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1. INTRODUCTION

Various problems in algebra lead to the study of the ways in which
the words of a free monoid A* (generated by the alphabet A) can be
factorized as products of the words from a given subset X of A*. It
suffices to make reference to the works of A1.A. Markov [1], Y.I.
Khmelevski [2], S.I. Adjan [3], to the recent thesis of J.C.
Spehner [4], and, especially, to the book of A. Lentin on the
equations in free monoids [5]. One technique to approach this question
uses the syntactic monoid S = Synt (X*) of the submonoid X* gener-
ated by X. According to S. Eilenberg’s theory [6], S is the least
quotient of A* such that the natural morphism ¢ of A* on S re-
cognises X* (in the sense that X* = X*o0~1). In equivalent fashion,
let the X*-context of a word w be the set of all pairs of words (v, v')
such that vwy' isin X*; then S is the quotient of A* by the con
gruence which is defined by the equality of contextes [7]. Here we shall
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be mainly concerned with the case of a finite X. Its interest, apart from
the applications, is demonstrated by the researchesof J.F. Perrot [8],
[9] and Perrin [10] who have shown that this hypothesis implies se-
vere conditions on S.

It is well known that the finiteness of S = Synt (X*) for finite X
is a trivial special case of Kleene’s theorem (cf. [6], Chap. VII). It entails
a bound on S as a function of the sum L of the lengths of the words
in X. To see it directly, recall the standard notation A% for the free
semigroup A*\ 1 generated by the same alphabet A as A* and assume
without loss of generality that X is the minimum generating set of X*,
i.e., that X isequalto X*\X* - Xt (where, of course, X+ = X*\ 1).
As usual, the prefixes (resp. suffixes) of X are the proper left (resp. right)
factors of its words. By definition, their set is

P=XAY) "l ={g€A*: adt n X # ¢}
and
Q=UN)"1X={a€A*: Atan X+ ¢}.

Their number is at most L and it is clear that any two words have
the same context when their contextes have the same restriction to P X Q.
Accordingly, the number of classes of the syntactic congruence is not more

than 2L2.

Before examining some examples we recall that in any semigroup M
the conjugacy relation is the least equivalence on M such that mm’' and
m'm belong to the same class for any two elements m and m' of M.
It follows that two groups in M generate the same ideal iff their idem-
potents are conjugate. Classical theorems by Clifford and Miller [11]
show that two such maximal groups are isomorphic. One says then that
thay are conjugate. Also, an element m is primitive iff the submonoid
m* contains every element m’ such that m is included in m'*. When
M is a group, the conjugacy relation is the usual one (since m' = g~ 1mg
is equivalent with m'= (g~ !)(mg) and m= (mg)(g~!)) and m is
primitive iff it generates a maximal cyclic subgroup.

These notions are of special significance also when M is a free
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monoid because, (as it is well known) every word w# 1 is in a unique
manner a power w = h’" of a primitive word 4 (often noted Yw) and
its conjugacy class consists of the |4| words (h'h")" where |h]| isthe
length of # and h' and A" satisfy A= h"h'. Thus, here, primitive
elements correspond to maximal commutative subsemigroups because, in
a free monoid, two words commute iff they are both powers of the same
word (cf. [5]).

We let X have k elements and we say for short that a parameter
of S= Synt (X*) is absolutely finite if it can be bounded as a function
of k only. Suppose first k=1 and X = (h?} where h is a primitive
word of length |4| and p a positive integer. Then S contains | 4] con-
jugate cyclic groups of order p. Therefore neither the number of elements
or groups in S nor the order of these groups is absolutely finite. The same
is true for the number of principal ideals in S as it is shown by the ex-
ample of X = {hf a} with AP as above and a# h any letter in A,
where S has certainly more than |4]| such ideals. More generally, if
X=n?t nf,...,hf} where p>2 and where the h’s are non con-
jugate words, S contains k classes of conjugate cyclic groups of order p,
and the number of its principal quasi ideals (12) not meeting the images of
these cyclic groups grows linearly as a function of p for each fixed k> 2.

Our main result, to be proved in Section 4, is that nonetheless some
of the parameters of S are absolutely finite. It can be summarized by the
following assertions:

(1) The number of conjugate classes of groupsin S, i.e. the number
of principal idempotent ideals, is absolutely finite.

(2) Apart from at most k conjugate classes of special cyclic groups
of arbitrary orders, any group in S is (isomorphic to) a subgroup of the
symmetric group of order (2k)!.

(3) The inverse images of A* of the special groups are themselves
cyclic subsemigroups of A*.

(4) Each bi-ideal uSv where u and v are non special idempotents
is absolutely finite.
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The proof is an application of the theory developed by Fine and
Wilf in [13]. The corollaries required for the present study are established
in Section 2. To make the connection with syntactic monoids we introduce
in Section 3 a somewhat larger monoid M, the monoid of interpretations
of X*.

The bound (2k)! in (2) seems quite extravagant since the largest
value known is (k — 1)! corresponding to X made up of the words:

a*=1;a*=2ba;a*—3b;a*~*-7ba®?*  (0<j<k-—4)

for any k> 4. One computes that the syntactic images of the words
ba¥~! and ba¥~? (for instance) are a cyclic permutation and a trans-
position generating a symmetric group of the desired order, respectively
(cf. [10]).

This result (or more accurately, the bound k!) would be achieved
if one was able to obtain the “first periodicity lemma” of the Fine — Wilf
theory under a weaker hypothesis of “twice covering”.*

To end this introduction let us briefly indicate how similar observa-
tions can be applied to a special family of equidivisible monoids in the
sense of McKnight and Storey [14]. Let F' be the family of all the
functions f from the reals into themselves whose domain is a finite semi-
open initial interval which is noted ]0,|fl] for each function f. The
product of f with another function g is obtained by concatenating g
with a translate of g. Explicitely, it is the function 4 of domain ]0, | 1]
where |h|= |fl+ |g| and the value of % at any point r of its domain
is defined as follows:

" _{ﬂr) if r<ifl;
fUfD + glr — 1f)  otherwise.
Thus, # is continuous when f and g are so. It has been demonstrated

by Fine and Wilf (in a slightly different language) that their theory holds

for submonoids of F' containing all ’smooth” enough functions. In this

*Note (added in proof): This property has been proved since by Y. Césari (C.R. Acad. Sci.
Paris, t. 286, 1175-1177) and further important results have been obtained by J-P. Duval (Theoretical
Computer Science, to appear).
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case, a maximal commutative subsemigroup of F' consists of all func-
tions which are the restrictions to finite initial intervals of a given (ordi-
nary) linear function.

