics has to do with the possibility of giving a concrete interpretation
of the non-terminals that constitute the categories in terms of which
grammars are constructed —— is it possible, in other words, to find a general
definition, independent of any particular language, of such categories as
Noun, Verb, etc., in terms of semantic content or formal properties of
grammars ? The problem of giving a concrete interpretation to the set of
terminals and non-terminals is, of course, like the problem of empirical
adequacy of certain categories of grammars, a crucial issue in the science
of language; but it is beyond the range of our immediate interests here.

We can generate the sentence “those torn books are completely worth-
less”, with the structural description (2), by the set of rewriting rules:

1) For further discussion of these questions, see Chomsky [10].

2) In a linguistically adequate grammar, we would generate not these symbols, but
rather a more abstract representation using the symbols the, demonstrative, plural, tear,
Dparticiple, book, plural, be, plural, complete, ly, worth, less, in this order. Representation
in terms of these symbols (called morphemes) will be converted to phonetic representa-
tion by a set of phonological rules which will not concern us at all here. See Chomsky
and Miller [15]. We will use actual sentences, such as (2), only for illustrative examples,
and will therefore not be concerned with such refinements as this.
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)] S —>NPVP
NP —> Det Adj N
Det — those
Adj — torn
Adj — worthless
N — books
VP - are AP
AP — D Adj
D - completely

by a derivation that is constructed in the following way. First, write down
the initial symbol S as the first line of the derivation. Form the n + 1st
line of the derivation by selecting at will an occurrence of a non-terminal
o in the ntt line (where this occurrence of « is not labelling a bracket), and
replace it by the string: [.p], where & — ¢ is one of the rules of (3).
Continue until the only non-terminals that appear are those that label
brackets, at which point, the derivation is terminated. Deleting the
brackets of a terminated derivation, with their labels, we have a string con-
taining only terminals. Call this a terminal string. Four different terminal
strings can be generated by the grammar (3). We can construct a grammar
that generates infinitely many terminal strings, each with a structural
description, by permitting recursions, e.g., by adding to (3) the rules

4 NP — that S
VP —is AP
AP — obvious

in which case we can generate, e.g., “that those torn books are completely
worthless is obvious”, etc.1). Each of the generated sentences will again
have a structural description of the appropriate kind.

Grammars of the type (3), (4) we will call context-free (CF) grammars.
They are characterized by the property that exactly one non-terminal
appears on the left-hand side of each rewriting rule. If this restriction is
relaxed, we have systems with entirely different formal properties. It

1) In this case, infinitely many non-English sentences will also be generated, e.g.,
“that those torn books is obvious are completely worthless”, etc. Hence the grammar
((3), (4)) is unacceptable. The difficulty of avoiding empirical inadequacies of this sort
can easily be underestimated. We stress again that this is the key issue for both linguis-
tics and psychology, though it will not concern us directly here. For discussion, see
Chomsky [13].



122 N. CHOMSKY AND M. P. SCHUTZENBERGER

seems that grammars for natural languages must contain at least some
rewriting ryles of this more general form, and some rules that are not
rewriting rules at all. Cf. Chomsky [8], [10],and [12], Chomsky and Miller
[15], for further abstract discussion of systems of these sorts, which we
will not consider further here. A set of terminal strings that can be
generated by some CF grammar we will call a CF language.

A CF language may generate a terminal (debracketised) string ¢ with
several different structural descriptions. In this case, if the grammar is
empirically adequate, ¢ should be structurally ambiguous. Consider, for
example, the CF grammar with the rules

4) S —>NPVP
NP —they; NP > Adj N; NP - N
VP —>are NP; VP - Verb NP
Verb — are flying
Adj — flying
N - planes

With this grammar we can generate both (6) and (7):

©) [s[np they] [vp[vers are flying] [vp[n planes] 111
) [s[xp they] [vp are [vp [4as flying] [ planes] ] 1]

Correspondingly, the terminal string “they are flying planes” is struc-
turally ambiguous; it can mean: “my friends, who are pilots, are flying
planes”; or: “those spots on the horizon are flying planes”. Study of
structural ambiguity is one of the most instructive ways to determine the
empirical adequacy of a grammar.

We will see below that there are certain CF languages that are inher-
ently ambiguous, in the sense that each CF grammar that generates them
assigns alternative structural descriptions to some of their sentences.
Furthermore, we will see that the problem of determining whether a CF
grammar is ambiguous is recursively unsolvable,l) even for extremely
simple types of CF grammars.

Though CF grammars are far from fully sufficient for natural lan-
guages, they are certainly adequate for the description of familiar artificial
languages, and apparently for the description of certain, perhaps all,
programming languages. In particular, a CF grammar can be written for

1) There is, in other words, no mechanical procedure (algorithm) for determining
whether an arbitrary CF grammar assigns more than one structural description to
some string that it generates.
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ArLcoL [18], and each program in ALGOL will be one of the terminal
strings generated by this grammar. Clearly, a programming language
must be unambiguous. Therefore, it is important to determine whether,
in fact, a particular programming language meets this condition, or
whether a particular infinite set of programs can each be unambiguous,
given certain techniques for constructing them (e.g., techniques that can
be represented as rules for constructing derivations in a CF grammar).
As indicated in the preceding paragraph, these may be rather difficult
questions.

Suppose that G1 and G2 are generative systems that specify certain
techniques for constructing computer programs; suppose, in fact, that
they are grammars that generate the programming languages L; and La,
each of which consists of an infinite number of strings, each string being
a possible program. It is often interesting to inquire into the relative
power of programming languages. We will see that if G1 and Gs are CF
grammars (as, e.g., in the case of ALGOL), most problems concerning the
relation of L; to Lg are recursively unsolvable, in particular, the problem
of determining whether L; and L, have an empty or an infinite inter-
section, or whether L; is contained in Lg [2], or whether there is a finite
transducer (a “compiler’”) that maps L; onto Lg (Ginsburg and Rose,
personal communication). Hence it is possible that general questions
concerning the formal properties of CF systems and formal relations
between them may have a concrete interpretation in the study of data-
processing systems, as well as in the study of natural language. This
possibility has been pointed out particularly by Ginsburg and Rice [18],
Ginsburg and Rose [19].

In considering a grammar as a generative device, we may be con-
cerned with the language (i.e., set of terminal strings) that it generates,
or with the set of structural descriptions that it generates (N.B.: each
structural description uniquely determines a terminal string, as in (2)).
The latter is clearly the much more interesting question. Similarly, in
studying generative capacity of a class of grammars (or relative capacity
of several such classes, as in evaluating alternative linguistic theories),
we may be concerned either with the set of languages that can be gener-
ated, or with the set of systems of structural descriptions that can be gen-
erated. The latter, again, is a more interesting, but much more difficult
question. Investigation of such questions is, altogether, quite recent, and
attention has been restricted almost exclusively to generation of languages
rather than of systems of structural descriptions. We will consider genera-
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tion from a point of view intermediate between the two just mentioned.
We will consider a representation of a language not as a set of strings and
not as a set of structural descriptions, but as a set of pairs (o, #), where o
is a string and » expresses its degree of ambiguity; that is, n is the number
of different structural descriptions assigned to ¢ by the grammar G gen-
erating the language to which it belongs.

2. GRAMMARS AS GENERATORS OF FORMAL POWER SERIES

2.1. Suppose that we are given a finite vocabulary V partitioned into the
sets Vr (= terminal vocabulary) and Vy (= non-terminal vocabulary).
We consider now languages with the vocabulary Vz, and grammars
that take their non-terminals from Vy. Let F(Vr) be the free monoid
generated by V7, i.e., the set of all strings in the vocabulary V7. A lan-
guage is, then, a subset of F(Vr).

Consider a mapping r which assigns to each string f'e F(Vr) a certain
integer <r, f>. Such a mapping can be represented by a formal power
series (denoted also by r) in the non-commutative variables x of V7. Thus

®) r=X<nfofi=<nfoh+nfDR+ ...
i

where fi, fa,... is an enumeration of all strings in Vp. We define the
support of r (= Sup(r)) as the set of strings with non-zero coefficients
in r. Thus

® Sup(r) = {fi € (V1) | <r.f> # O}

We do not insist that the coefficients <7, fi> of the formal power
series r in (8) be positive. If, in fact, for each i, <r, fiy> =0, then we
shall say that r is a positive formal power series.

If for each f; € F(Vr), the coefficient <r,f;> is either zero or one,
we say that r is the characteristic formal power series of its support.

2.2. If r is a formal power series and » an integer, we define the product
nr as the formal power series with coefficients <nr,f> = nlr,f>,
where <r,f> is the coefficient of f in ». Where r and fr’ are formal
power series, we define r -+ ' as the formal power series with coefficients
e+, f>=<nf>+ ' f>, where <r,f> and ', f> are,

respectively, the coefficients of fin r and . We define rr’ as the formal
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power series with coefficients <{rr', > = X <r, fi> <, fp>, where
fif; = f. Thus the set of formal power series form a ring closed under
the operations: multiplication by an integer, addition, multiplication.

Notice that where r and 7’ are positive formal power series the support
of r + r' is exactly the set union of the supports of r and 7', and the
support of 77’ is exactly the set product of the supports of r and #’ (i.e.,
the set of all strings fif; such that f; is in the support of r and f; in the
support of r’). We will discuss the interpretation of other simple set
theoretic operations below.

We say that two formal power series r and ' are equivalent mod degree n
(i.e., r = r’ (mod deg n)) if <r,f> = <',f> for every string f of length
(“degree’”) < n. Suppose then that we have an infinite sequence of formal
power series r1, 73, ..., such that for each » and each n’ >n, rs = ryr
(mod deg n). In this case, the limit r of the sequence r1, g, .... is well-
defined as

(10) r= lim Tenln
n - o0

where for each n, 7,7, is the polynomial formed from 7, by replacing
all coefficients of strings of length > n by zero. Then the ring of the
formal power series becomes an ultrametric, hence topological, ring.
With these notions defined, we can turn to the problem of relating the
representation of languages in terms of formal power series to the
representation of languages by generative processes such as CF grammars.

