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Abstract

We prove two new results concerning the ezistence of synchronizing
words for prefiz codes. Both results assert that any finite aperiodic mazi-
mal prefiz code is equivalent to a synchronizing one under two equivalence
relations to be defined more precisely below. One of these equivalence rela-
tions is that of tree isomorphism and s the subject of a conjecture, known
as the road coloring conjecture, that is seitled in the case corresponding to
our hypotheses.

1. INTRODUCTION

The notion of a synchronizing word is a basic and elementary notion
in automata theory. Given a finite deterministic automaton, a word z
is called synchronizing if the state reached after processing the word z
is independent of the initial state in which the automaton was started.
This notion has been studied since the beginning of automata theory and
appeared with E.F. Moore’s ”gedanken experiments”. It also appears in
many recent developments concerning automata (see e.g. Aho, 1988 or
Eppstein, 1990). The term ”synchronizing word” is however not universally
in use and one may find instead resolving block (Adler, Marcus, 1979) or
reset sequence (Eppstein, 1990).

From the abstract point of view, synchronizing words correspond, in
the semigroup of transitions of the automaton, to elements of minimal
possible rank. This algebraic formulation allows a generalization to non-
deterministic automata (see Berstel, Perrin, 1985). From another view-
point, the existence of synchronizing words guarantees an almost every-
where one-to-one correspondance between paths and their labels in an
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appropriate measure space. It is this property which is of interest in the
applications to coding since it guarantees stability against errors.

It is curious that such a simple notion gives rise to several unsolved
problems. We mention two of them in this introduction : The Cerny-Pin
conjecture and the road coloring conjecture.

The Cerny conjecture asserts that any n-state synchronizing automaton
has a synchronizing word of length at most (n—1)2. It is easy to prove the
existence of a synchronizing word of length bounded by a cubic polynomial
in n but no quadratic bound has yet been obtained. The simple example
of the automaton of Figure 1.1 shows that the bound (n — 1)? cannot be
improved.

Figure 1.1. A worst case for Cerny’s problem

The conjecture has been put in a more general form by Pin : if there is
a word of rank d (as a mapping from the state set into itself) then there
is one of length at most (n — d)2. A bibliography on this problem can be
found in (Berstel, Perrin, 1985). A recent result by A. Carpi (1988)shows
that a cubic bound also holds in the case of unambiguous automata.

The road coloring problem is encountered in the study of isomorphism
of symbolic dynamical systems (Adler, Goodwin, Weiss, 1977). It is
conjectured that, except for the trivial case of periodicity, it is always
possible to modify the labeling of the graph underlying a deterministic
automaton to make it synchronizing. The name comes from the analogy
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where the states of the automaton are cities and the edges roads connecting
them. An appropriate coloring would allow a traveller to find his way to
some city by following a fixed rule specifying the appropriate succession
of colors, irrespective of his starting point. The conjecture is presently
unsettled.

In this paper, we prove two new results on synchronizing words. Our
results start with a prefix code instead of an automaton. Both notions
are strongly related since, for any deterministic automaton, the set of first
returns to a given state is a prefix code. However, our hypothesis are more
easily formulated in terms of prefix codes.

We introduce an equivalence on prefix codes, called the flipping equiv-
alence. It corresponds to isomorphism of the associated unlabeled trees.

Our first result is that any finite aperiodic maximal prefix code is
flipping equivalent to a synchronizing one. The proof uses in a crucial way
a theorem of Reutenauer (1985) giving a non-commutative factorization
of the polynomial associated with a prefix code.

Our second result is a modification of the first one for another equiva-
lence relation : the commutative equivalence which identifies words differ-
ing only in the relative ordering of their letters. The proof is quite similar
to that of the previous result.

The first result settles, under our hypotheses, the road coloring problem.
In terms of the original formulation, it settles it in the case of graphs
satisfying the additional assumption that all vertices except one have
exactly one entering edge. Such graphs are sometimes refered to as
”renewal systems” in symbolic dynamics.