The two “periodicity lemmas” require more stringent restrictions and
one is led to consider the submonoid F of F' that is generated by all
monotonic (increasing or decreasing) functions. In fact F' is almost a free
monoid and there is no difficulty in defining the monoid of interpreta-
tions (and the syntactic monoid) of an arbitrary submonoid X™* of F.
Assuming now that X* is finitely generated, one can apply the same
proof techniques with the obvious modifications imposed by the nature
of the maximal commutative subsemigroups, and one verifies that the asser-
tions (1)-(4) above remain true in this more general set-up. This explains
our introduction of the notion of “absolute finiteness” since in this case
the number of principal ideals (for instance) of the syntactic monoid of
X* is in general not even enumerable.

2. THE THEORY OF FINE AND WILF

In all this section we consider a fixed word w in A" of positive
length m = |w]|. In order to deal with the various occurrences of the
same word as a factor of w and with their mutual relationships, we shall
view w as a sequence of letters and, more accurately, as a map into the
alphabet A of a basic sequence C of m consecutive indices. For con-
venience we shall always take for C the basic chain (i.e. totally ordered
set) C=(,2,...,m). If I=(,i+1,...,i+ k) is a subinterval of
positive length k+ 1 of C, welet Iw betheword (Dw - (i+ Dw- ...
...+ ({+ k)w obtained wher restricting w to I. The pair (/,w) isa
segment of w; I is its support and Iw is a facter of w. Of course,
Cw=w and, in the opposite direction, Iw is the neutral element of the
monoid A* iff I is the empty interval.

Suppose that, for instance w is the word baabaababaab of length
12 where a and b are two letters. The word f = baaba occurs twice
as a factor of w in the segments (I',f) and (I",f) with I'=(1,5)
and " = (4, 8); in the same manner the word aba occurs three times,
the corresponding supports being respectively (3, 5),(6,8) and (8, 10).
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The reader will notice that the intervals I' and I" overlap and that their
union I= (1,8) is the support of the word Iw = baabaaba which ex-
hibits an obvious periodicity. The theorem of Fine and Wilf gives a com-
plete (and optimal) analysis of this phenomenon.

The theory is based upon the notions of translation and of periodicity.
We say that a subinterval I of C admits the translation p iff p isa
positive integer strictly less than the length |/l of [/ and if one has
iw= (i + p)w for the indices i in I such that i+ p isalsoin I

This condition is equivalent with I'w= I"w where I' (resp. I")
is the initial (resp. final) interval of length |/|—p of I. Therefore it is
equivalent to the existence of words f,g,g’ such that Iw=fg=g'f
where g and g’ both have length p.

Returning to the same example as above, we see that 7= (1, 8) ad-
mits the translation 3 and that the word f= I'w = I"w satisfies the equa-
tion fg=g'f with g=(6,8)w=aba and g'= (1,3)w = baa; it also
admits the translation 6. In similar fashion the interval (8, 12) which is
the support of the word abaab admits exactly one translation, viz. 3,
and the interval (7, 11) admits no translation whatsoever.

It is clear that when [ admits the translation p it also admits any
translation kp < |I| for k a positive integer. We shall call step of I the
least translation which it admits and denote it by || /|| (with the conven-
tion that the step is infinite when I admits no translation). Algebraic
reasons lead to reserve the term period” to the ratio |7|:||Z|| when it
is an integer.

All these notions would easily carry over to the case of the monoids
of functions presented at the end of the introduction. Then the basic struc-
ture would be a fixed real valued function w of a fixed interval C=
=10, |wl], the only difference being that the indices would vary continu-
ously in C instead of being the successive integers 1,2,...,m and that
the translations could be any positive real. We refer once more to (13) for
this deeper case which will not be touched here.

Since the word w and the basic interval C are fixed it is understood
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in what follows that any interval mentioned is a subinterval of C. We
begin by a remark.

2.1. Let K be an interval of length n admitting the translations
p and q where q<p < n. Its initial (or final) interval of length n — q
admits the translation p — q.

Proof. Let K= (k,k') where k'=k+n—1. If i belongsto the
mitidl mterval K oi'lengtn n —p O1 A, onenas 1+ peRA. “TIUs Iw =
= (i+ p)w since K admits the translation p. Because of p > g, one
has i+p—-q>i, hence i+p—q€K and (+p—q@w=(>(+p)w
since K admits the translation q. Therefore (i +p — q)w is equal to
iw for each i in K' which shows that the initial interval of length
n—q=|K'|+p-—q admits the translation p —g The same argument
applies to the final interval of K. Q.E.D.

2.2. Theorem (Fine and Wilf). Let I and J be two intervals ad-
mitting the translations p and q, respectively, and having an intersec-
tion K of length at least p + q —r where r is the greatest common
divisor of p and q. Their union L admits the translation r.

Proof. We may assume p=>gq, hence |K|>p with equality iff
q=r, ie. iff p isa multiple of gq.

The hypothesis that / admits the translation p implies that we can
take in K an interval K' of length p such that for any index i in
[ there is an index i' in K' differing of i by an integral multiple of
p. Thus iw=i'w. Accordingly, if p is a multiple of g (=r) and if
x,y € L differ by a multiple of r, we canfind x',»’ in K' such that
xw=x'w and yw=y'w by using the hypothesis that J admits the
translation ¢ when any of these indices is in J. Since K' is included
in J, the same hypothesis shows that x'w = y'w from which we con-
clude that xw = yw in this case. This proves the result when ¢ is equal
to r and we can assume hence forth that ¢ is strictly greater than r.

We proceed by induction on the integer (p + q): r, the case when
it is equal to 2 being already covered. From 2.1 we know that K con-
tains an interval K' of length at least (p+qg—r)—qg=p —r that
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admits the translation p'=p —q. One has p'>r. If p'=r, q isa
multiple of r and the same reasoning as above shows successively that
J, hence K, hence I, hence L admits the translation r. If p' #r, K’
admits the translations p’' and g. Since r isagain the greatest common
divisor of p' and ¢ and since the length of K' isatleast p'+ g —r=
=p —r, the induction hypothesis shows that K’ admits the translation
r. It follows as above that J,K,I and L have the same property.
Q.E.D.

2.3. Corollary. If the interval I has step q, each translation p <
<—% |1l of I is a multiple of q.

Proof. Suppose indeed that [/ admits the translation p where
2q < 2p < |I|. By the theorem above, I admits the translation r where
r is the greatest common divisor of p and ¢, since its length is at least
p+ q. Since g is the step, one must have g <r, hence g = r showing
that p is a multiple of g. Q.E.D.

We spell out a (well known, cf. [15]) equivalent formulation in terms
of words.

2.3 bis. Assume that the word a# 1 satisfies an equation ba = ab'
where b+ 1 and |al> 2|bl— 1. There is a unique primitive word h
such that a=h"h' with h' a prefixe of h and either r=>2 or r=1
and |h'|=|h|—1. Then b is a power of h.

Proof. Let a= Iw and apply 2.3. Q.E.D.