2.3. Suppose that G is a generative process generating the language
L(G). Each string f'e F(Vr) is assigned a certain number N(G,f) of struc-
tural descriptions by G; N(G,f) > 0 justincase f € L(G). N(G,f) expresses
the degree of structural ambiguity of f with respect to G. It is natural to
associate with G the formal power series 7(G) such that <r(G),f> =
N(G.,f), where <r(G),f> is the coefficient of fin #(G). Thus r(G) expresses
the ambiguity of all terminal strings with respect to the grammar G. The
coefficient <r(G),f> is zero just in case f'is not generated by G; it is one
just in case fis generated unambiguously (in one and only one way) by G;
%t is two just in case there are two different structural descriptions for f,
In terms of G; etc.

An 7(G) associated with a grammar G will, of course, always be posi-
tive; and its support Sup(r(G)) will be exactly the language L(G) generated
by G. We can regard a formal power-series r with both positive and
negative coefficients as being associated with two generative processes
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G1 and Ga. The coefficient <r,f> of fin r can be taken as the difference
between the number of times that fis generated by G1 and by Gs; that
is, in this case, <r,f> = N(G1,f) — N(Ga,f).

Suppose that G is a CF grammar with non-terminals «3, ..., &, Where
o is the designated initial symbol (i.e., 1 = S, in the example (1),
above). We can construct the formal power series 7(G) associated with G
by a straightforward iterative procedure. To do this, we proceed as
follows.

Observe, first of all, that G can be written as a system of equations in
the variables &1, ..., on. Let @41, ..., @i,m, e the strings such that
o = @i,5 (1 < j < my) are rules of G. We then associate with «; the poly-
nomial expression o,

(11) 0i = @i,1 + @i,2 + ... + Pim,
We now associate with the grammar G the set of equations
(12) K] = 01} ...} &n = Op.
Let us assume that the grammar G contains no rules of the form

(13) x; > e
&g —> 0.

It is clear that these assumptions do not affect generative capacity [2].
That is, for every CF grammar containing such rules there is another
grammar without any such rules, which generates the same language.
We will also explicitly require, henceforth, that if G is a CF grammar and
« is a non-terminal of G, then there must be terminal strings derivable
from & — i.e., if G’ contains the rules of G and has« as its initial symbol,
then the language generated by G’ must be non-null. Again, this require-
ment obviously does not affect generative capacity.

Returning now to the problem of constructing the power-series that is
associated with G and that represents the degree of ambiguity that G
assigns to each string, observe that we can regard each equation o; = oy
of (12) as defining a mapping y; that carries an n-tuple (r1, ..., rs) of
power series into the power series defined by replacing «; in o7 by ;. This
is legitimate because of the closure properties of the ring of power series
noted above in § 2.2.

Thus the set of equations (12) defines a mapping v,

(14 W1, ooy o) = (1, ..., ¥'n), Where r'y = pi(ra, ..., ra).
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Consider now the infinite sequence of n-tuples of power series go,
01, ..., Where

15) 00 = (0,1, ..., ro,n) = (0, ..., 0)
o1 = (r,1, ..., '1,n)
ez = (r2,1, ..., r2,n)

and where for each i,j (j > 0)
(16) rii = Pi (1j-1,1, - .-, Tj-1,n)

and where 0 is the power series in which all coefficients are zero. Each
r;,¢ in (15) has only finitely many non-zero coefficients; it is, in other
words, a polynomial. Furthermore, we can show that for each i,j,j’ such
thatj' >j >0, 1< i< mn, it is the case that

a7 rii = ry’ i (mod deg j).

Consequently, as noted in § 2,2, the limit 7co,; of the infinite sequence
1,4, r2,i, .. is well-defined for each i (it is, of course, in general not a
polynomial). We will call the n-tuple (roo,1, .- oo,n), SO defined, the
solution to the set of equations (12). Indeed, the n-tuple (reo,1, . -5 7co0,n)
is the only n-tuple within our framework to satisfy the set of equations
(12). For this reason we will say that a power series is algebraic [42] if it
is one of the terms of a solution to a set of equations such as (12), where
there is no restriction on the sign of the numerical coefficients. We will
call a power series context-free if the coefficients in the defining equations
are all positive.

In particular, reo,1, which we will henceforth call the power series
generated by the grammar G of (12) with initial symbol &1, is the power
series associated with G in the manner described at the outset of § 2.3.
Its support is the language L(G) generated by G, and the coefficient
{reo,1, > of astring f'e F(Vr) determines the ambiguity of f with respect
to G, in the way described above.

Notice that if an algebraic power series is context-free, it is positive,
but not necessarily conversely. That is, a power series may be a term of
the solution to a set of equations and may have only positive coefficients,

but may not be a term of the solution to any set of equations with only
positive coefficients. 1)

1) For example, using notions which will be defined below in § 3.1, the Hadamard
square s © s, for s € Ao, has only positive coefficients (and has the same support as s)
but it is not, in general, generated by a set of equations with only positive coefficients.
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2.4. As examples of the process described above, consider the two
grammars (18) and (19):

(18) S —>bSS; S >a
(19) S - SbS; S > a.

Each of these grammars has only a single non-terminal; hence the corre-
sponding set of equations will in each case consist of a single equation.
Corresponding to (18) we have (20), and corresponding to (19) we have

@1).

(20) S =a+ bSS
1) S =a+ SbS.

The equations (19) and (20) correspond to (12), above, with n = 1. Both
(19) and (20) meet the condition (13).

Consider first the grammar (18) represented in the form (20). Pro-
ceeding in the manner of the preceding section, we regard (20) as defining
a mapping y such that y(r) = a + brr, where r is a power series. We
then (corresponding to (15)) form the infinite sequence go, 01, 02, .. as
follows:

(22) gp=ro=0
egr=ri=a-+ broro=a -+ b00 =a
02 =rz =a- brir1 = a + baa
03 = r3 = a -+ brers = a + b(a + baa)(a + baa)
= q + baa + babaa + bbaaa - bbaabaa
s =ry=a - brsrs

Clearly for each j, j' such that j' > j > 0, we have r; = r;* (mod deg j).
Consequently the limit 7o is well-defined. This power series is the solution
to equation (20), and its support is the language generated by the CF
grammar (18). Notice that the power series 7o, in this case, is charac-
teristic, and its support is the set of well-formed formulas of the “implica-
tional calculus” with one variable in parenthesis-free (Polish) notation
(with the symbol a playing the role of propositional variable, and b the
role of the operator “conditional’).

Consider now the grammar (19) represented in the form (21). We
regard (21) as defining a mapping ¢ such that y(r) = @ 4 rbr, where r
is a power series. We now form the infinite sequence go, 01, @2, -..:
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(23) oo =ro=0
opr=ri=a-+robro=a+ 00 =a
g2 =rz = a+ ribri = a + aba
03 = r3 = a + rabrs = a + (a + aba)b(a + aba)
= a + aba + 2ababa - abababa
04 = r4 = a + rsbrs
= a + aba + a(ab)?a + 5(ab)®a + 6(ab)4a +- 6(ab)’a +
4(ab)éa + (ab)’a

Again, for each j, j’ such that j' > j > 0, we have r; = r;’, (mod deg j),
and the limit r-o is defined as the power series

24 r0 =X [2: ] 7 _}_ 1 (ab)"a = a + aba + 2(ab)?a + S(ab)’a +
" 14(ab)*a + 42(ab)ba + ...

where

[2n]___2n><2n—1><...><n+1
n IX2X..Xn

The power series roo of (24) is the solution to the equation (21), and its
support is the language generated by the grammar (19). It is not, in this
case, a characteristic power series. Taking the symbol a again as a pro-
positional variable and b as the sign for “conditional’’, the grammar (19)
is the set of rules for generating the well-formed formulas of the im-
plicational calculus with one variable in ordinary notation, but with the
parentheses omitted. The structural descriptions generated by (19) in
the manner described in section 1 (cf. (3)) are of course unambiguous,
since brackets are preserved, but the terminal strings formed by debrack-
etization are ambiguous, and the degree of ambiguity of each generated
terminal string is exactly its coefficient in 7oo — thus ababa can be inter-
preted in two ways, either as (ab(aba)) or ((aba)ba), etc. A more general
case has been treated by Raney [38] by Lagrange’s inversion formula.

1n (20) and (21) all coefficients are positive and the solution is therefore
a positive power series. Consider, however, the set of equations consisting
of the single member

(25) S = a— SbS.

In this case we have the sequence
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(26) g =ro=0
gr=ri=a—robro =a—0b0 =a
02 =rs =a—ribr1 =a—aba
03 = r3 = a — rgbrs = a — (a — aba)b(a — aba)
= a — aba + 2ababa — abababa

In fact the coefficients in g; of (26) are exactly those of g; of (23) except
for sign — the coefficient of fin g; of (26) is positive just in case f has an
even number of b's.

The power series 7o Which is the solution to (25) is not positive and it is
consequently not context-free (though its support happens to be a context-
free language, in this case, in fact, the language with (19) as one of its
grammars). We can, however, regard ro as the difference between two
context-free power-series roo™ and reo~; and, correspondingly, we can
regard its support as the set of strings that are not generated the same
number of times by a pair of CF grammars G+ and G- which generate
reo™ and roo—, respectively. Suppose we set S = S+ — S-, so that (25)
becomes

Q7) St — 8- =a— (S+— S)b(S+ — S5-)
= a— (S*+bS+ — S+bS- — S-bS* + S-bS-)
= a + S+bS- + S-bS+ — (S*+bS* — S-bS-).

