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A Remark on Incompletely Specified Automata

M. P. SCHUTZENBERGER

Institut Blaise Pascal, Paris, France

A remark is proved concerning certain groups associated with any
finite automaton which satisfies a givenincompletely specified auto-m
aton.

INTRODUCTION

Let X (resp. Y*) denote the free monoid generated by a fixed input
aiphabet X (resp. output alphabet Y) and let § be an extra symbol not
contained in Y. An incompletely specified automaton can be characterized
formally by a map 8:X* — Y U {7} where for each input word f € Xx,
Bf = y if the output at the end of fisy € Y, and Bf = § if the output
at the end of f is not specified. A map 8’ : X% — Y U {5} will be said to
satisfy B iff Bf = B'f for every f € Xx such that gf = j. The study of
the automata such that their associated map satisfies a given 8 seems to
be a standard topic in automata theory. The Property below is a side
remark having its motivation in the point of view taken in (McNaugh-
ton, 1960) and in the theory developed in (Krohn and Rhodes, 1963).
Further results along the present line have been obtained by L. Verbeek
(to appear).

Let 8 be a fixed map of X* into ¥ U {3} and, following (Teissier,
1951), let the quotient monoid Mg of X* and the homomorphism
v¥:X* — M, be defined by the following two conditions:

(i) For any f, ' € Xx, if Bf # Bf then vf = ~f .

(ii) If ¥ is another homomorphism of Xx that fulfils condition i,
then Mp is a homomorphic image of 7X x.

If 8’ is another map of X into ¥ U {7}, we let the quotient monoid
Mg and the homomorphism v': X% — Mp: be defined in similar manner.

PROPERTY. Assume that 8 satisfies 8 and that any submonoid of Mg
admits minimal quasi-ideals. To each subgroup G of Mg (Miller and
Clifford, 1956) there correspond a subgroup G’ of Mg and a normal sub-
group H of G that satisfy the following two conditions: G/H s a homo-

373



374 SCHUTZENBERGER

morphic image of G'; for all f, f', f1, fo € X, the relations ~f, v € H
and Bfiffe € Y imply that Bfif'fo = § or = Bfiffe.

The last condition above has been studied in (Elgot and Rutledge,
1962). Following these authors, we shall say that it expresses the state-
ment that H is “G-compatible.”

VERIFICATION OF THE PROPERTY

We keep the notation and hypothesis already introduced and we let
p denote the map vy of B(M;) into PB(Mpg ) which sends each A C M,
onto pA = {yf:f € X*;yf € A} C Mg . Thus, for any 4, B < M we
have

pA-pB = (Y1}, /' € Xx;of € A;9f € B (1)
C{vf:f € X+;4f € AB} = p(AB).

If G is a subgroup of Mz, we have GG = G and (1) gives pG-pG C
p(GG@) = pG showing that the union of pG with the neutral element of
Mg is a submonoid of Mg . By hypothesis this submonoid contains at
least one subgroup @' which is a minimal quasi-ideal, i.e. which satisfies

@ = (G'pQ) N (pG-G) = @ -pG-Q. (2)

@ is the desired group and, letting 54 = @ N p4 for any A C G, we
show first that p{g} # @ for any ¢ € G. Indeed, there is at least one
element of G, say g: , such that p{gi} contains at least one element of &,
say gi. Let g be the inverse of g; in G. We have g1g.gg2g1 = ¢. Using (1),
this shows that p{g} contains the set A" = g, -p{geggs} -gs’, Which, be-
cause of g € G’ and (2), is a subset of G'. Since p{g.ggs} # @ this proves
plg} #= O and the equivalent statement G C vy 'G'(= {vf:f € Xx;
¥f € GY). \

Let H = vy g/} N G and H = p{go} where g0 = g0 € G and
g = go € G. It is well-known that H is a normal subgroup of G, H "a
normal subgroup of @ and that the quotient groups G/H and G'/H' are
isomorphic. We recall the proof for the sake of completeness. Indeed,
from ¢o = ¢, @' -G’ = @ and (1) we deduce that H'-H < H'. Since
the union of @' with the neutral element of M admits minimal quasi-
ideals, this shows that H’ is a subgroup of @, hence that g’ € H'. Take
an arbitrary element g; € G. From gigo = gog1 = g1 and (1) we deduce
that both p{gs} - H' and H'-p{gy} are contained in p{gy} and, since g’ € H'
implies that each of these sets contains {g:}, we can conclude that s{gi} =
oo} -H' = H'-p{g:}. Now, if ¢, is the inverse of g; in G, applying (1) to
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g1i92 = ¢o shows that olgi} -plgs} is contained in H'. It follows that if
h R € plgi) and h” € pl{ge}, we have wh", W'h" € H' showing that p{g;}
is conta,med in a single rlght coset of H'. Usmv symmetry and pi{g) -H =
H'-plgs}, it follows that H’ is a normal subgroup of G'. Further, for any
two elements g1 , gs € @, relation (1) gives pi{gi} -plgs} < plgigs} showing
that the restriction of 5 to the one-element subsets of G can be considered
as a homomorphism of G onto G'/H' and our partial result is proved
since, by definition, H = yy'7i{g,} N @ is the kernel of this homomor-
phism.

To conclude the verification it only remains to show that H is 8-com-
patible. However, H is a subset of vy’ {go’} and we have only to check
that for any £, f, fi, f» € X the relations~f, vf € vy '{go} and gfiff> €
Y imply 8fif f2 € {8fiffs} U {4}. The first relation gives v'f = 4'f, hence
8'fiffs = B'fif f according to the definition of Mg and ~'. Thus 6/ff, =
8'f:f'f. € Y since Bfyff. € Y and since we have postulated that 8’ satisfies
B. For the same reason we must have gfif » = {81/} U {} and the
verification of our property is completed.

EXAMPLES

1. The property is vacuous if it imposes no restriction upon the sub-
groups of the monoid Mg . Assuming that M, is finite we show that a
necessary condition for this is the existence of a natural number p such
that for all f, /', f* € X« the set {8ff ™" :n = p} contains at most one
letter from Y. Indeed, since My is assumed to be finite, there corresponds
to each m € Mj a natural number p.,, such that {m":n = p,} is a cyclic
subgroup of My . Taking p = max {p,:m € Mg}, it follows that for each
J € X« theset {yf":n = p} is a cyclic group and in order that the prop-
erty be vacuous each of these groups must be g-compatible, which is
precisely the condition given above.

2. Let x; and 2 (resp. y1 and y.) be two distinet elements of X (resp.
of Y) and let n be a fixed integer at least equal to 5. Further, let 8 'y,
be the submonoid of X generated by the set -

-1 —2 - ) —1 .
0", 2l vy, 27w, warr ) U {2t 0 <4 < — 2}

and 8y, = (B7'y1) 2. Computing the syntactic monoid Mz shows
that it contains a subgroup G isomorphic to the symmetric group on n
objects and that the subgroup of G corresponding to the alternatmg
subgroup is not B-compatible. Thus, by our property, any 8 with Mg
finite which satisfies 8 must contain a subgroup G’ which is isomorphie
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with G (since for n = 5 the symmetric group admits no proper non-
trivial normal subgroup except the alternating group). This implies,
for instance, that noneof the sets 8 'y (¢ = 1, 2) canbe described within
the “L.-language” of (McNaughton, 1960) since, as it is known, this
last requirement would imply that all the subgroups of Mg- are abelian
(for a formulation in the so called ‘‘algebraic terminology’ of the rele-
vant part of McNaughton’s theory see (Petrone et Schiitzenberger,
1963)).
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