There is no confusion in writing % = Va with the convention that
Va =a when the hypothesis of 2.3 bis are not satisfied. In the rest of
this paper we shall say that an interval [ is periodic iff, in equivalent
fashion, a# Va where a=Iw, or iff |I|>2]||1]| — 1. It will be said
to be rperiodic iff it satisfies the stronger condition |/|>r||I||+ 1 and
long iff it is 4-periodic. The same terminology will be applied to the words
and, accordingly, a is a long periodic word iff a=h"h' with r=4
and h'# 1 aprefixof 2 or a=h" with r=>5.

Let I= (i,i') be along periodic interval and p its step. Its "internal
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zone” istheinterval (i+ p —1,i' — p + 1) = I°. Within it we distinguish
the "body” (i + 2p,i' — 2p), the "left margin” I8 =(i+p,i+2p—1)
and the “’right margin” 19 =G —2p+ 1,i' —p).

These notions are motivated by the next statements which allow to
relate the geometry of the intervals with the study of syntactic monoids.
For short we say that an index n is covered three times by the word y
iff n is contained in three distinct intervals I,J and K such that
y=Iw=Jw= Kw,

2.4. A necessary and sufficient condition that an index t belongs
to the body of some long interval L is that it be covered three times by
a word y. If this condition is satisfied, y is 3-periodic and its stép is
the same as that of L.

Proof. Assume that L = (i, k') is a long interval whose body con-
tains ¢. There exist a primitive word 4 of length P=||L|l, a prefix
h' of h and an integer k>4 such that Lw = h*h'. One verifies im-
mediately that the conditions are satisfied by the intervals = (i, k' — 2p),
J=(@G{+p, k' —p), K=(G+ 2p, k') since their intersection is the body
@+ 2p,k' —2p) of L and since the words w,Jw and Kw are all
equal to k%= 2p'.

In the opposite direction assume that ¢ is covered three times by
v, the corresponding supports being I= (i,i"), J=(,j"), K= (k,k").
We can assume that i<j< k and we have then k< ¢<i' since ¢ must
be contained in the intersection (k,i') of the three intervals. By con-
struction J is contained in the union of 7/ and K. Thus, by reason of
symmetry, we can suppose that its intersection with I is at least as long
as that with K, i.e. that the difference q =j— i isat most equal to half
the common length |y| of I,J and K.

Let L'= (i,j') be the union of I and J. The hypothesis Iw = Jw
entails that L' admits the translation ¢, which is strictly less than half
the length of L’'. Applying the theorem of Fine and Wilf and its corollary
we conclude that L' is periodic and that its step p divides g. Since
2q is at most equal to |y|, the same is true of p and we have proved
that y, hence I,J and K, are periodic with step p.
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The intersection (k,j') of K with L' contains (i’,j') since
k< t<i' and this last mentioned interval has length ¢ > p. Using again
the same theorem, we see that the union L of L' and K admits the
translation p. In fact p is its step because p is the step of J. The re-
lation Jw = Kw implies that p divides the difference k' —j', hence
that p> k' —j'. This last inequality entails that the length of L is at
least 4p, i.e. that L islong and one checks easily that ¢ is contained
in the body of L. Q.E.D.

We introduce the term “complete” to express that a periodic interval
I=(i,i') is maximal among the sub-intervals of C containing it and
having the same step p. This is equivalent to the hypothesis that
G—Dw#@G—1+p)w and ('+ Dw# G+ 1 —p)w. It is clear that
any periodic interval [ is contained in a complete interval I' (having
the same step) and that I' contains any interval having the properties to
admit a translation p’<p and to contain I. I' isthe completion of I,
its body contains the body of I when I is long.

2.5. Let I and J# 1 be two complete long periodic intervals such
that |IJIl (= @) < || Ill (= p) and that the body J° of J meets one of
the margins I* of I. Then 3q <p and I* contains one of the margins
of J.

Proof. Let K be the intersection of I and J. Itslength is at most
p+ q — 2. Indeed, otherwise, the union L of I and J would admit
the translation r< p,q by the theorem of Fine and Wilf, where r=p
and r=gq according to the definitions of g and p as the steps of J
and of I Therefore, one would have p =¢q, hence L= I=J since I
and J are supposed to be complete, in contradiction with our initial
hypothesis that 7+ J.

This remark shows that [/ is not contained in J, since, otherwise,
one would have K =1 where I has length at least 4p + 1 (because it
is long) giving the inequality 1 + 4p <p + g — 2 which contradicts the
hypothesis g < p. In similar fashion, one verifies that if J is contained
in I onehas 1+4g9<p+q—2, hence 3qg<p.

Assume now that for instance the body J° = (j+ 2¢q,j' — 2g) of
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J meets the left margin I¢ = (i+ p,i+ 2p —1) of I Suppose also
that the left margin J& = (j+ q,j + 2q — 1) is not included in 78. We
have the inequalities j+g<i+p<j+2g—1 where j+29g—1<
<i+2p—1 inview of g <p. It follows that the intersection K con-
tains the interval (j+ 2q,j+ 3¢ — 1) which has length ¢q. Also i<j
since, otherwise, K would contain the interval (i,i+ p — 1) disjoint
from the previous one, in contradiction to |K|<p+ g — 2. According-
ly, K contains the initial interval of length ¢q, (,j+q—1) of J.
Since j+qg<i+p, the same inequality on the length of K entails
that J does not contain the left margin 7%, ie.that J'<i+ 2p —1
and this shows that 7% contains the right margin of J. Q.E.D.

Recall that the internal zone of a long interval is the union of its
body with the two margins.

2.6. Periodicity lemma. Let L' (# ¢) be an interval such that any
of its indices is covered three times by a word and assume that L' is
maximal among the intervals having the same property. There exists a
long periodic interval L whose body is contained in L' and whose in-
ternal zone strictly contains L'. The step of L is equal to the maximum
of the steps of the intervals used to cover L'.

Proof. According to 2.4, any index ¢ of L' is contained in the
body of a long interval L, having step p,. Choose ¢ such that p, be
maximum and let L be the completion of L,. By the same remark all
the indices of L° are covered three times. Thus L° is contained in L'
in view of the extremal character of L’. To conclude the proof it suffices
to show that at least one index belonging to a margin of L is notin L'.
We do this by showing that the opposite hypothesis on (say) L€ leads
to the construction of an infinite nested family of periodic intervals, which
is impossible.

Let ¢' be an index of L& which belongs to L'. It can be choosen
so that the corresponding step p'= p, is maximum. By our initial hy-
pothesis p' is not greater than p, and the long interval L,, hasa body
meeting the margin L&. The same is true of its completion L, and we
have L, # L since L is complete. Thus, by 2.5, one of the margins of
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L, is contained in L& and p' is strictly smaller than P,. Again, if
this margin of L, was to contain an index belonging to L', we could
repeat the same construction obtaining a new long complete interval L,
of step p"<p' which would have a margin contained in that of L,,
etc. Q.E.D.

The reader will notice that in the case of the monoid of functions
alluded to in the introduction, the above proof does not go through with-
out some supplementary assumption of ’smoothness” forcing the conclu-
sion at the end of the argument. The same remark applies to the second
periodicity lemma.