Consider now the set of equations

28) @) S+ = q + S*bS- + S-bS+
(ii) S- = S+bS* + S-bS-.

This is a set of positive equations with two variables S*+ and S-, and it
will have as solution the pair (roo™, roo™), Where reo™ is the limit of the
sequence ro*, r1*, ... and reo~ the limit of the sequence ro—, 717, ... of (29):

(29) 20 = (0%, ro™) = (0, 0)
e1=(r1*,n") = (a,0)
o2 = (r2*, r2-) = (a, aba).

It is clear that where oo is the solution to (25), 7eo = reo* — roo™. But,
furthermore, roo* is the power series generated by the CF grammar G+
with the initial symbol S+ and the grammar (28i); and roo is the power
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series generated by the CF grammar G- with the initial symbol S- and
the grammar (28ii).

In a similar manner, any algebraic power series can be represented
(in infinitely many different ways) as the difference of two context-free
power series, and its support can be regarded, therefore, as the set of
strings which are not generated the same number of times by two CF
grammars. This is as close as we can come to a concrete interpretation for
the general notion of algebraic power series.

More generally, the same construction could be carried out for an
arbitrary ring of coefficients instead of the ring of natural numbers used
above. This is a still unexplored domain. For instance, if the coefficients
are taken modulo a prime p (i.e., if we consider as ‘“non-produced” the
strings produced a multiple of p times), the formal power series Xy ~ 022"
in the single terminal z is algebraic [27], although its support cannot be
the support of any of the power series introduced above.

3. FURTHER OPERATIONS ON FORMAL POWER SERIES

3.1. In § 2.2 we observed that the set of power series is closed under the
operations of addition, product, and multiplication by an integer. We
pointed out that the support of r + r’ is the union of the supports of r
and #/, and that the support of 7+’ is the set product of the supports of
r and r, provided that the coefficients are non-negative. We will now turn
to two other operations under which the set of power series is closed, and
consider the corresponding set-theoretic interpretation for the supports.
It is standard terminology to say that r is quasi-regular if <{r, ¢> = 0.
Then r*»" = 0 (mod degn) for 0 < n < n’ and the element 7* = limg— o
20 < o’ < » " is well-defined. Furthermore, r* satisfies the identity

(30) r+r¥r=r- rr¥* = r¥,

which determines it uniquely. Thus #* is usually called the quasi-inverse
of r. This notion relates directly to the more familiar notion of an inverse
by the remark that if # = e —r and r”" = e + r*, then 77"’ = (e —7)
e+r¥)y=e—r+r*—r*=e=1r"r, that is, "' = r'-1. Conver-
sely, given r’ such that <r’,e> = 1, we can write it as ' = e — 7,
where r is quasi-regular, so that e 4+ r* is the inverse of .

Note that by the very definition of r*, this power series has only non-
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negative coefficients if 7 does, and that Sup r* = (Sup r)*, where on the
right side of the equation the star denotes Kleene’s star operation [21].

In particular if V is an arbitrary set of letters and if the power series v
is defined by <v, x> =1 if xe V = 0if x ¢ V (i.e., if v is the charac-
teristic function of V), e + V* (in Kleene’s sense) is the set of all words
generated by the letters of ¥ and e + v* = (e — v)~1 is the characteristic
function of this set. This follows from the fact that any word fe V*
appears once and only once in the infinite sum X, > o ¥#. Consequently,
when we know the characteristic function r of a set of strings, we are able
to write also the characteristic function (1 — Vr)~1—r of its complement.

It is worth mentioning that in this case the latter has non-negative
coefficients and although it is algebraic in the sense defined above, it is
not necessarily context-free.

The second operation that we define is the Hadamard product, thus
generalizing in one of the possible ways the usual notion of classical
analysis. The definition that we give differs from the various extensions
to the case of several variables that occur in the literature, but it seems
to be most natural extension for non-commutative power series.

Where r and ' are two power series, their Hadamard product r © r'
will be the power series with coefficients

(€)Y ror,f>=<nf>00

identically for all strings . Hence Sup (r © #") = (Sup r) N (Sup '), and
r © r' is a characteristic function if r and r’ are.
Finally we introduce the following notation: given a string Xy, X, ...,

xi, Xi, =f (xgje V) we define £ (the mirror image of f) to be the string

n—1

(32) f == ¢”X¢”_1 cos xizx;l

=

Clearly f = f and the relation ff’ = f" implies /" = f'f. Formally
this mapping is an involutory anti-automorphism of the ring of power
series and it can be proved to be uniquely characterized by this property
(up to a permutation of the elements of V).

3.2. The notation just introduced will be used later on for simplifying
the description of grammars in the following way. Suppose that a gram-
mar G contains the rules

(33 &1 = W1XeM2 + 17 + 73
Xg = Koty + T4
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where the 7;’s are polynomial expressions in ¥ — {x;}. Then the second
rule implies

—_ n
e o= (3,7
and the rules (33) can be replaced by the simpler rule

(35) o1 = 71l —7g) 1mwe + 7a.

We can, in fact, give a linguistic interpretation to this simplified form
of description. Thus, for example, a pair of rules of the form &1 — fixaf2,
og —> o (that is, a pair which can now be given in the form: &1 —
f1(1 —x2)~1f2) can be regarded as constituting, in effect, a rule schema:
a1 = fixgtfa (n = (1, 2,...). With this reinterpretation, the grammar,
though still finitely specified by rule schemata, consists of an infinite
number of rules. But now recall the manner in which a structural de-
scription (a labelled bracketing) is assigned to a terminal string generated
by a CF grammar (see above, § 1). A grammar specified by the rule
schema given above can generate a structural description of the form

(36) === [a, filayP1]la,p2] ... [a,Pn]fo] ---

for each n, where each py is derived from «g. In the sentence (terminal
string) with this structural description, each §; is a phrase of type «s,
where $; is formed by debracketization of px. The successive phrases
P1, ..., pn form a “coordinate construction”, which, taken together with
the strings formed ultimately from fi and f3, is a construction of the
type 1. This is the natural way to extend CF grammars to accommodate
true coordination, as, e.g., where a string of adjectives of arbitrary length
may appear in predicate position with no internal structure defined on
them. Cf. Chomsky [10].

3.3. Let us try to relate what we have done so far to classical analysis,
writing ¢f = ¢f”’ for any two strings f and f” if they contain exactly the
same number of each of the letters (terminal or not).

Clearly ¢ extends to a mapping of our non-commutative power series
onto the ring of the ordinary (commutative) formal power series with
integral coefficients, and it is easily seen that ¢ is a homomorphism. For
example, if &« = a + bax, we have gpu = pa + pbpagx, and @« is the
ordinary power series

37) po = (gaysi(gby [27] 21
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in the ordinary variables ga, pb. (Here if &' = a + &'bx’, we would also
have po’ = pu).

Furthermore, it can be shown directly from the way our power series
are obtained that the coefficients do not grow faster than an exponential
function of the degree (length) of the strings. Thus the image ¢ of any
one of our power-series is in fact an ordinary convergent Taylor series
expansion of an algebraic function.

Reciprocally, if we are given (ordinary) variables #1,..., %n, an
(ordinary) algebraic function of this quantity ¥ is defined by a polynomial
in 7 and the %;; and in case ¥ admits a development in Taylor series (with
integral coefficients) around zero in the #;’s, we can associate with it
infinitely many formal power series 8 such that ¢ = § and g is defined
by formal equations. For instance: starting from the algebraic function
¥ of @ and b defined by 926 — § -+ a = 0, we obtain the two examples
given above, and also formal power series

(38) & = a + boax + mx — ow

where 7 is an arbitrary polynomial in a and b. Thus, e.g., take = = b.
Then

39 X =a
&1 = a -+ baa + ba — ab

......

3.4. Let us conclude by indicating some connections between our con-
siderations and Lyndon’s theory of equations in a free group (Lyndon,
1960). Let {x;} (1 < i< n) be a terminal vocabulary, £ a non-terminal
letter and let w be a product of terms of the form 1 — x;, (1 — x¢)-1,
1—§&, (1 —&)-1. We define deg(w) = dy — d- where d+ and d- are the
number of factors 1 — & and (1 —£)-1 in w. Thus, for instance, for
w=(1—x2)(1 —x)(1 — &1 — x)"1(1 — &)~1(1 — x2)~1, one has
deg(w)=1—1=0.

As is well-known, the elements 1 — x; generate (by multiplication) a
free group G. The relation w = 1 may be considered as an equation in
the unknown &. In our terminology a solution of w = 1 would be a power
series &o in the x;’s such that w = 1 identically when & is substituted for
& in w; & will be a group solution if, furthermore, 1 —&o € G; i.e., if
1 — & is itself expressible as a product of terms (i — xg)*t. R.C. Lyndon
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has proven the very remarkable result that the totality of the group
solutions can be obtained algorithmically.

Let us relate part of this question to our remarks in § 2.3. For this we
introduce the new symbols &(1 < i <n), , and equations

6] Se=xi+ &ixe; y=8+&n

sothat (1—xp)l=1+&and (1 —&)1=1+¢4824 &y

Substituting these expressions in w = 1 and simplifying, we obtain a
relation
@) (deg W) £ =1/
where p’ is a polynomial in the variables x;, &, 7 having no term of degree
less than 2.

Hence if deg (w) # 0 the system (1), (2) has one and only one solution
in power series (the fact that the coefficients are eventually rational
instead of integral numbers is irrelevant to the proof in § 2.3) and since
the group solutions are a subset of the power series solutions, we have
verified directly that if deg w = 0, the free group equation w = 1 has at
most one solution.

On the contrary, if deg w = 0 (as for instance for the equation w =
(1 — &)1 — x)(1 — &)-1(1 — x;)~1 = 1) our approach entirely collapses
and says nothing even about the unrestricted solutions of w = 1.