Our paper is organized as follows. In Section 2, we recall the definitions
and results to be used later, especially the factorization theorem of
Reutenauer. In Section 3, we discuss the case of an equivalence relation
which is a common refinement of the two equivalence relations considered
above. We reproduce a result of (Schiitzenberger, 1967) with part of its
proof with the intention both of updating the statement and to prepare
the study of the road coloring problem given in Section 6. In Section 4, we
prove our main result concerning flipping equivalence. The corresponding
result for commutative equivalence is proved in Section 5. Finally, in
Section 6 we discuss the exact relationship of our results with the road
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coloring problem.

2. PREFIX CODES

In all that follows we use the notation and terminology of (Berstel,
Perrin, 1985). For the sake of readability we recall most of the definitions.

Let A be an alphabet. We denote by A* the free monoid on the
set A, which is the set of all finite sequences on A equipped with the
concatenation as a product, the neutral element being the empty sequence,
called the empty word. We denote by 1 the empty word and by At = A*—1
the free semigroup on A. In general, we recall that a monoid is a set with
a binary associative operation and a neutral element whereas a semigroup
is the same but without the necessity of a neutral element.

A prefiz code on A is a subset X of AT which contains no proper prefix
of any of its elements. A prefix code can be identified with a labeled tree.
Thus the prefix code X = {aa, ab, baa,bab} on A = {a,b} corresponds to
the binary tree represented on Figure 2.1 with an obvious convention for
the labeling using

Figure 2.1. A prefix code

a for left and b for right. The words of X are in 1-1 correspondance with
the leaves of the associated tree.

A prefiz of X is a proper prefix of some word of X . The set of prefixes
thus corresponds bijectively to the internal nodes of the associated tree.

For a subset X of A*, we denote by X* the submonoid generated by
X. When X is a prefix code, X* is free with basis X. This is the origin
of the term ”code” which refers in general to the uniqueness of parsing or
deciphering.

A prefix code is said to be mazimal when it is maximal under inclusion
among the prefix codes on the alphabet A. It is easy to verify that a prefix
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code X is maximal iff it is right complete, that is to say that for each word
w in A* one has

WA N XA* #0 (2.1)

Equation (2.1) means that every word is comparable to a codeword for
the prefix ordering. It is not difficult to prove that it is equivalent to the
fact that each word w in A* is a prefix of some word in X*, i.e.

wA*NX* #0 (2.2)

In terms of trees, a prefix code is maximal iff the associated tree is a
complete k-ary tree, where k = Card(A).

We shall mainly discuss here finite prefix codes. We shall however
occasionnally consider a much weaker condition defined as follows. A prefix
code X on the alphabet A is called thin if there exists a word w in A*
that does not appear inside words of X, i.e. such that

AwA*NX =0 (2.3)

A finite prefix code X is thin since only words of bounded length may
appear inside words of X.

We now come to the definition of the objects of central interest to us.
A word z is said to be synchronizing for a prefix code X if wz is in X*
for all words w in A*. Hence z is synchronizing iff

A"z C X* (2.4)

A prefix code X is called synchronizing if there exists a synchronizing
word for X. A synchronizing prefix code is obviously maximal since
Formula (2.4) is a uniformisation of Formula (2.2) It is also thin since
no element of X contains z properly.

For instance, the prefix code X = {aa,ab, baa, bab, bb} represented on
Figure 2.2. (i) admits = baa as a synchronizing word as the reader may
check by a little reasonning. On the contrary, the code X = {aa, ab, ba, bb}
of Figure 2.2 (ii) is not synchronizing and the same is true of any code in
which all words have the same length not equal to one.
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@ @

Figure 2.2. (i) A synchronizing prefix code and (ii) a non synchronizing one

We shall see below how to systematically look for synchronizing words.
We also need some terminology from automata theory. Let @ be a set.
An automaton on @ is given by a function

§:QxA—Q

This function defines a right action of A* on . We denote this action by
a dot, writing ¢.a instead of (g, a).
Given an element ¢ € @, the stabilizer of ¢ is the set

Stab(i) = {z € A" | i.x =i}

It can be verified that Stab(i) has the form Stab(i) = X* with X
a prefix code, sometimes called the set of first returns. Conversely any
prefix code can be obtained in this way. One may further assume that all
elements q of @ play a role in the sense that there exist u,v in A* such
that z.u = ¢ and q.v = 7. We say in this case that the automaton is trim
or irreductble.