In the next statements we say that an index » of the basic interval
C= (1, m) is covered three times by the suffixes of a word iff there exist
three intervals K= (1,k), J=(G',j), I=(',i) suchthat 1<j' <i’'<
<n< k<j<i and that on the one hand the word Kw isa suffix of the
word Iw and, on the other hand, either Jw = Iw (in which case, of
ocourse, i'—j'=i—j) or Jw is a suffix of /w and then j' = 1.

In similar fashion, we shall use the phrase “covered three times by
the prefixes” to express the symmetric notion obtained when exchanging
the indices 1 and m, the direction of the inequalities and the terms
prefix and suffix.

2.7. Let n be an index of C which is covered three times by the
suffixes of a word. Then

(1) The initial interval (1,i) admits the translation d=1i—j.

(2) If there is a long periodic interval H= (h',h) with j<h such
that its left margin contains n, the completion of H is an initial interval
of C.

Proof. The hypothesis that Jw is equal to /w or to one of its
suffixes implies that the interval (j',7) admits the translation d (=i — j).
Thus, (1) is proved when j'= 1. If it is not so, we must have Jw = Iw
hence i' —j'=d. Since Kw is a suffix of Jw, the interval (1,j) ad-
mits the translation d'=j— k. The length of its intersection with J is
at least d+d' (because i'<n<i). According to the Fine — Wilf

— 556 —



theorem, J, hence the union (1,7) of K,J and [ are periodic with a
step p dividing d and d'. This concludes the proof of (1).

Assume now that the hypothesis of (2) are fulfilled. We have just
seen that (1,7) admits the translation d’. The length of its intersection
with H is at least d+ r where r is the step of H. Accordingly, as
above, (1, h) is periodic with a step ' dividing r and d'. Since r is
the step of H, we must have r<r'. Thus r=r’, concluding the proof.
Q.E.D.

2.8. Second periodicity lemma. The basic interval C= (1, m) is 3-
periodic iff each of its indices is covered three times by a word or by the
suffixes or by the prefixes of a word.

Proof. The proof that this condition is sufficient proceeds in the
same manner as above and it can be omitted.

Reciprocally, assume that the covering condition is fulfilled.

There is a largest index k> 1 that is covered three times by the
suffixes of a word, the corresponding intervals being K,J,I as above.
Symmetrically, there is a least index f that is covered three times by the
prefixes of a word the corresponding intervals being F= (f,m), G=
=(g,8), 0=(q,q") with ¢g<g<f<q'<g' <m (= the last index
of O).

Suppose first that g <j. The intersection (q,i) of (1,i) and (g, m)
has length greater or equal d+ e¢ where d=i-j and e= g - q. Using
the last result and the Fine — Wilf theorem, one concludes that their union
(which is C) is periodic with a step r dividing d and e and one checks
easily that in fact C is 3-periodic.

We can therefore suppose that j< g, an assumption which entails
that no index in the non-empty interval (k,f) is covered three times by
the prefixes or the suffixes of a word. Since each of them must be covered
three times anyway, we can use the first periodicity lemma to establish
the existence of a long periodic interval H whose internal zone strictly
contains (k, f). If r is its step, this quantity is also the length of its
margins. It follows that H has an intersection of length at least r+ d
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(resp. r+ e) with the interval (1,7) (resp. with (g, m)) and the desired
conclusion is obtained as above. Q.E.D.

Taking a 5 letters alphabet 4 = {a, b, ¢, d, e} and letting x = abc;
u = xdxdx; v = dxexd, the example of the word w = c(vu)3va (= Cw)
shows that the hypothesis of the lemma do not imply that w is long.

Various other applications of the theory of Fine and Wilf can be
found in the literature (cf. [13], [15] and [5]). We record here two simple
observations for later reference.

2.9. Let T be a non-empty subsemigroup of A™*. Each of the fol-
lowing conditions implies that it is contained in a cyclic subsemigroup
ht of A*.

(i) For some €>0, any word w in T has a periodic factor w'
of length |w'|> eiw].

(ii) There are words f,f' such that ftTt'*f' contains a non-
primitive word for any t,t' in T.

In (ii) there are h',h" satisfying h'h" =h or =1 such that f is
in h" -h* and ' in h*-h'.

Proof. Take in 7 a fixed ¢ which can be assumed to be a power
t=h" of a primitive word A.

For (i) let 4 be any word in T and consider the word

w=t2u2e3u3 . Rk Lt

where n is large enough for " and u" to have both a length less than
%elwl. Then any periodic factor w' of w of length > e|w| has the

form gt*u® ... t*u*g' with k'>k+ 2. The hypothesis that it is
periodic implies that *u* is (equal to) a factor of X uk" k" +1y,k"+1
where k< k"<k'—1. Replacing ¢ by A" and using the hypothesis
that » is primitive shows that u# must also be a power of # and it
establishes the result.

For (ii) we can assume that ¢ is longer than f and f'. Take now
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any power t' of an arbitrary word of 7 and choose it so that its length
satisfies the same condition as that of ¢z The existence of a non-primitive
word w= ftkt'k' f' implies as above that w is a power of a word con-
jugate with % and the result follows by identifying the initial and final
factors f and f'.

3. THE MONOID OF INTERPRETATION

In this section and in the next one we consider a fixed non-empty
subset X of the free semigroup A* = A*\1 and we assume that it is
the minimal generating set of X7, ie. that its intersection with X* X+
is empty. The set X(4*+)~ ! (resp. (A1)~ 1x) of its prefixes (resp. suf-
fixes) will be denoted by P (resp. by Q). We also consider another
alphabet B and a bijection « of B into X which is extended to a
morphism into A* of the free monoid B*.

An interpretation of a word a in A* isa triple y =(q,b,p) in
OX B*X P such that a=¢q * ba - p (= ya) and af will be the set of the
interpretations of a. Thus, (1,1,1) is the only interpretation of the
neutral element 1 of A* and no other word admits it as an interpretation.

In the following definitions, a (resp. b,p,q) denotes an arbitrary
element of A* (resp. of B*,P,(Q); c is either a letter of B or the
neutral element 1.

[p,al=pa if pa isin P and = ¢ otherwise;

[a,qg]l=aq if ag isin Q and = ¢ otherwise;

[p,ql =c ifeither p=q=1 or p,q+#1;
pq = co; and [p,q] = ¢ otherwise.

Also we use the following Boolean matrices:

C = the PX Q matrix such that its (p,q) entry is 1
iff [p,q]l# ¢;

am= the PX P matrix such that its (p,p') entry is 1
iff pa=p’;
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ax = the QX Q matrix such that its (¢',q) entry is 1
iff ag=gq’;

ay= the QX P matrix such that its (q,p) entryis 1
iff a admits an interpretation of the form (g, b, p)
for at least one word b.

apu= C-ay+ an.

The only reason for using Boolean matrices instead of (binary) rela-
tions is typographic convenience.