For instance (1 — x¢)(1 — &)(1 — x;) ¢ (1 — &)~ = 1 has no solution if
& 7= —1 and has an infinity of group solutions if ¢ = —1, viz. 1 —& =
(1 —x¢** (n >0). Indeed, then, the equation can equivalently be
written £x; = x1& (which has as solutions, in our sense, all the power
series in xy).

Of course, the case deg w = 0 is precisely that in which, the unknown
1 — & disappears when taking the commutative image as in § 3.3 and
it is the non-trivial case from a group theoretic point of view.

4. TypEs OF CF GRAMMARS AND THEIR GENERATIVE PROPERTIES

4.1. In terms of conditions on the rules that constitute them, we can define
several categories of CF grammars that are of particular interest. In the
following we will use«, f, ... for non-terminal symbols; £, g, ... for terminal
strings (possibly null); and ¢, y for arbitrary strings. Recall that we have
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excluded the possibility of rules of the forma — e or « — 8, remarking

that this restriction does not affect generative capacity. We will describe

CF grammars in terms of rules or equations, whichever is more convenient.
Ifthe grammar G contains no non-terminal &« from which it is possible to

deriveboth astring f* and a string fxg, then the terminal language L(G) gene-

rated by G will be finite. In this case, G will be called a polynomial grammar.
Consider now grammatical rules of the following kinds:

“40) (@ o — fB (right-linear)
(i) o« — Bf (left-linear)
(iii) o« — fBg (linear)
(iv) o« — f  (terminating)

A grammar containing only right-linear and terminating rules or only
left-linear and terminating rules will be called a one-sided linear grammar.

A grammar containing only rules of the type (40) will be called linear.
Suppose that G contains only rules of the type (40) and of the type
o1 — @, where «; is the initial symbol of G; and that, furthermore, it
contains no rule § — go19. Thus the defining equation for «; is &1 = 73,
where 71 is a polynomial not involving ;. Such a grammar will be called
meta-linear.

Given a grammar G (i.e., a set of positive equations) which is poly-
nomial, one-sided linear, linear, meta-linear or context-free, we will say
that the power series r which is the principle term of its solution (i.e.,
which it generates, in the sense defined in § 2.3) and the language Sup r
which it generates are, respectively, polynomial, one-sided linear, linear,
meta-linear or context-free. These families of power-series will be desig-
nated, respectively, Z+, %+, L+, Lpt,f+; and for each family & the
family of supports of & will be designated Sup (%).

Notice that Sup (£*) is just the family of finite sets, and that Sup (%)
is the family of regular events, in the sense of Kleene [21] (cf. Chomsky,
[7] — note that the class of regular events is closed under reflection).

We consider now certain elementary properties of these families of
languages.

It is, first of all, immediate that the following inclusion relations hold
among these families:

(41) Sup(Z+) C Sup(Zot) < Sup(L+) < Sup(&nt) < Sup(SH).

Furthermore, in each of these cases inclusion can be strengthened to
proper inclusion. Thus we have:
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PROPERTY 1.
Sup(#*) & Sup(Fo+) & Sup(F+) & Sup(Ln*) S Sup(S+).

The simplest example of a language in Sup(Z+) but not in Sup(ZLo*) is
the set of all strings {a™ba™} (a, b € V7). This is generated by the grammar:
« = aca -+ b, and is easily shown not to be a regular event. The product
of languages in Sup(Z+) is always in Sup(%,*), but not in general in
Sup(Z+). The language Lrc of our example (18) above with the grammar:

42 = a + box

and consisting of the set of well-formed formulas of the implicational
calculus with one free variable in Polish notation is in Sup(.#*) but not in
Sup(Zn*). This follows from the fact that L;c contains all strings of the
form

43) B™1 g™ p™2 g™2 ., Bk gk g,

for each k > 1, m; > 1. But each string in Ly¢ contains n occurrences of
b and n + 1 occurrences of a, for some » > 1. Consequently, for a fixed
integer k, to generate all strings of the form (43), it must be possible to
derive from the initial symbol of the grammar of Ly¢ a string ¢ containing
k occurrences of non-terminals. Consequently, this grammar cannot be
metalinear.

For empirical interpretation of the theory of CF grammars, the
relation between Sup(£+) and Sup(Zo+) is of particular importance, since
a finite device incorporating the instructions of a CF grammar G gener-
ating L(G) as a representation of its intrinsic competence, will be able to
interpret only the sentences of some fixedsubset R € Sup (Zot) of L(G) €
Sup(#+) (with fixed supplementary aids). This relation can be described
precisely in terms of certain formal features of the structural descriptions
(labelled bracketings) generated by CF grammars — cf. § 1. Let us say
that G is a self-embedding grammar if it generates a structural description
of the form

44 B PR 7)1

where @ and y contain non-null terminals, and where y is a properly
bracketed expression. Then we have the following result:
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THEOREM la.

L ¢ %o if and only if every CF grammar that generates L is self-embedding.
Chomsky [9]. This result can be extended in the following way. Define
the degree of self-embedding of a structural description D as the largest N
such that D contains a subconfiguration:

[epilapels - .- [apv+1lpn+2] ... Jpan+1] where each ¢; contains non-null ter-
minals. Then there is a one-one effective mapping @ of {(G,n) : Ga CF
grammar, # > 1} into the set of one-sided linear grammars and a one-one
effective mapping ¥ of the set 4 of structural descriptions into 4 such that:

THEOREM 1b.

For each L € Sup(F+), there is a CF grammar G generating L such that for
each N, @ (G,N) generates f with the structural description D if and only
if G generates the terminal string f with the structural description ¥(D),
where Y(D) has degree of self-embedding << N.

Chomsky [8]. Thus, intuitively, we can, given G, construct a finite device
&(G,N) that will recognize the structure of a string f generated by G
just insofar as the degree of self-embedding of a particular structural
description of f does not exceed N. This fact suggests certain empirical
consequences. For discussion, cf. Chomsky [10], Miller and Chomsky
[29].

4.2. We consider now various closure properties of these families of
languages.

The families of power series defined above can be given the following
algebraic characterization. 2+ is a semi-ring.l) Lo+ is the smallest semi-
ring containing &+ and closed by quasi-inversion of quasi-regular ele-
ments. £+ is a module, and %y, is the smallest semi-ring containing it.
The full set.#+ is a semi-ring closed by quasi-inversion of quasi-regular
elements.

Correspondingly, we have the following properties of the supports:
Sup(#2) is closed under set union and set product; Sup(Fo+) is the smallest
set containing the finite sets and closed under the operations of set union,
set product, and the star operation described in § 3.1 [21]; Sup(:Z+) is
closed under set union, but not set product; Sup(&y,+) is the smallest set

1) The notion of semi-ring generalizes to that of ring in that the additive structure
is only a monoid (not necessarily group) structure. A typical semi-ring is the so-called
“Boolean ring” with two elements 0 and 1 and the rules

0=0+0=0=0=10;1=04+1=14+0=1+1=11).
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containing the sets of Sup(#+) and closed under set product as well
(this is, of course, the motivation behind the construction of %,*); The
full set Sup(#+) is closed by union, product and the star operation.

These properties are immediate, and it is natural to inquire into
ciosure under the other elementary operations on sets, namely, inter-
section and complementation. It is obvious that Sup(£*) is closed under
intersection, and it is well-known that the class Sup(Zo*) of regular
events is closed under intersection and complementation.

For the other families, we have the following results. The family
Sup(#+) of all CF languages is not closed under intersection and hence
(since it is closed under union) not closed under complementation [40],
[2]. The example given, in each of these references, consists of a pair of
meta-linear languages whose intersection is not context-free. Hence it
follows that Sup (&%, *) is also not closed under intersection or, conse-
quently, complementation. This result can be strengthened to cover
linear grammars, in fact (for intersection) even linear grammars with a
single non-terminal.

To see this, consider the grammars G; and G2 defined as in (45) and
(46) respectively:

45) & = aaxc + bxc + bc
46) & = ancc + axb + ab.

G1 and G are each linear with a single non-terminal. But the intersection
of the languages that they generate is the set of strings [a2#b%a%7], which
is not context-free. This example (along with the fact that these families
are closed under union) establishes that

PROPERTY 2.

The families Sup(L+), Sup(Ln*), Sup(F+) are not closed under either inter-
Section or complementation; the intersection of two sets in one of these
Jamilies may not even be in Sup(F+), even when the sets in question are
generated by grammars with a single non-terminal.

Presumably the complement of a language of Sup(Z+) or of Sup(Zn+)
is not context-free (i.e., is not a member of Sup(.#+)). However, we have no
examples to show this.

Thus of the classes of languages discussed above, only the regular
events (and the finite sets) are closed under formation of intersections.
However, the intersection of a regular event and a context-free grammar
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is again a context-free language [2]. We have in fact, the following
stronger result which extends a well-known theorem of classical analysis
due to R. Jungen [20].

THEOREM 2.

Suppose that r1 € Aot. Let U+ be one of the families P+, Ao*, A+, Am*, F+.
Let r1 © rz be the Hadamard product of r1, r2 (¢f.§ 3.1). Thenri © rz € U+,
for every rs € U*. Furthermore, if ra, rs € Ao*, then rs O r3 € Ao+.

Cf. Schiitzenberger [46]. It follows that the intersection of a language
of Sup(U*) with a regular event is in Sup(U+), for each U*. The proof
of this result, which is related to a similar result concerning closure under
transduction, will be outlined in § 8, below.

4.3. The category of linear grammars is of particular interest, as we will
see directly, and we will now make a few preliminary observations con-
cerning it. Notice that if L is a language generated by a linear grammar,
we can find a vocabulary V” disjoint from ¥z, two homomorphic mappings
&, & of F(V') into F(Vr), a regular event R in V’, and a finite set
C C F(Vr) such that L consists of exactly the strings f = x(g)c «'(g),
where g€ R, § is the reflection of g, and ¢ € C. Thus a finite process
dealing with a collection of pairs of strings or a pair of coordinated finite
processes can, in general, be correlated to a linear grammar and studied
in this way.