We define the rank r(w) of a word w as the number of elements of @
reachable through w, i.e.

r(w) = Card{q.w | ¢ € Q}

A word z € X* is clearly synchronizing iff »(z) = 1. In general, the
degree of X denoted d(X) is the minimal non-zero value of the ranks of the
words of A*. It can proved that it does not depend on the automaton used
to obtain X (provided it is trim). Hence X is synchronizing iff d(X) = 1.
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A finite prefix code can be obtained from a finite automaton. It is
synchronizing iff its degree is equal to one. In this case, the automaton
itself is also called synchronizing. For example, the prefix code of Figure
2.2 (i) corresponds the first return at node 1 in the automaton given on
Figure 2.3.

Figure 2.3. A finite automaton

The search for a synchronizing word is easily done with a finite
automaton. It reduces to a search in the graph obtained by considering the
action of the letters on the subsets of the state set. A synchronizing word
is one that is the label of a path from the set of all states to a singleton set.
The graph corresponding to the automaton of Figure 2.3 is represented on
Figure 2.4 with only part of the edges represented. It allows one to find
easily the synchronizing word z = baa.

Figure 2.4. The action on subsets(partial drawing)

It is of course not true that, conversely a prefix code obtained from a
finite automaton is itself finite, since there may be cycles in the graph of
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the automaton that do not use the special state . One may show however
that the code is thin when the automaton is finite (see Berstel, Perrin,
1984).

The period of a prefix code X is the gcd of the lengths of its elements.
It is known that, for a mazimal prefiz code of finite degree, the period is a
divisor of the degree (see Berstel, Perrin, 1984 p. 242). This implies that
a prefix code can be synchronizing only when it is of period 1. The study
of synchronizing automata or codes deals with the problem of finding
additional conditions ensuring that the converse implication holds.

Several other properties relating the degree to other parameters are also
known. A useful one is the following : For a finite maximal prefix code X,
the degree 1s a divisor of each of the integers n such that a™ € X fora € A
(see Berstel, Perrin, 1984 p. 117).

We will use on several occasions non-commutative polynomials and
series. We recall here the basic notions on this subject. A systematic
exposition can be found in (Cohn, 1985) or (Berstel, Reutenauer, 1988).

We denote by Z << A >> the ring of series with coefficents in Z and
non-commutative variables in A and by Z < A > the corresponding ring
of polynomials. For a serie S, we denote by (S, w) the value of S on the
word w, also called the coefficient of w in S. We shall write

S= Y (Sww

wEA*

The support of a series S, denoted supp(S) is the set of words w such
that (S,w) # 0. A serie is a polynomial iff its support is finite.
We shall not distinguish between a subset X of A* and its characteristic
series, writing therefore
X = Z z

z€X

We denote by |P| the degree of a polynomial P, which is the maximum
of the lengths |w| of the elements w in its support. We also denote by P
the homogeneous component of P of maximum degree. Therefore

(Prw) = {(P,w) if ful = |P|
0 otherwise

For v in A* and S in Z << A >> we denote u~1S the series defined
by
(u 1S, w) = (S, uw)
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with the symmetric definition for Su~!.

We shall use several times the fact that the set of homogeneous
polynomials is a free subsemigroup of Z < A >.

We now show the interplay between codes and polynomials.

Let X be a maximal prefix code on A and let P be the set of its proper
prefixes including the empty prefix. We have the equality

X-1=PA-1) (2.5)

in which 1 denotes the empty word.
Formula (2.5) expresses a factorisation property. It is easy to derive
from the equality between sets

PA+1=X+P

expressing the fact that a prefix followed by a letter is either still a prefix
or is a word of X.

A much deeper factorisation property was given by Reutenauer(1985).
We state it below in its simplified version concerning prefix codes although
his result is more general and holds for general codes.