A simple remark allows connecting the product on A* with one on
the set of interpretations.

3.1. For any two words a and a' the set of intérpretations of aa'
is the union over all the interpretations y = (q,b,p) of a and y'=
=(q',b',p") of a' of their product

yy'=(q,b,[p,a'D+(q,b-[p,q'1-b',q")+ (a,p],b",p").

Proof. It follows immediately from the definitions that each term
written is an interpretation of aa' or ¢.

Reciprocally, consider an interpretation y" = (¢”",b",p") of aa'.
When a'=1, it is also an interpretation of a and it appears in the
product since y" = (q",b",[p",a’']). A symmetric remark applies when
a= 1 and we assume henceforth that a,a’' = 1.

If the word a has a length |a| greater of equal that of ¢q" - b"«,
there is a prefix p such that y = (¢”,p", p) is an interpretation of a.
One has [p”",a’'l=p" showing that y" = (q",b",[p,a’] is in the
product. The same holds if |al<|qg"| because this inequality is equiv-
alent to |b"a - p"|<|a’'l. In the remaining case there is a factorization
b" =bch' with [p,q']=c such that a=¢q" -ba-p. Then y=
=(q",b,p) and y'=(q',b',p") are interpretations of a and of a’
whose product contains y”. Q.E.D.

We recall that the residual of a subset K of any monoid 7 is the
set of all ¢ in T such that K does not meet the ideal 7¢t7. Therefore
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it is always an ideal (possibly empty). It is clear that when T is the free
monoid A4* and when X is finite the residual of X contains all the
words longer than its longest element. We summarize the properties of u
which will be needed later.

3.2. The mapping u is a morphism. It recognizes X*. Further:

— for any word a the (p,p) entry of the matrix au is 1 iff a
has an interpretation of the form (q,b,p) for some suffix q such that
[, q] # ¢;

— if one of the words a and a' is in the residual of X, one has
(a2 = ap - a'y;

— the residual of X* is the inverse image of the zero P X P matrix.

Proof. It is clear that 7« and x are two morphisms and that they
reduce to 0 on the residual of X. They satisfy the intertwinning identity
an+ C= C-+ax because C(pa, q) = C(p,aq) for any a,p,q.

The formula given for the product of interpretations translates into
the identity

(@ )y=ay-a'n+ay-C-a'y+ax-a'y.

Multiply it on the left by C and add (aa’)7 = an - a’'m to both members.
Since C:ay-a'y=am-C-a'y, one can regroup terms and one ob-
tains the identity (aa')u = am - a'n which establishes that u is a mor-
phism.

It is clear that 1w = lu is the unit P X P matrix and that every
diagonal entry of am is O when a# 1. Thus,for a in A%, the (p, p)
entry of au is 1 iff there isa g such that C(p,q)=ay(q,p)=1,
which is the result stated because of the definition of C and of 7. Also
(@ )u=C-ay-C+a'y=au-+a'y when a or a' isin the residual of
X since then the matrix aw or a'm is O.

Consider now the entry (1,1) of qu. Itis 1 when = 1. When
a# 1 itis 1 iff there is a suffix ¢ such that [1,4q]= 1 and that ¢ has
an interpretation of the form (q,b,1). The first condition implies that
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g =1 and then, the second is equivalent with a€ X*. Thus p re-
cognizes X*.

Suppose that the (p,p') entry of au is 1. There is a suffix ¢’
such that p'q’ isin X, if p'=1 andthat p'q' = 1 otherwise. In both
cases paq' isin X* as we have just seen and, consequently, a is not
in the residual of X*. In the opposite direction, if au is 0, no matrix
(@'aa”)p can have its (1,1) entry equal to 1 and a is in this residual.
Q.E.D.

It may be mentioned that X* is also recognized by < since the
(1, 1) entry of ay is 1 iff a hasan interpretation of the form (1,5, 1),
ie. iff it is in X*. The formula given in the preceding proof shows that
the restriction of vy to the residual of X is a morphism with respect to
the “’sandwich’ multiplication (aa')y=ay - C- a'y. For the whole of
A*, the mapping (w,~,x) is a morphism (with the indicated product
for 7).

We call M= A*u the monoid of interpretations of X*. The syn-
tactic monoid S of X* is a quotient of M in view of the minimal
character of S and of the fact that u recognizes X*. The reader will
notice the relationship between M and the left to right non deterministic
automaton realizing the relation from B* to A* which is the inverse
of the morphism «.

When X is finite the same is true of P, hence of M. It isa known
fact that under this hypothesis every group in S is a quotient of a group
in M. The same holds when X is a recognizable set in the sense of S.
Eilenberg but we shall not make use of this generalization.

These notions are illustrated by the following example which shows
that except in a very special case the morphism u also recognizes {1},
hence the scmigroup X+,

Example. A necessary and sufficient condition that wu = lu for
some w, =w# 1 is the existence of d>1 and a letter a such that
X consists of a? and of words of the form a9a’ with d'<d- 1
and a' a letter different from a.
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Reciprocally, if X has this form, M has a subgroup of order d
whose inverse image is a* and wy is a power of a?.

Proof. Assume first that X has the form indicated. The set of the
prefixes P consists of the words a? with d'<d- 1. The matrix ar
has a 1-entry for the pairs (ad', ad'“) where d'+ 1<d—1. One has
Cp,p)=1 iff p=p'=1 orif p,p'# 1 and pp'=a“. Since the
only interpretations of a are (a,1,1) and (1,1,a) one sees that au
is the cyclic matrix m obtained when adding the l-entry @9~ !,1) to
am. For any other letter a’ and prefix p, the line p of a’ is zero if
pa' isnotin X and it has a single 1-entry in the column 1 otherwise.
This shows that the condition is sufficient and that the subgroup of M (i.e.
the maximal group in M whose idempotent is 1) has the properties stated.

In the opposite direction, assume w# 1 and that the matrix wu
contains 1u, i.e. that all its diagonal entries are 1. As we have seen it,
this implies that w isin X* and that it has an interpretation (q, b, p)
for each prefix p in P. Thus, if a is the last letter of w, it isalso the
last letter of any prefix p and since P contains every left factor of its
members we see that it consists of the powers a* of a for k<d-1
where d is the length of the longest word in X.

Consider the prefix p=a?"!. Since w(p,p)= 1 there is a suffix

q such that [p,q]# ¢ and w=qgxp for some x in X*. The first re-
lation implies g # 1 and the maximal character of d that g isthe first
letter of w. Since w isin X, this letter is a prefix in P, hence it is a,
proving that X contains the word a?. It follows, as above, that au

contains the cyclic matrix m.

Assume now that wu = lu. It is in the subgroup of the monoid of
the P X P Boolean matrices. Thus a'u is a permutation matrix for any
letter a’ which is a factor of w, hence in particular for a (since a is
the first letter of w). It follows that a? is the only power of a which
isin X because a* in X implies that the (a¥~1, 1) entry of au be 1.
This shows that X has the form indicated and computing a'u for a letter
a' # a establishes that it is not a permutation matrix. Thus, w isa power
of a¢. QE.D.