Equivalently, we can characterize a linear language in the following,
slightly different way. Let V' =V+ U V- (V= {»:0<i<n}; V- =
{n:—n<i<—1}. Where fe F(V*), let us define f as the result of
substituting v-; for v; in f, throughout. Then a linear language L is deter-
mined by choice of a homomorphic mapping 8 of F(V') into F(Vr), a
regular event R in V*, and a finite set C C F(Vr). L is now the set of
strings B(f)cB(f), where fe R and c e C. We will use this alternative
characterization below.

We can now determine special classes of linear languages by imposing
further conditions on the underlying regular event R, the mappings «, «’,
and the class C. In particular, in applications below we will be concerned
with the case in which R is simply a free monoid (a regular event defined
by a single-state automaton) and where C contains just ¢ € Vz, where
of) 7 ey # o’'(f). We will call grammars defined by this condition
minimal linear grammars.
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A minimal linear grammar contains a single non-terminal symbol S
and a single terminating rule S — ¢, and no non-terminating rule
S —> @ey. Thus each string of the language it generates has the designated
«central marker” c. This is the simplest set of languages in our frame-
work beyond the regular events, and we will see that they differ markedly
from regular events in many formal properties.

For later reference, we give now one particular result concerning
minimal linear grammars. Let us take V', Vp = WU {c} (c ¢ W), x and
«' as above. Let G be the minimal linear grammar defined by «, &’ and
generating L(G). Thus G has the defining equation

47) B=c+ Z{a(Px'():veV'}
where &, &’ are mappings of F(V’) into F(W). Then we have:

THEOREM 3.

If o is a monomorphism (isomorphism into), then the complement F(Vr)\
L(G) of L(G) with respect to F(Vr) is generated by an unambiguous linear
grammar.

Proof: Let A = o(V"), F(A) = «F(V'), and for any set F C F(W), let
Fr={feF:f#e}.

Clearly there is a partition: F(Vr) \ L(G) = L U L', such that
(48)

L =fef' : fe FXA), ' € FOW), fcf' ¢ L(G);
L' =FW)u cF(W) U (FOW) \ F(4)) cF(W) U F(Vr)cF(Vr)cF(Vr).

But L’ is a regular event. Hence it suffices to show that L is generated by
an unambiguous linear grammar.
Since « is a monomorphism, there exists an isomorphism & : F(4) -
F(V'). We extend &’ to F*(4) by defining «'a = «'(&a), for a € F*(A).
Suppose that acf’ € L. Thus € F+(4), f’ e F(W), and f’ # «’a. By defi-
nition there are just three mutually exclusive possibilities for acf”.

49 () feF{(W)x'a
(i) «'ae F*(W)f’
(iii) @ = a1a2a3 and f’' = hwga'a; (where a1, a3 € F(A);
aze A;we W; h,ge F(W); «'as € F+H(W)g; &' a2 € F(W)wg).

(49i) is the case in which f* has &’z as a proper right factor;
(49ii) is the case in which &’z has f’ as a proper right factor;
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(49iii) is the case in which &’a and f’ have as their common maximal
right factor the string ga’a1, which is a proper substring of both o’z and f”.
Thus the three cases are mutually exclusive and exhaustive, and we have
a partitioning of L into the three subsets L;, La, L3, consisting of the
strings meeting (i)(iii), respectively. What we now have to show is that
each of Ly, La, L3 is generated by an unambiguous linear grammar.

In the case of Ly and Lo this fact is obvious. Let A = X {a : a € 4}
and W = Z{w : w e W}. Then L, is generated by the grammar (50) and
L, by the grammar (51) (cf. § 3.2).

(50) B = Zf{apo'a:ae A} + c(1 —W)-1
(51) B= X{afx'a:aed}+ (1 —A

Consider now the case of L. For each a € 4, let us denote by B(c) the
set of all strings wg (we W, ge F(W)) such that «'a € F*(W)g and
«’a ¢ F(W)wg. Clearly B(a) is always a finite set, since g is shorter than
o’'a. We can now generate Ls by the unambiguous linear grammar with
the equations:

(52) pr= Z{aprv'a:ae A} + Z{aPb: ae A, be Ba)}
Be=c+c1—W)1+Q—A) " c+ Z{aPaw:aed, we W)

Verification is straightforward. But now we have given F(Vr) \ L(G) as
the union of the four disjoint sets Li, Lo, Ls, L', each of which has an
unambiguous linear grammar. Consequently, F(Vr) \ L(G) itself has an
unambiguous linear grammar, as was to be proven.

Notice that if we had taken « originally as an “information-lossless
transduction” [43] instead of as a monomorphism, we could prove a
result differing from Theorem 3 only in that the linear grammar con-
structed would have bounded ambiguity, rather than no ambiguity.

4.4. We have considered several subfamilies of the class of CF grammars,
classifying on the basis of structural properties of the defining rules.
There are other principles of classification that might be considered.
Thus, for example, it might be worthwhile to isolate the class of the star
grammars (languages) characterized as follows: G is a star grammar if
associated with each non-terminal o; of G there is a set 2; of non-ter-
minals and three terminal strings f;, f's, "'+, and G contains all and only
the rules: o« ->f"¢, (o3 —->ﬁ(x1f'¢ (zx; € Zg), Ky —=> XXy (oegs 0,01 € Et) These
are, in a sense, the most “structureless” CF grammars. The interest of
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these languages lies in the fact that the equations defining the associated
power series are expressible using in an essential manner only the quasi-
inverse and addition, as we have observed in § 3.2. Notice, in particulsr,
that the non-metalinear language L;¢ defined by (42) is a star language-
We have suggested a linguistic interpretation for the notion “star lan-
guage” in § 3.2.

Another principle of classification might be in terms of the number of
non-terminals in the minimal defining grammar of a certain power seris-
However, it does not seem likely that interesting properties of language
can correlate with a measure so insensitive to structural features of
grammars as this (except for the special case of the languages defined by
grammars with only one non-terminal), because for monoids, as distinct
from groups, the gross numerical parameters do not relate in an interest-
ing way to the fine structure. Notice, incidentally, that for any finite N
we can construct a regular event which cannot be generated by a CF
grammar with less then N non-terminal symbols.

Another principle of classification is suggested by consideration of
dependencies among subparts of the grammar. Let us call a CF grammar
irreducible if no proper subset of the set of defining equations constitutes
a CF grammar (recall that terminal strings must be derivable from
each non-initial non-terminal of a CF grammar); otherwise, reducible. If
a CF grammar is reducible, in this sense, there must be proper subsets
2 of its rules and X of its non-terminals, such that only rules of X;are
involved in extending derivations to terminated derivations at points
where symbols of 22 appear in lines of derivations.

One particular extreme form of reducibility has been studied by
Ginsburg and Rice (18). Following them, let us call a CF grammar G
sequential if its non-terminals can be ordered as «1, ..., &, (where #1 is
the initial symbol) in such a way that there is no rule oy — poyp for j < i
The solution to a sequential grammar is particularly easy to determine
by the iterative procedure described in § 2.3 by successive elimination of
variables.

Concerning the family &+ of sequential grammars and the family
Sup(#+) of their supports, Ginsburg and Rice establish the following
results, paralleling those mentioned above. First, it is clear that &+, like
S+ is a semi-ring closed by quasi-inversion of quasi-regular elements.
Correspondingly, Sup(&#+)is closed by union, product, and the star
operation. From this fact, and the fact that #+ C &+, it follows that
Sup(Fo+) C Sup(#+). Furthermore, the inclusion is proper, as we can
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see from the grammar (42), which, since it contains a single terminal, is
sequential. In fact, we have

(53) Sup(Zo*) 2 Sup(#+) 2 Sup(F*).

Ginsburg and Rice show that there is no sequential grammar for the
language with the vocabulary {a, b, ¢, d} and containing the string

(54) &g b dd ed P R . b R

(which is symmetrical about c) for each sequence (k, ni, ..., n2x-1) of
positive integers, although this language is generated by the grammar.

(55) o = adfda + anxa 4 aca
B = bfb + bdxdb.

There is no stronger relation than (53) between Sup(&#+) and the families
of Property 1, § 4.1, however. The grammar (55) is in fact linear, though
not sequential, so that Sup(#+) ¢ Sup(&~); and the grammar (42) is
sequential but not meta-linear, so that Sup(&#+) ¢ Sup(Zm™).

Since the grammars (45) and (46) are sequential, we see that Property 2
(but not Theorem 2) can be extended to Sup (F*). For further results on
sequential languages, see Ginsburg and Rose [19], Shamir [51].

5. AN ALTERNATIVE CHARACTERIZATION OF FAMILIES OF CF LANGUAGES

In this section we will present a rather different approach to the
definition of families of languages, and we will show how it interrelates
with the classification presented above. We rely here on the two funda-
mental notions: standard regular event and Dyck language, which we now
define.

A standard regular event A is given by a finite alphabet X, two subsets
J1 and Jz of (X, X), and the rule that fe 4 if and only if

56) @) fexF(X) N F(X)x', where (x, x") € J1
(ii) f ¢ F(X)xx'F(X), where (x, x') € Ja.

Thus A is the set of all strings that begin and end with prescribed letters,
and that contain no pair of consecutive letters belonging to Js. It is, more
technically, the intersection of the quasi-ideal determined by J1 with
the complement of the two-sided ideal generated by all products
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xx' ((x, x') € Jp). A is, in particular, what is sometimes called a *“l1-de-
finite event” [21], [35].