THEOREM 2.1 (REUTENAUER). — Let X be a finite mazimal prefiz code
on the alphabet A. There exists two polynomials L, D € Z < A > such that

X—1=L(d+(A—1)D)(A-1) (2.6)

where d denotes the degree of X.

A proof of the result is presented in the book of (Berstel, Reutenauer,
1988). It is important to see that when X is not synchronizing, i.e. when
d > 1, the central factor in the right handside of (2.6) is non trivial. In
fact, assuming that the constant term of L is 1, the constant term of D
must be d — 1, which implies D # 0.

Also comparing (2.5) and (2.6), we obtain the equality

P=1L(d+(A-1)D) (2.7)

which expresses a factorisation of the polynomial of prefixes of X.
Equality (2.6) can be rewritten

X —1=L(A-1)(d+D(A~1)) (2.8)
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By inverting both sides and using the identity X* = (1 — X)~! we
obtain

A* = (d+ D(A-1)X"L (2.9)

We conjecture that for any finite maximal prefix code X of degree d there
exist a finite collection of d disjoint maximal prefix codes T;(1 < i < d)
and a set L such that

d
A* = (Z T)X*L (2.10)
i=1

Such an equality implies the existence of a factorization like (2.9) since,
letting 7; — 1 = U;(A — 1) we have

A" = (d+(ZU:)(A-1)X"L (2.11)

It implies the stronger property that the polynomials L, D in (2.6) can
be chosen to have positive coefficients. It also implies that the degree of
X is at least equal to d according to the following observation.

ProPOSITION 2.3.. — Let X be a finite mazimal prefiz code on the
alphabet A such that
X-1=L(A-1R (2.12)

with L, R two subsets of A*. If R the disjoint union of d mazimal prefiz
codes, then X is of degree at least equal to d.

Proof : We first show that each element of R is a suffix of an element
of X. Let indeed r be in R an let [ € L be chosen of length |L|. Then,
for any letter a in A, lar has coefficient at least one in X + LR. Since !
is of maximal length, this implies that either r is a suffix of X or it is a
suffix of some other element of R. This proves the property by ascending
induction on |r|.

We now consider an automaton on @ such that X is the set of first
returns to a state ;. We will show that any word in A* has at least d
states in its range. Let w € A* be longer than | X|. Then w has d prefixes
t1,...,tq in R. Since each t is a suffix of an element of X, there is a state
qr such that gx.ty = 1.

For each k = 1,...,d, let r be the state defined by

Ty = qr. W
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We will verify that all r; are distinct and this will prove the claim. Let
indeed k, £ be such that r; = r,. Since we may concatenate w on the right
by any word we may suppose that r, = r, = i. Let w = tyzp = t,z,.
Then zj,z, are in X™* since they stabilize . But then the word w has
two distinct factorizations in the product RX*L namely (tj,2,€) and
(te, ze, €), (see Figure 2.5). This is a contradiction since (2.12) is equivalent
to the equation

A" =RX"L

Figure 2.5. Two parsings of w

It is known that a factorization like Eq. (2.10) holds for biprefix codes
with L = 1 (see Berstel, Perrin, 1985). In the general case, the answer is
not known. It is a particular case of a more general conjecture on codes
known as the factorization conjecture (ibid. p. 423).

3. LENGTH DISTRIBUTIONS
For a subset X of A, the sequence of numbers a = (an)n>0 given by
an = Card(X N A™)
is called the length distribution of X. We also denote

fx(t) = Z ant™

n>0

the corresponding generating series. We denote by px or p, the radius of
convergence of the series fx (). Let ¢ = Card(A). Since o, < ¢", we have
px > 1/q.
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When X is thin, we have px > 1/q (see Eilenberg, 1974 p. 230 or
Berstel, Perrin 1985 p. 67).