- 563 —



We recall that a PX P matrix m has finite rank < r iff there is a
subset K of at most r elements of P such that m admits a factoriza-
tion m=m'hm" where m' (resp. m") isa PX K (resp. KX P)
matrix and & a KX K matrix. If it is so, all the matrices in the ideal
MmM have the same property and, more accurately, it is isomorphic to
a semigroup of K X K matrices. These notions apply as well to the case
of the Boolean matrices with which we are concerned here.

3.3. A necessary and sufficient condition for the monoid of inter-
pretations M to have a O-minimal ideal completely O-simple and a
finite Suschkewitsch group G is that X and X* have different re-
siduals.

Proof. Since X is contained in X¥*, its residual contains the re-
sidual of X. Thus, if these two residuals are not equal we can find a word
w in X* which belongs to the residual of X. Suppose it is so and
consider an interpretation (gq,b,p) of w. Onehas b+ 1 or p,q+1
and the matrix ww is 0. It follows instantly that the matrix au=
=C+wy+ wr has a rank at most equal to the length of w. Thus
M- wu M is an ideal not reduced to O in which all the matrices have
a finite rank. This shows that M has a completely O-simple O-minimal
ideal. Taking w such that wpu has a minimal rank, the bi-ideal wMw
is finite and it is isomorphic to the group G. This proves that the con-
dition stated is sufficient. Since the syntactic monoid of X* isa quotient
of M we see that it also enjoys the same property.

Reciprocally, suppose that M has a 0O-minimal completely O-simple
ideal D'+ 0 and that the group G' is finite. This is also true of the
syntactic monoid S and we denote the corresponding objects by D and
G. We can assume that G meets the image of X* in S. Since G is
finite and X* is a semigroup, the idempotent ¥ of G belongs to the
image of X*. Since D is O-simple, there is a subgroup H of G, a
union R of #-classes of D and a union L of %-classes of D such
that the intersection FE of D with the image of X* is the set of all
the elements d belonging to R and L which satisfy udu € H.

We now construct a finite sequence (g, =u,8;,...,8,) of ele-
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ments of G having the property that for any g in G one has u =
= £8,8; - - - &; for at least one index i. This is possible since G isa
finite group.

Also, for each g; we take a word q;# 1 in its inverse image.
Having selected g, sothat g,g;...g, = u, the product w=aya, ...q,
is in X2X and we have only to verify that it belongs to the residual
of X.

Suppose to the contrary that awa' isin X for some pair of words
a and a’', and let, for an arbitrary i, d and d’ be the images of the
words aa, ...a; and a; ;... ana'. Since D is O-simple, d and d’
belong to the intersection of R and of L and the same is true of udu
and ud'u. Further udd'u = uduud'u is in the subgroup H. Choose i
in such a way that udu = u. We have also ud'u in H and, accordingly,
d and d' both belong to the image E of X* in D. This shows that
aa, ...a; and a, ,...a, belong to X, and, in fact,to X*. Thus
awa' isin X*X*, in contradiction with our initial hypothesis that X
is disjoint from this set (because we assumed that X was a minimal gen-

erating set). Q.E.D.

From now on we shall let W denote the set of the words which be-
long to the residual of X and not to that of X*. It is clear that if X
is finite, W contains every long enough word which is not in the residual
Ou~—1 of X*.

3.6. Every element g in M such that the intersection Wg of its
inverse image with the residual W is not empty, has a finite order (i.e. it
has a positive power which is idempotent).

Proof. Take a word w in Wg and let P’ (resp. Q') be the set
of the prefixes (resp. suffixes) which can appear as the prefix (suffix)
component of one of its interpretations. It is a finite set since the lengths
of its elements is bounded by the length of w. Further, P' and Q'
contain the corresponding sets for any positive power w” because w is
in W. Therefore any non zero entry of the matrix w”+ isinits Q' X P'-
part. It follows that the number of different matrices w”"+y is bounded
in function of the number of elements of P’ and Q'; the same applies
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to the matrices w"”u= C+ w"y etc. The rest of the argument is a classi-
cal one. Q.E.D.

If u is an idempotent, we let G, denote the (necessarily unique)
maximal group containing it. We say that u (or G,) is strongly cyclic
iff its inverse image does not reduces to {1} (i.e. if it meets A1) and
it is contained in a cyclic submonoid of A*, that is, in a submonoid
generated by a single word.

3.5. Assume that u is a strongly cyclic idempotent. Then:

— there is a unique primitive word h called the root of G,, such
that the inverse image of G, is contained in h*;

- G, s a finite cyclic group and MuM is a maximal principal
idempotent ideal or M itself depending upon whether u+ 1 or not,

— the conjugacy class of G, consists of groups having the same
properties, the corresponding roots are the words conjugate with h;

— there is at most Card (X) conjugacy classes of such groups such
that their root h has the following further property: there is a word x
in X of length |x|=2|h|—1 or =\|h| which is a factor of a word
in h.

Proof. Since the inverse image of u is an infinite semigroup, we
can apply 2.9 to conclude to the existence of a unique primitive word #
such that it is contained in A*. The fact that the inverse image of G,
is contained in the same cyclic submonoid follows from the observation
that the inverse image of u meets a"A* for any n and any word a
in the inverse image of G,. It isthen a classical exercise to show that G,
is a finite cyclic group. The last assertion of 2.9 shows that MuM is con-
tained in MvM where v=1v2+# 1 iff the inverse image of v is con-
tained in the cyclic submonoid generated by a word conjugate with A.
Thus MuM is maximal (as a proper principal idempotent ideal of M)
unless u = 1.

Suppose now that the root # and the word x satisfy the supple-
mentary conditions stated. There is a unique word %' conjugate with A
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which is a prefix of x. Returning to the notions developped as the be-
ginning of Section 2, we see that in fact one has A'=x since h' is
primitive, and since either A'=x of hA"h" with the inequality on the
lengths stated. This provides an injection into X of the corresponding
classes. Q.E.D.

For later reference we call special the strongly cyclic idempotents
(or their maximal groups) satisfying the supplementary condition at the
end of 3.5.

Let us recall that if u is an idempotent P X P (Boolean) matrix
there exists a maximal partial equivalence relation, noted #, on P whose
support is contained in u (i.e. which is such that the (p,p') entry of
u is 1 for every pair (p,p') in u). Its proper domain will be noted
P,. One knows that a group in M having u as its idempotent is a per-
mutation group on the #-classes of P,. Therefore its degree, deg (u), is
the number of these classes. It is zero iff u = 0.