We define the Dyck language D2, on the 2n letters x4¢ (1 < i<n) as
the set of all strings f which can be reduced to the empty string by repeated
cancellation of consecutive pairs of letters x;x—; (—n < j < n). The Dyck
language is a very familiar mathematical object: if ¢ is the homomor-
phism of the free monoid generated by {x+:} onto the free group gener-
ated by the subset {x; : i > 0} that satisfies identically (pz)~! = @z_,
then Dy, is the kernel of ¢, that is, the set of strings f such that ¢f = 1.

Concerning these notions, we have the following results.

PROPOSITION 1.
For any regular event B C F(Z), we can find a standard regular event A
and a homomorphism & : F(X) — F(Z), such that B = «A.

It is worth mentioning that this representation can be chosen in such a
way that not only B = x4, but, furthermore, each string fe 4 has the
same degree of ambiguity as the corresponding string «f € B. That is, if
B = Sup(p), we can find y such that 4 = Sup(y) and for each f, <y, f> =
<B.of>.

We can generalize Proposition 1 to CF languages, making use of the
following property of Da,.

PrOPERTY 1. Dy, is generated by an unambiguous CF grammar.
To obtain an unambiguous grammar of Dz,, we introduce 2n 4 1 non-
terminals o+ (1 < i < n) and B. Consider now the 27 + 1 equations

(57) (1) &g = Xi (1 b 2 zx;)“lx—t
7 —

(ii) B=(1— X)L
(Cf. § 3.2, for notation).

Intuitively, B can be interpreted as the sum of all strings that can be
reduced to the empty string by successive cancellation of two consecutive
letters x;x—4. Each o4 is the sum of all words in Sup(f) that begin by x;
and have no proper left (or right) factor in Sup(8). The equation (57i)
implies that each f € Sup(x:) has one and only one factorization

(58) f= xiflfz oo SmX—4

where each f; belongs to a well-defined set Sup(es) (where j is not —i
because we want the initial letter x; to cancel only with the final letter

X—4).
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Similarly, each f € Sup(f) has one and only one factorization f = fi ...
Jfm, where the f;’s belong to U ; Sup(e).
We now have the following result, analogous to Proposition 1.

PROPOSITION 2.

Any CF language L C F(Z) is given by an integer n, a standard regular
event A on Xop = {x+1: 1<i<n}, a homomorphism ¢ : F(Xzp) —>
F(Z), and the rule L = ¢ (4 N\ Dgy).

[48], [49], [11], [12].

Again, as above, this statement implies that the strings are produced
with the appropriate ambiguity. Furthermore, it is possible to choose
J1 such that (x,x") € J if x belongs to a certain subset of X (cf.[48]).

Special subfamilies of languages such as those considered above can
be defined by imposition of conditions on the underlying standard regular
event 4 and the homomorphism ¢. Thus suppose that we take the
standard regular event 4 on the alphabet XU Y (where X = {x4:
1<i<n}, Y={y«:1<i< m} defined by the following conditions
on J; and Jz:

(59) J1 = {(xs, %) : i >0}

J2 = {(x4, xy) : sign () # sign ()} {(s, y1) : i< O0orj >0}y
{(x6, 7)) : i< 0 or j< O}U{(ys, x5) : i >0 orj > 0}.

Thus every string has the form fgg'f’, where f, f'e F(X); g, 8 € FX); f, g
(respectively, f’, g’) contain only letters with positive (respectively, nega-
tive) indices. If we designate by X+ and X~ the subsets of X consisting of
letters with positive indices and negative indices, respectively (similarly,
Y+ and Y-), we can describe the permitted and excluded transitions by
the matrix (60), where the entry 1 (0) indicates that transition is (is not)
permitted from the element labelling to row to that labelling the column,
and where U is the matrix with all one’s and 0 the matrix with all zeroes.

(60) Y+ Y- X+ X-
Y 0 U 0 0
Y 0 0 0 U
X U 0 U 0
X~ 0 0 0 U

But consider now the set 4 N Dxy (where Dxy is the Dyck language
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on the alphabet X U Y).If fg € A (where fe F(X+ U Y+),ge F(X-U Y-))
meets the additional condition that fg € Dxy, then g must be the mirror-
image of f (up to a change of the sign of indices). That is, in the notation
of the second paragraph of § 4.3, it must be the case that g = f. Clearly,
if « is a homomorphic mapping of F(X'U Y) into F(Vr), then & (AN Dxy)
is a linear language. Furthermore, if we add the further condition that
yi = e for i < 0 and y; = c for each i > 0, where «x; ¢ F(Vr)cF(Vr) for
any i, then L =x(4 N Dxy) is a minimal linear language with ¢ as
designated center symbol, and every minimal linear language is given by
such a choice of «. This gives an independent characterization of minimal
linear languages.

Furthermore, by adding additional pairs to Jz we can delimit the
defined canonical language 4 in such a way that {f: fe F(X+) and for
some g, fg € A and g € F(Y)F(X)} is an arbitrary regular event (instead of
simply the free monoid on X+, as above), so that L = «(4 N Dxy) will
be an arbitrary linear language. Thus we have an independent definition
of the notion “linear language™. (Notice that these further restrictions on
Js affect only the permitted transitions in the matrices along the main
diagonal of (60).

In much the same way, we can give a general definition of “metalinear
language”. Thus, for example, consider the particular metalinear lan-
guage generated by the grammar with the equations

(61) & =&ubs
E1=e+ X{at1b:abeVr}
és=e+ X{akb:abe Vr}.

in this case, the matrix for the underlying standard regular event would be

62) X1t Xim Xot Xoo
i+ U U O 0
Xi- 0 u U 0
Xot 0 0 u U
Xo- 0 0 0 U

Any metalinear language, and only these, will be based on a standard
event with a matrix of essentially this kind (with, perhaps, additional
restrictions along the main diagonal).

Propositions 1 and 2 thus provide for the possibility of very natural
definitions of the full class of CF languages, and various subfamilies of
this class, independently of the approach taken in preceding sections.
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6. UNDECIDABILITY

6.1. In Post [36] it is shown that the following problem, known as the
Correspondence problem, is recursively unsolvable. Where 2 = {(f1,£1),
..., (fn:gn)} is a sequence of pairs of strings, let us say that a sequence
I= (i1, ..., im) of integers (1 < i; < n) satisfies X if

63) Fig o Fi = 8y o+ 81

The correspondence problem is the problem of determining whether,
given X, there is an index sequence that satisfies 2. Notice that either X
is satisfied by no index sequence or else by infinitely many, since if
@1, ..., im) satisfies 2, then so does (i1, ..., imsi1, -..-, im). Post showed
that there is no algorithm for determining, for arbitrary 2, whether there
is no index sequence satisfying X, or whether there are infinitely many,
these being the only alternatives.

We can reformulate the correspondence problem directly in terms of
minimal linear grammars. Given X = {(f1,81), .-+, (fa-gn)}, form G(X)
with the single non-terminal S and the defining equation:

(64) S=a+ fiSg1+ ... + faSgn,

where a is a symbol not in any of the f;’s or gi’s. Clearly there is an index
sequence satisfying X just in case G(X) generates a string faf. Or, to put
it differently, let L, be the “mirror-image” language consisting of all
strings faf, fe€ F(Vr), and let L(G(X)) be the language generated by G.
Then either there is no index sequence satisfying X, in which case
Ln N L(G(X)) is empty; or there are infinitely many index sequences
satisfying 2, in which case Ly N L(G(X)) is infinite. From the unsol-
vability of the correspondence problem and the fact that Ly, is generated
by a linear grammar with one non-terminal, we conclude directly that:

UNDECIDABILITY THEOREM 1.

There is no algorithm for determining, given two CF grammars G1 and G2
generating Ly and Ly respectively, whether L1 N Lg is empty or infinite.
This is true even where G1 and Gg are minimal linear grammars and where
G is a fixed particular grammar of L.

The problems of emptiness or finiteness of intersection are easily seen
to be solvable for one-sided linear grammars, but we see that for the
simplest grammars in our framework that go beyond regular events in
generative capacity, these problems are no longer solvable.
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This observation is generalized in Bar-Hillel, Perles, Shamir [2], where
many problems concerning CF grammars are shown to be recursively
unsolvable. In brief, their method is as follows. Let us limit V7 to the
set {a,0, 1}. Where 2 = {(f1,81), ---, (fn-gn)} is a set of pairs of strings in
the vocabulary {0, 1} (i.e., fi,g: € F{0, 1}), let L(X) be the set of all strings

(65) 10% ... 10af;, ... fi,ay,... §,a0"1 .. 0711,
where 1< i1y eeey ity 1y eees i 1.

More perspicuously, let us use 7 = 01¢ as a code for the number i. Then
a string of L(X)is formed by selecting index sequences I = (i1, ..., ix) and
J=(j1, ..., j1) and forming

(66) Tk ... 10fi; oo [1,080, -+ €101 . 1.
L(2) now plays the same role as the language generated by (64) in the
foregoing proof of Undecidability Theorem 1. It is clearly a CF language
(generated, in fact, by a meta-linear grammar which is an obvious modi-
fication of (64). But from Theorem 3, § 4.3, above, it follows directly that
the complement F(Vr) \ L(Z) of L(Z) with respect to the vocabulary
Vr is a CF language, and that we can construct its grammar given the
grammar of L(2X). (Notice, in fact, that we could have used any code, in
place of the particular choice i = 01¢, for defining L(X)).

In place of the mirror-image language Ly, used in the proof of Undecida-
bility Theorem 1, let us consider the “double-mirror-image’ language
Lgm consisting of all strings

67) X1axgafzaX1, where x; and x are strings in {0, 1}.