A sequence (an)n>0 is the length distribution of a prefix code on a
¢-letter alphabet iff it satisfies the inequality

Y ang" <1 (3.1)

n>1

Inequality (3.1) goes back to C. Shannon and it is at times referred to
as Kraft Inequality. When X is a thin maximal prefix code, we have

doangm =1 (3.2)

n>1
Indeed, by Equality (2.5) we have
fx—-1= fp(qt - 1) (3.3)

Since X is thin, P is thin and therefore pp > 1/q. Evaluating both
sides of (3.3) at ¢ = 1/q gives the desired equality. Conversely, we have
the following

THEOREM 3.1 (SCHUTZENBERGER, 1967). — If a is a sequence satisfying
Equality (3.2) and po > 1/q, it is the enumerating sequence of some thin
mazimal prefiz code. Moreover, the code can also be chosen synchronizing
provided the sequence (an)n>0 Satisfies the additional requirement that the
integers oy, are relatively prime.

We shall reproduce here the part of the proof of this result needed for
the purpose of a discussion presented in Section 6.

It is not difficult to see that the first part is true. Indeed, if p, > 1/¢, we
may build a prefix code X with length distribution « such that some word
w does not appear within any word of X. Then X is thin and maximal.
We may always choose w = a* for some letter a in A. Then X satisfies
the following inclusion

A*w C X*a*

and to choose X synchronizing, we only need a word € X* such that

a'z C X*
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One may show that except for a trivial case where the sequence a,, is
ultimately equal to one, we may rearrange the words of X in a length-
preserving way so that for some b € A and some integer n > 0 the prefix
code Y = X N (a* Ua*ba*) satisfies

Y:anu{yO)yh'"ayn—l} (36)
where each y; = a*ba*~*~! is a word of length A; satisfying
i+1< )\ <n (3.7)

and there is an integer ¢ with 1 < ¢ < n such that \; = n iff : > n —t and
finally the number A; are relatively prime.

The above conditions are satisfied in particular when Ag < A} < --- <
An—1 and the A; are relatively prime.

The following lemma therefore completes the proof of Theorem 3.1.

LEMMA 3.2. — IfY satisfies the above conditions, there exists a word
yin Y™ such thata*y C Y™

Proof : We denote @ = {0,1,---,n — 1} and we define an action on Q
by
ia=(i+1) modn
ib=(t=X+1) modn

The corresponding automaton is such that Y* = Stab(0). Let M be the
transition monoid of the automaton, which is the monoid of all mappings
from @ into @ obtained by the action of all words. For each d with
1<d<n,let

ILi={n-d,---,n—-2,n-1}

and let My be the monoid

Mg={meM|Qm=1I;and i.m =i for all i € I;}.

We want to prove that M; is not empty. This implies our conclusion
since a word z defining an element of M; satisfies

a*(za) CY"

In the sequel we do not distinguish between a word and the element of
M that it defines. We first observe that for all 7« € Q) we have

iba™"l >
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with equality iff ¢ € I,. Thus ba™~! has a power which belongs to M,. This
proves that M; is not empty. We shall now prove that if M, with1 < s <t
is not empty, then some M, with 1 < r < s is not empty. For ¢ in @, we
denote [q], the integer in {1,2,---,s} congruent to ¢ mod. s. Let m be an
element of M,.

Case 1. There exists a p with 1 < p < n such that (n — p).m # n — [p];.
We choose the smallest p satisfying this inequality. Then p > s by the

definition of M. Let

m' = ma™t* " Pm

Js = I — (n - [p]s)

Since Q.m = I,.m, we have @Q.m’ = I,.m’. For all s’ with 1 < &' < s

we have
(n—=s)m' =(n-s)a"t*"Pm

= (n+(s— )= p)m
=n—[p+s]
and
(n—s)m' =(n—-s)a"*Pm
=(n—-p)m

#n—[pls

Hence Q.m' = J,. If [p]; = 1, the element m; = m'a belongs to M,_,.
Otherwise, let [p]; = k > 1, and let

me = m/(an—lm)a—k

We have, for 1 < s’ < s,
(n—=s§)m' =n—~T[k+ 5],
andfor 1 <s' <s
(n=s)(a""'m)=(n—-§-1)m=n—-s—1

whence
(n—s)(a"'m)y*F=n—s—k
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and finally
(n=s)Yma=n-5s".

Hence mg belongs to M;_; whence the desired conclusion in this case
also.