To do this we consider an interpretation y = (q,b,p) of a word
w and we say that it is repeatable iff [q,p]+# ¢, this implies that any
positive power of w has an interpretation having the same suffix and
prefix components, ¢ and p, as y. Another interpretation y, =
=(q,,b,,p,) of w is linked with y iff there are factorizations b =
=b'b* and b, =byb, such that the words ¢ -b'a and g, - b«
have the same length; otherwise, y and y, are separated.

The following observations supply the connection between the Fine —
Wilf theory and its applications in the next section.

3.6. Assume that the maximal group G = G, has an element g
whose inverse image has a non empty intersection Wg with the residual
W. Then, if G is not strongly cyclic, every Wg contains an infinity of
primitive words. In any case:

— every word in Wu is conjugate with a word in X*;
— any word w in W, admits a system of d = deg (u) pairwise

separated repeatable interpretations; further, for any two of them, say
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y, and y,, there is no chain y5¥Y5s---5¥,) of interpretations of w
such that each y; is linked with y,_ .

Proof. Assume w' in Wg. The ideal A*w'A* meets W, since
g has an inverse. Thus W, is a non empty semigroup. Assuming for a
moment that u is not strongly cyclic the assertions concerning the primi-
tive words follow from 2.9.

Consider a word w in W, and a prefix p such that the (p,p)
entry of the matrix « is 1. Since w is in the residual of X we know
that this is equivalent with the existence of an interpretation y = (q, b, p)
of w such that [p,q]+# ¢. The word ba-pq is conjugate with w
and it is in X* by construction, proving the second assertion.

Let y, =(q,,b,,p,) be another interpretation of w and suppose
that it is linked with y. Using the same notations as above we see that
w  admits the interpretations (q,b'b;,p,) and (q,,b,b",p). There-
fore the entries (p,p,) and (p,,p) of u are 1 and the same is true
of the entry (p,,p,) since u is idempotent. We conclude that the class
of the prefix p in the equivalence # containsany prefix which is linked
with it in this manner and the truth of the last assertion follows. Q.E.D.

4. APPLICATIONS

We come to the proof of the main results stated in the introduction.
To simplify we make the standing assumption that the generating set X
of X* has a finite number k> 2 of words and that it has not the very
special from displayed in the example of the last section. Letting L de-
note the maximum of the lengths of the words of X, we have that the
inverse image um~! of any idempotent # in the monoid of interpreta-
tions M has an intersection W, with the residual W of X thatisan
infinite semigroup and that W contains AZA™.

We recall the notion of a special group in M introduced in 3.5 and
that the number of their conjugacy classes is at most k. By 3.6 and the
finiteness of the complement of W every conjugate class of groups in
M has a member such that its idempotent is in the image of X*.
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4.1. Any idempotent u# 1 of degree 2k + 1 or more is special.

Proof. Let u=u?+# 1 have degree d>2k+ 1 and iake any
primitive word 4 having a power A’ in its inverse image. We can choose
r large enough for the length m of w=h" to satisfy the inequality
m=>= 2L+ 4|h|.

As explained in the beginning of Section 2 we consider w asa map-
ping in A of the basic interval C= (1, m). Let j be any index in the
sub-interval L'= (L + 1,m — L). By 3.4 we know that w has a system
Y of d pairwise separated repeatable interpretations. If y = (q, b, p) is
any one of them, our choice of j implies a factorization b = b'ch"
where the support Iy of ¢ contains j, i.e. where co is a word X, of
X and where |g-b'al<j<|q- (b'c)al. Since d=>2k+ 1 there are
three interpretation for which the word x is the same. Therefore our
hypotheses imply that every index in (L + 1,m — L) is covered three
times. Applying the First Periodicity Lemma of the Fine — Wilf theory,
we conclude that it is a long periodic interval. By the same lemma its step
p is the step of one of the covering words x in X. Further, L' admits
the translation |4]| because of our choice of the exponent r. Applying
once more the Fine — Wilf theory we conclude that the length of & is
exactly p since it is a primitive word. The conclusion follows from 2.9
since it applies to any word % having a power in uu~1. Q.E.D.

Observation. For each word x in X let r(x) be O if x isnota
factor of a word of 4*. In the opposite case, let r(x) =2 if |x|<2]|h]|
and r(x)=p if p> 3 is the least integer such that |x|<p|h|. Since
every index j can be covered three times by a word x only if r(x)> 3,
one sees that the degree d is at most equal to the sum of the numbers

r(x).

4.2. Corollary. Apart from at most k conjugate classes of maxi-
mum cyclic groups that generate maximal idempotent principal ideals,
every group in the monoid of interpretations or in the syntactic monoid
of X* divides the symmetric group of order (2k)!.

Proof. This is just a reformulation of the previously established re-
sult since every group in S is a quotient of a group in A. Q.E.D.
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From now on, we let U denote the set of the idempotents u # 0, 1
which are not special, and we proceed with the proof of other absolute
finiteness properties concerning the ideal MUM. If R is a subset of P,
let e, denote the idempotent diagonal P X P matrix such that its entry
(,p') is 1 iff p=p’' isanelement of R. A pait (F,F') of subsets
of A* will be said to be a R-factorization of the subset K of M iff:

(i) F=A*F, F'=F'A* and K is contained in the image of
FF' by u;

(i) Forany f in F and f' in F', onehas (ff')u=fu-e, - f'u.
To motivate this notion we apply it in the following remark.

4.3. Assume that (F,F') is a R-factorization of an ideal K. The
number of idempotent principal ideals in K is at most 2" where n=
= (Card R)?.

Proof. Consider an idempotent u# in K and a R-factorization
(f,f") of u. Since u=u3, one has u= (f'ff'ff")u. The matrix

m, = (f'ff'p generates the same ideal as u since it is contained in
MuM and since u isin Mm M.

Because of condition (ii) and of the fact that F is a left ideal
and F' a right one, we have also u=fu-m - f'n where m, =

= ep 'Mu Cep-

Let now v be another idempotent in K and m, and m the
corresponding matrices. Suppose further that m = m . Again by (ii)
we have u=fu-m, - fu=fu-m «f'u=fu-m, -f'u showing that
u isin MvM since m, isin MvM. By symmetry, Mum = MvM. The
result follows since the number of classes for the equivalence defined by
m, =m, is certainly less than the number of Boolean R X R matrices.

QE.D.

For each word x in X let U(x) denote the set of the idempotents
u in U which have the property that x has a maximum length among
the words x' in X such that MuM is contained in the image of Ax'A4,
i.e. among the x’' which are a factor of at least one word in the inverse
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image of u. It is clear that we can find a minimal subset X, of X such
that U is the union of the sets U(x) overall x in X,.

Let now x be any fixed element of X,. We construct a subset
R=R(x) of P and a R-factorization of MU(x)M. Since this is slightly
complicated by the possibility that x can be a 3-periodic word (in the
sense given to this expression in Section 2), we break it into several steps
before proving that it has the desired properties.

Construction.

(1) If x is not 3-periodic we consider it as a mapping in A of its
basic interval (1,m) where m is its length. In view of the Second
Periodicity Lemma we can select an index j in (1,m) which is not
covered three times (understood, by a word, or by the suffixes or by the
prefixes of a word).