It is not hard to show that Lay and its complement with respect to Vr
are both CF languages.
Observe that

68) L(Z)N Lam = {5 v i1afiy ... fi 081 ... g;laz'_i z;}
where (i1, ..., ix) satisfies 2 (that is,
whereﬁ1 oo fiy = 8oy oo i)

Observe also that an infinite set of strings of the form of (68) cannot
constitute a CF language (nor, a fortiori, a regular event).
Suppose now that there is a positive solution to the correspondence
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problem for X; that is, there is an index sequence satisfying 2. Then, as
we have observed, there are infinitely many such sequences. Consequently
L(Z) N Lan is infinite. It is therefore neither a regular event nor a CF
language.

Suppose, on the other hand, that there is no index sequence satisfying
2. Then L(X) N Lam is empty, and is therefore both a regular event and
a context-free language. But (X)) and Lan are CF languages; and, with
2 fixed, we can construct their CF grammars G(X)and Gan (Which are,
in fact, meta-linear). Thus if there were an algorithm for determining
whether the intersection of the languages generated by two CF grammars
G, and G is empty, finite, a regular event, or a CF language, this algo-
rithm would also provide a solution to the general correspondence
problem. We conclude, then:

UNDECIDABILITY THEOREM 2.

There is no algorithm for determining, given CF grammars G1 and Ga,
whether the intersection of the languages that they generate is empty,
finite, a regular event, or a CF language — in particular, this remains true
when both are meta-linear and Gs is a fixed grammar of Lan.

Let Edm be the CF grammar that generates the complement Laim (all
complements now are with respect to ¥Vz) of Lam. And, given X, let
G(Z) be the CF grammar that generates the complement L(Z) of L(X),
as guaranteed by Theorem 3, § 4.3. Consider now the grammar G gener-
ting the language L(G) =I;,,u L(X). Clearly G is CF and can be
constructed from Gan and 5(2-). But the complement L—(G—) of L(G) is
just the set Lgm U L(X) = Lam N L(X), and we know by Undecidability
Theorem 2 that there is no algorithm for determining, given X, whether
this set is empty, finite, a regular event, or a CF language. But given X,
G is determined as a CF grammar. Therefore we have:

UNDECIDABILITY THEOREM 3.

There is no algorithm for determining, given the CF grammar G, whether
the complement of the language generated by G is empty, finite, a regular
event, or a CF language.

There is, in particular, no general procedure for determining whether
the CF grammar G generates the universal language F(Vr), or whether G
generates a regular event (since the complement of a regular event is a
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regular event). Consequently, there is no algorithm for determining, given
CF languages Ly and Lg, whether there is a transducer mapping L onto
Lo since all and only regular languages can be obtained by transduction
from the CF language F(Vr) (Ginsburg and Rose, personal communi-
cation). There is, furthermore, no general method for determining
whether two CF grammars are equivalent, i.e., generate the same lan-
guage, since if there were such a method, it could be used to determine
whether a CF grammar G is equivalent to the grammar Gy generating
F(Vr). 1t also follows immediately that there is no algorithm for deter-
mining, given CF grammars, whether the language generated by one
includes the language generated by the other, since this would give a
solution for the equivalence problem.

These results have been outlined for languages constructed from a
three-element vocabulary V¥, but it is clear that by appropriate recoding,
they still apply to languages in a vocabulary of two or more letters. This
is worked out in detail in Bar-Hillel, Perles, Shamir [2].

6.2. We observed in § 4 that finite processes involving pairs of strings
receive a natural formulation in terms of linear grammars. In particular,
as we have just seen, the correspondence problem can be described
directly as a problem concerning minimal linear grammars. The same is
true of a second combinatorial problem, also due to Post, called the
“Tag problem”.

We can state a generalized form of the Tag problem in the following
way. Let W be the set of strings (the free monoid) in some finite voca-
bulary, and let P be a finite subset of non-null strings of # meeting the
condition that no string of W has more than one left factor in P. That is,
there are no pi, p2, wi, w2, ws (ps € P, wg€ W)such that p1 # ps and
w1 = pi1ws = paws. Let V be the set of strings of W that have no left
factor in P — that is, ve V if and only if there is no p € P such that
v = pw, for w e W. Clearly V is a recursive, in fact regular, set. Let « be
a mapping of P into W (thus & defines a set of pairs of strings (p, w),
where w = «p, p € P, w € W). Define a mapping T on W, where

(69) Tf = f'op, if f = pf’
Tf= H,if fe V (H ¢ W).

Consider the problem:

(70) given a string f; is there an integer n such that T7#f = H?
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Regarding T as defining the computation of a Turing machine, (70) is
the halting problem for this Turing machine. It has been shown by Minsky
[30 that (70) is a recursively unsolvable problem.

The Tag problem as formulated by Post is the special case of (70),
above, where T meets the following additional conditions: P is the set
of all strings of length k, for some fixed kK > 2; «p depends only on the
left-most symbol of p. Even with this restriction, the problem (70) is
unsolvable, as Minsky has shown. This is a somewhat surprising result,
because of the determinacy (monogenicity) of the generative procedure 7.

As a step towards reformulating the generalized Tag problem in terms
of minimal linear grammars, we observe that it can be stated in the
following way. Given W, P, V, «, T, as above, the question (70) has a
positive answer just in case

(71) there are strings p1, ..., ps € P and v € V such that:
Pl... DnV = fOp1...0pg.

But we can now restate the generalized Tag problem as the following
problem concerning linear grammars. Given W, P, V, «, T, let us define
the grammar G generating L(G) with the single equation

(72) S = Xivc + zi(p¢S07pt)

where vie V, pse P, and c ¢ W is the distinguished central marker. Let
us define the language M(f) = {fgcg : g € W} (thus M(f) = fLu, where
L, is the “mirror-image language™ defined above). Then the answer to
(71) (equivalently, (70)) is positive if and only if the intersection of L(G)
with M(f) is non-empty. Thus we see that there is no algorithm for deter-
mining whether, for fixed f, the language M(f) has a non-empty inter-
section with a language with a grammar meeting (72) (even for the special
case in which P is the set of all strings of length k, for fixed k£ > 2, and
ap depends only on the left-most letter of P).

Notice that Undecidability Theorem 1, above, also follows directly
from unsolvability of the Tag problem. In fact, the Correspondence and
Tag problems both concern the cardinality of the intersection of a
minimal linear language L with the languages M(f), where f = eand L
is arbitrary, for the case of the Correspondence problem, while f is
arbitrary and L meets the condition (72), above, for the case of the Tag
problem.
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7. AMBIGUITY

7.1. We have defined the power series r to be characteristic just in case
each coefficient <r,f> is either zero or one. We say that a CF grammar
is unambiguous if the principal term of its solution is a characteristic
power series. In this case, each sentence that it generates is provided with
a single structural description, and ‘‘debracketization” introduces no
ambiguities. Let us call a CF language inherently ambiguous if each of its
CF grammars is ambiguous.

It is well-known that no regular event is inherently ambiguous —that is,
each regular event is the support of a characteristic power series which is
the principal term of the solution of a one-sided linear grammar [14],
[37]. However, this remark does not carry over to the full class of CF
grammars. It has been shown by Parikh [34] that there are CF languages
that are inherently ambiguous.

An example of an inherently ambiguous language is the set

(73) {abmcp : n = m or m = p}.

In this case, the strings of the form a”b”c¢* must have ambiguity at least
two in any CF grammar generating (73) (and there is a CF grammar
generating (73) in which they have ambiguity exactly two).

We do not have examples illustrating the extent of inherent ambiguity
in CF languages, or special types of CF languages.

Notice that it is an immediate consequence of Undecidability Theorem 1
of § 6 that there can be no algorithm for determining whether a CF
grammar, or even a linear grammar, is ambiguous. Suppose in fact that,
as above, 2= {(f1, £1), ..., (fa, gn)} is a sequence of pairs of strings.
Select n + 1 new symbols xy, ..., x» and construct the grammars Gy with
the rules Sy — xo, Sy = x:Syfi (1< i < n) and G4 with the rules Sy — xo,
Sg > xiSy8i (1 < i< n). Clearly Gy and G, are unambiguous, and the
Correspondence problem for 2 has a positive solution if and only if
there is a string generated by both Gy and Gy, that is, if and only if the
grammar Gy, is ambiguous, where Gy, contains the rules of Gy, the rules
of Gy, and the rules S — Sy, S — S, where S is the initial symbol of Gyy.
Consequently, there can be no procedure for determining, for arbitrary
2., whether the grammar Gy, associated with X in this way is unambi-
guous.

The grammar Gy, is linear with three non-terminals and a designated
central marker, and we see that for this class of grammars the ambiguity
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problem is unsolvable. Presumably, this remark can be generalized to
grammars with two non-terminals. It is an interesting open question,
however, whether the ambiguity problem remains unsolvable for minimal
linear grammars.

Summarizing the matter of ambiguity, as it stands at present, we have
the following results:

AMBIGUITY THEOREM 1. There are inherently ambiguous CF languages.

AMBIGUITY THEOREM 2.
There is no algorithm for determining whether a CF grammar (which may
even be linear with a designated central marker) is ambiguous.

8. FINITE TRANSDUCTION

We want to describe a particularly simple family of transformations
from language to language. The first and most essential one is a homomor-
phism.

Let L be any language on a terminal vocabulary Z and assume that
for each z € Z we are given a language L, on a second vocabulary X.
We denote by 6L the set of all strings (in X)) which can be obtained by
taking a word g = z,zi, ... zi,, € L, and replacing each z; : by an arbitrary
word from inj. The name “homomorphism” is self-explanatory. In fact,

if we consider the rings 4(Z) and A(X) of formal power series in the
variables z € Z and x € X, and if we denote by 0 the homomorphism of
A(Z) into A(X) that is induced by the mapping 6, = the formal power
series associated with L, then 6L is the support of the image by 6 of the
formal power series associated with L.