Case 2. For all p with 1 < p < n we have (n — p).m = n — [p],. We first
suppose that s does not divide n. Let then n = n’s + d with 1 < d < s.
For all d’ with 1 < d’ < d we have

(n—d).a®m=(d—d)m

=n—d

Hence a®m fixes pointwise the set I;. Also for d < d’ < s we have

(n—d)a*m=(n+d-d)m
=n+d-d

Hence some power of am belongs to M.

We are finally left with the case where s divides n. It is easy to see that
this implies that p.m = p mod.s for all p € I and m € M. Since the )A; are
relatively prime, this implies s = 1, a contradiction. O

An additional problem concerning length distributions is the following.
When a prefix code X is the stabilizer of a state in a finite automaton, then
the series fx (t) is rational (see Eilenberg, 1974). It is not completely known
under which conditions the converse holds, i.e. under which additional
assumptions Theorem 3.1 holds with the additional conclusion that the
prefix code is a stabilizer in a finite automaton. See (Perrin, 1989) for a
partial answer.

4. FLIPPING EQUIVALENCE
We introduce a transformation on prefix codes called flipping. It is
defined as follows. Let X be a prefix code on the alphabet A. Let a,b € A

be two letters and let u be a proper prefix of X. Let

X = X'+ uaR + ubS
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with X’, R, S prefix codes. One has in fact R = (ua)"!X,S = (ub)~1X.
The prefix code
Y = X' + uaS + ubR

is said to be the image of X under an elementary flip. A flip is a
composition of elementary flips. The flipping transformation defines an
equivalence called the flipping equivalence. We denote

X~Y

two prefix codes X,Y which are flipping equivalent.

The flipping transformation is of course a very natural and simple one
on the trees associated with prefix codes. Indeed, an elementary flip is just
an exchange of two subtrees rooted at the sons of some vertex.

Figure 4.1. An elementary flip

We have represented on Figure 4.2 an equivalence class of the flipping
equivalence. Actually two unlabeled complete binary trees correspond to
flipping equivalent maximal prefix codes iff they are isomorphic, as one
may easily verify.

ANADAMEN

Figure 4.2. A flipping equivalence class

The flipping equivalence preserves some of the properties of prefix
codes. First of all, two flipping equivalent pregix codes have the same
length distribution (the converse implication is however not true). As
a consequence, equivalent prefix codes have the same period. Also, two
equivalent prefix codes are simultaneously maximal or not maximal.

We are going to prove the following result. It is, in the case of finite
prefix codes, a reinforcement of Theorem 3.1
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THEOREM 4.1. — The flipping equivalence class of any finite mazimal
prefiz code of period 1 contains at least one synchronizing prefiz code.

The proof relies on two lemmas. In the first lemma we start with a
Reutenauer’s factorization (2.8)

X-1=L(A-1)(d+(A-1)D)

and consider R = (d+ (A —1)D). The homogeneous component of highest
degree is, when D # 0 R R
R=AD

The lemma shows that, except for the periodic case, the homogeneous
polynomial R is not equal to A”. The condition given is the lemma is of
course also sufficient.

LEMMA 4.2. — If X 1s a finite mazimal prefiz code of period p such that
X—-1=L(A-1R

where R = A" for some n > 1, then R is a polynomial in A diwviding
1+ A+...+ AP7L.

Proof.Let E = (A — 1)R. We first show that E is a polynomial in A.
Let us suppose by induction on m < n that

n
E=E+ ) siA (4.1)

i=m+41

with | E/ |< m. Let g be in the support of L and let h be a word of length
m. For all words k of length n — m we have ghk € supp(il’*i’) C supp(X)
and thus ghk € X. Since X is prefix, we have (LE, gh) = 0.

But, by Formula (4.1) we have

n

(LE,gh) = (L, g)(E',h)+ > Tigm—isi (4.2)

i=m+41

where r; is the coefficient in L of the prefix of length 7 of g and ¢ =| g |.
Since (LE,gh) = 0, we deduce from (4.2) the Formula

(El’h) :’(1/(.[/,_(])) Z Tt4m—iSi

i=m+1



312 DOMINIQUE PERRIN AND MARCEL-PAUL SCHUTZENBERGER

It shows that (E’, h) does not depend on the word h but only on its length
m and proves that Equality (4.1) is true for m — 1. Thus we have proved
by induction that E is a polynomial in A, i.e.