In the opposite case, x = h" h, where r>3, h= Vx isa primitive
word of length n equal to the step of x and h, isa prefix of h. Con-
sider first w=~h2 asa mapping of its basic interval (1, 2n). The word
w is periodic but since 4 is primitive it is not 3-preiodic. Thus, as above,
we can choose an index j' in (1, 2n) which is not covered three times.
Returning to x and to its basic interval (1,m), we let j=j' or
=j'+n depending upon whether j'>n or not. Thus, in both cases
n<j< 2n.

(2) An interpretation (g, b,p) of x isacceptable iff p isa prefix
of at least one word in the subset X' of the words of X which are not
strictly longer than x and the symmetric conditions hold for g. When
x is 3-preiodic we impose the further restriction that ¢ is a suffix of
at least one word from the subset X" of the words x” of X' which
have the form x" =p'q with |p'|<n(=|kl) or p'=p"n" where h"
is any word of length n different from #.

(3) Let y=(q,b,p) be an acceptable interpretation of x. It
can be of three types depending upon the position of j with respect
of the supports of p and of ¢. In each case we select a subset Py
of P.
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Type X. |q|<j<|q -+ bal. There are factorizations b = b'chb"” and
ca=p.,q,=x, such that x,, isa word of X and f=|q - boa - P, |
if q,#1 welet p)f ={p,}; otherwise, p, =x, andwelet p) ={1}.

Type P. |q - bal<j. Then P){’ = {py} where this word is the left
factor of p such that |q - ba - P, | =7j.

Type Q. j<|ql. Let q=aq, where a has length j. Then PyQ
is the set of all prefixes p' of the form p'= p”"a which are such that
p'qy =x, isaword of X" orof X' depending upon x whether it is
or not 3-periodic.

For T=X, P or Q we let PT denote the union of the sets PyT
over all the acceptable interpretations of x and R = R(x) be the union
of the PT’s.

(4) Let x=2zz' where z haslength j. Welet F'= F'(x) be the
right ideal z'ALA* where, we recall, L is the maximum of the length
of the words in X. If x isnot 3-periodic, F= F(x)=A*Alz. Ifit
is, we replace in the definition of F the set A% of all words of length
L by A% \A*h, ie. by the set of the words of the same length such
that their suffix of length »n is not the word # defined in (1) above.

This concludes the construction.
4.4. The pair (F,F') isa R-factorization of MU(x)M.

Proof. Let u be any idempotent in U(x). There are arbitrary long
words g,g' such that w = gxg' is in its inverse image. Thus we can
take z'g’ in F' and, when x is not 3-periodic, gz in F. In the op-
posite case let W" be the set of all g" such that g”xg’ is in the in-
verse image of wu. It contains a suitable g unless all its members have
the form g h'* with s>0, '=Vx and |g |<|h|=|h'|. However,
in view of u=u?, the st W" contains wW". Therefore such a
possibility could arise cnly if there were a factorization 4’ = h"h" for
which xg' were in A'h” and W' a subset of A™A’'*. This is excluded
by the initial hypothesis that « is not special. Thus we can always take
gz in F.
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Let y, =(q,b,,p) be an interpretation of gxg'. Because of the
hypothesis upon the lengths of the words in X involved, one sees that
there are interpretations y = (q,b,p') of gz and y'=(q',b',p) of
z'g" such that y, =yy’, ie. b, =b-[p’,q']-b" and one checks
readily that p' isin R.

It follows that all the P\R columns of the matrix (gz)u are
identically zero, i.e. that (gz)u = (gz)u - ep-

The same holds for any matrix m in MuM since it has the form
m'um"” for suitable m',m". Q.E.D.

4.5. The set R has less than 6k% elements.
Proof. Consider first the case when x is not 3-periodic.

Since the index j 1is not covered three times by a word, each x'
in X' can appear at most twice as the word X, in an interpretation y
of z of type X. Each times it supplies one prefix to PX and, con-
sequently, this set has at most 2k elements. In the same manner, since
j is not covered three times by the prefix of a word, each x' can have
at most two different prefixes which appear as the prefix term of an inter-
pretation of type P. Thus, Card (P?)< 2k.

If g is the suffix term of an interpretation y of type Q the cor-
responding set PyQ has at most & elements since for any two of them,
p' and p", the words p'q and p"q are different. Because j is not
covered three times by the suffixes, the number of interpretations of type

0 is <2k
Consequently, 6k? is a generous bound for R.
Assume now that x =h"h, is 3-periodic.

Since j is not covered three times as a member of the interval
(1,2n), we see as above that the total contribution to R of the k'
words of X of length less than 2»n is inferior to 6k2. Consider now
a word x' of X' of length 2n or more. There are three mutually
exclusive possibilities:
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— x'=h"h; where h' is conjugate with #, h; isa prefix of
h' and s> 2;

— x'=h'""t with h' as before, s>0 and ¢+ 1 not a prefix
of h';

— symmetrically, x'=th'S with t# 1 not a prefix of 4'.

The last two cannot participate in interpretations of type X. Inthe
first one, the fact that %' is conjugate with 4 = Vx entails the ex-
istence of fixed words a,a’ such that any factorization of x involving
x' has the form x = h%ax 'a'hs"h1 (s',s" > 0). Because of n<j<2n
we see that x’' can be a word x, in a type X interpretation only if
s'=0 or 1. Thus, the corresponding contribution to PX of these

words x' is at most twice their number k'.

A similar argument applies for the interpretations of type P and,
again, the only words involved belong to one of the first two categories.
For the type Q, the word x' must belong to the first or third category.
Because of our restriction to acceptable interpretations, it can supply at
most one suffix term. Thus its contribution to P¢ is at most k — k'
by the same observation as in the initial non periodic case and we con-
clude that R has less than 6k'% + 6(k — k')2 elements when x is 3-
periodic. Q.E.D.

4.6. The number of conjugacy classes of maximal groups in M (or
in S) is absolutely finite.

Proof. There is at most k special classes and, for the other ones,
the result follows from the last three Remarks 4.3, 4.4 and 4.5, since
MuM is the union of the k" < k ideals MU(x)M.

4.7. For any two elements m,m' of MUM the bi-ideal mMm'
is absolutely finite.

Proof. We have m in MU(x)M and m' in MU(Xx")M for words
x,x' of X. Therefore, by the preceding remarks, there are subsets R
and R' of P having less than 6k? elementsand matrices m; such that
m=m,e,m, and m' = maepm,. Each element of the bi-ideal has the
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form mm”"m', hence m mgm, where mg =eRm2m"m3eR, has all
its non zero entries in R X R' and, accordingly, it belongs to an abso-
lutely finite set. Q.E.D.

* X X X X ¥ X ¥ *

Let us thank A. Lentin, pioneer of this subject, whose friendly

vigilance has preserved me from many mistakes.
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