An interpretation within our previous framework can be given if L
and the L,’s are CF languages. In this case, suppose that L is produced
by the CF grammar G (with non-terminal vocabulary Y) and that each
L, is produced by the CF grammar G, (with the set of non-terminals Y,
and the initial letter y.,0). We assume that the sets Y are disjoint and
we consider a CF grammar G with non-terminals Y U Zu U Y. con-

ZE&
sisting of the rules of G and of the G.’s and the rules z = yz,0 (z € Z).
(More simply we identify each z with y.,0). It is clear that G produces
exactly OL.
We now generalize this construction to the following type of context
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dependency: Let R; (i € I) and Ry (i’ € I') be two finite families of regular
events such that every g € F(Z) belongs to one and only one member of
each family. Suppose also that for each triple (z € Z, i € I, i’ € I'), we have
a language L., in the vocabulary X.

Then for any y = z, 2, ... z;, We replace each z;, by an arbitrary string
from the language L(z;,, i, i") where i and i’ are determined by the con-
dition that the string z;, zj, ... z5,_, is in R¢ and the string zj, ;... zj, ;
in Ry'. It is easily proven that without loss of generality it may be assumed
that for any string g belonging to some set Ry, and for z € Z, the set Ry,
which contains gz depends only upon the index i; and the letter z. In
other words we may assume that we are given a set of states 7, a transition
mapping / X Z —> I and an initial state i € I such that z;,zj, ... z;, _; € R
if and only if 7 is the state reached from io after reading z, zj, ... zj,_;.

A similar construction applies to R;, and for the sake of clarity we
write the corresponding mapping as a Jeft multiplication. Given the two
mappings / X Z — Iand Z x I', we denote by og, for each g = z;, zj,,...
2, € F(X), the sequence of triples

74) (i1, Zjys i'm) (i2, Zjgs i'm-1) ... (ik,z;;k, i'm-k+1) ... (im,ij, i'1)

where inductively

(75) ix= ilzjl, iz = iszZ, R im-lzjm, ix = i]c—1ij_1 and
i'g = iji'l, i's = ij_li'z, cesim = iji'm—lo

With these notations the transformation we have been describing can be
considered as consisting of two steps:

(76) (i) replacement of every g € L by the string og = (i1,2j;,im) ---
(im, z;m,i') in an alphabet U consisting of triples (i,z,i");

(i) replacement in og of every triple (ik,zj,,i'm-%+1) by an arbi-
trary string from the language L(z;k, iy i'm—k+1)-

Since step 2 is only a homomorphism, it is sufficient to discuss step 1.
For this let U denote the set of all triples (i, z, i") and consider the language
L’ obtained from L by adding to its grammar all the rules z; = (i, zj, i)
with i € I, i’ € I’ arbitrary).

Clearly a string of L’ belongs to the set {og : g € L} if and only if it
satisfies the condition (75) above, or, in other words, if it belongs to the
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regular event R determined by the condition (75) on the set F(U) of all
strings in the alphabet U.

Hence step 1 consists only of a homomorphism from L in to the set of
all strings on U (which gives L") followed by the intersection of L’ with a
regular event.

Let us now give a final interpretation of what we have done: For each
z ¢ Z, let uz denote a matrix whose rows and columns are indexed by
pairs (i ¢ I, i’ ¢ I') and whose entries are as follows

(T7)  pzg, vy o = the triple (i, z,i'"’) if i" = iz and i’ = zi"”
= 0 otherwise.

Then if we compute

Bzj,pzj, - B2, = U8, it is easily verified that the entry (7,i'm)(im,i"1) of
ug is precisely og. From this it follows easily that {og : g¢ L} = L' n R
is also a context-free language. Indeed, 4 is a homomorphism — we
replace every non-terminal y by a matrix 4y whose entries are new non-
terminals and we verify that 4 commutes with the substitutions used for
defining the language as the solution of a system of equations. On the
other hand identifying the entries one by one in the image x4 of our
equations gives a new set of equations of the usual type that exactly
defines L' N R [46]. More simply still we can define u’ as above except
that for each non-zero entry we take the formal power series associated
with L(z;, i, i), instead of the triple (i1, 27, i’). Then the two steps of the
construction are telescoped in a single one and the power series associated
with the language (on X) obtained by our transformation is simply an
entry of

(78) Z{u'g:gel}.
This is the basis for the proof of Theorem 2, § 4, above.

9. CONNECTIONS WITH THE THEORY OF AUTOMATA

We have so far been studying generative processes, the languages and
systems of structural descriptions that they define, and finitary mappings
on these languages from a completely abstract point of view. To relate
these remarks to the theory of automata, it is convenient to introduce a
temporal asymmetry into consideration.

An automaton M can be regarded as a device consisting of a set of
states X (the memory of M) that accepts (equivalently, produces) a
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sequence of symbols from a vocabulary (alphabet) ¥ in accordance with
fixed, finitely statable instructions (which can be given by associating
with each v € ¥ a mapping ¢, of 2 into itself (or into the set of subsets
of 2, in the case of a “non-deterministic’’ automaton). If we designate
an initial state and a set of final states, we define a language M(L) con-
sisting of the strings that can be accepted by M as it proceeds in accord-
ance with its instructions from the initial state to a final state, proceeding
from S e Xto S’ € X on accepting v just in case py(S) = S’ (or S’ € pu(S),
in the non-deterministic case). The size of memory of M, or its rate of
growth in the course of computation, provides a certain index of the
richness of the language L(M) in terms of which we can compare various
families of languages of the kinds we have considered.

Given a set of strings L, let us write f~ f’ justin case for all g, fg € L if
and only if f'g € L. Clearly ~. is an equivalence. Furthermore, it is clear
that we can take the equivalence classes defined by ~. as states of an
automaton M(L) that accepts L, since all of the information about f
relevant to the further computation of M(L), once it has read f, is
given by the equivalence class to which f belongs. Notice that L is the
union of certain of these equivalence classes, and that £~ f’ implies
that fg~ f'g, for all g.

Secondly, given L let us write f= f" if and only if forallg, gf~ gf’.
Clearly f = f' if and only if for all g,g’, gfg’ if and only if gf’g’. Thus = is
symmetrical, and it is easy to show that fi = fz and fs= f;. Thus=isa
congruence relation, and the =-classes in the set F(¥) can be multiplied
together giving a quotient monoid of F(¥). This quotient monoid
F'(V) = @F(V) is such that L = ¢-1¢L — and is canonically associated
with Lo [41]. '

This observation relates the present theory to the theory of monoids.
The interest of this is that in certain cases, the ~.-classes (and the quotient
monoid) have a simple interpretation that can be translated into the
language of automata, and, conversely, that certain algebraic notions
(in particular, that of extension), receive a simple interpretation.

Returning now to the problem of characterizing families of languages
in terms of automata, it is well-known that the sub-family Sup(%*) of
CF languages is uniquely characterized by the fact that for each language
L e Sup(Zo*), there is an automaton M(L) with bounded memory that
accepts L.

Consider now the family Sup(%%), that is, the set of supports of power
series that are the solutions to systems of “one-sided linear” equations
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with positive or negative integral coefficients. As we have observed,
L e Sup(%) if and only if L = Sup(r1 — rs), where r1, r2 ¢ (Lo?). It can
now be shown that the following statements are equivalent:

(719) & L eSup(Z);

(ii) there is a one-one correspondence between the . -classes for L
and a finite dimensional space of integral vectors v(f) such that
for each x € V, v(fx) = v(f)ux, where ux is a matrix;

(iii) F/= is isomorphic to a monoid of finite dimensional integral
matrices (i.e., the matrices g of ii);

(iv) L is accepted by an automaton M(L) with a finite dimensional
space of vectors with integral coordinates as memory and tran-
sitions as above in ii.

(Schiitzenberger, [44]— let the class &7 of automata be those defined by
(79iv)).
Consider now the following two restrictions on the class .7 of automata.

(80) (i) there is an N such that, for all fe F(V), |(v(f)|] < N;
(i) for allf, f', f"" € F(V) and £ > 0,
lim e~e® [[v(f'frf")]| = 0
n—» O

where ||v|] is the length of the vector v, in the usual sense.

Clearly (80i) implies (80ii). Furthermore, it is clear that L is a regular
event (that is, L € Sup(%+)) just in case (80i) is met by an automaton of
class &7 that accepts L. An automaton of class & that meets condition
(80ii) is called a finite counting automaton in Schiitzenberger [47], where
such devices are studied. It can be proved that in a loose way (80ii)
means that the amount of information (in bits) stored in the memory
does not grow faster than a linear function of the logarithm of the length
of one input word.

It is interesting to observe that (just as in the case of the full class of
CF grammars), there is no algorithm for determining, given M € &,
whether there is an f not accepted by M [28]. Furthermore, the same
problem for finite counting automata is easily shown to be unsolvable, if
Hilbert’s tenth problem (the problem of the existence of an integral
solution for an arbitrary diophantine equation) is unsolvable [47].

Consider now an automaton M with a structure of the following kind:
the states of M (the ~.-classes in the input language of M) are
identified with strings in a certain new (“internal”) alphabet, and for
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each v e V, the “computing instruction™ ¢, mapping [~-class of f] -
[~ -class of fv] consists of addition or deletion of letters at the right-hand
end of the internal string associated with [~-class of f]. Such an auto-
maton we can call (in accordance with usual terminology) a pushdown
storage (PDS) automaton. PDS automata constitute a restricted subclass
of the class of linear bounded automata studied by Myhill [319], Ritchie
[39].

Where M is a PDS automaton, the language L that it accepts is a CF
language, and each CF language can be obtained by a homomorphism
from a language accepted by a PDS automaton [48], [49]. In particular,
where D is a Dyck language and 4 a standard regular event (cf. § 5),
D n A is accepted by a PDS automaton.

A non-deterministic PDS automaton is an automaton of the type de-
scribed above, except for the fact that ¢, maps a state into a set of states.
We can now prove directly that CF languages (languages of the class
Sup(#+)) are exactly those that are accepted by non-deterministic PDS
automata [11], [12].
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