FE = En: S,'Ai
i=0

Let  be a word of X of length ¢. Let 7, s be the polynomials in the

variable z
q n

r(z) = Z rizt s(z) = Z 52"

1=0 1=0

where r; is the coeflicient in L of the prefix of length i of . We have for
each integer m such that 0 < m < ¢ the equality similar to (4.2)

Z T,'Sj =0
i+j=m

since, X being prefix, the coefficient of the prefix of length m of z in LE
is zero. We therefore have

21— 1 =7r(z)s(2)

and the lemma is proved. ]

We now prove a second lemma. It shows that, in the non periodic case,
we may use the flipping transformation to destroy the possibility of a non
trivial factorization of the polynomial X — 1. For a finite maximal prefix
code X, we denote by e(X) the integer defined by

e(X)=max{e>0|X-1=L(A-1)R,e=|R|}

Thus, e(X) > 0 iff X has a non-trivial factorization. Consequently,
e(X) = 0 implies that X is synchronizing.

LEMMA 4.3. — Let X be a finite mazimal prefiz code such that
X-1=L(A-1R (4.3)

with | R|=n>1 and R # A™ Then there exists a prefiz code X' flipping
equivalent to X such that

e(X') < e(X)
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Proof.Let E = (A — 1)R. We first note that Eq. (4.3) implies that
X = LAR = LE. Therefore the homogeneous polynomials L E are
unambiguous, i.e. have 0-1 coefficients. Let g € L and let Y be the finite
maximal prefix code Y = g=1X. We have ¥ = E. Since ¥ # A™+!, there
exists a prefix code Y’ flipping equivalent to Y such that % # Y. Let X'
be the maximal prefix code defined by the equality

X' —gY' =X —gY (4.4)
We have X’ ~ Y’. Consider a non trivial factorization
X' -1=L'E (4.5)

and suppose by contradiction that | E |<| E’ |<| X |. Since ¢Y' ¢ X' =
L'E’, the set L' contains a prefix g’ of g. Let g = g’h (see Figure 4.3).

Figure 4.3. The codes X and X’

Let F = h™'E',H = ¢'"'L — h and let L, E, L be defined by the
following equalities
L=Li+¢H+gh

E'=E, +hF
L'=Li+g¢

Substituting into (4.3) and (4.5), we obtain
=(L1+9gH+¢hE (4.6)

X' = L/(E} + hF) (4.7)



314 DOMINIQUE PERRIN AND MARCEL-PAUL SCHUTZENBERGER

By restricting Equality (4.4) on both sides to the words of maximal
length beginning with ¢’, we derive

B =HE (4.8)

And by restricting (4.4) to the words of maximal length that do not
begin by g’ we obtain
Li(E{+hF)=LE (4.9)

Substituting in (4.9) the value of E! given by (4.8) we have
L\hF = (I, - I H)E (4.10)

Since | Fl=| E |, we deduce from (4.10) that F=E.

This contredicts the hypothe51s Y # ¥ since on one hand ¥ = E and
on the other hand F = ¥'.0

We can now complete the proof of Theorem 4.1. We use an induction
on the integer ¢(X). The property is true when e(X) = 0 since then X
itself is synchronizing. When e(X) > 1, we have X — 1 = L(A — 1)R with
| R|=n>1.If R = A" then by Lemma 4.2, R divides 14+ A+ ...+ AP~!
with p the period of X. Hence, p > n+ 1 > 2 in contradiction with the
hypothesis p = 1. Therefore, R # A™ and by Lemma 4.3, there exists an
X' flipping equivalent to X such that e(X’) < e(X) whence the property
by induction.

5. COMMUTATIVE EQUIVALENCE

There is another equivalence on prefix codes which is also a refinement
of the length distxribution equivalence. This equivalence, called commu-
tative equivalence is of more general interest since it applies to all subsets
of the free monoid. We first recall its definition.

Two words u,v in A* are said to be commutatively equivalent if for
all @ in A the number of occurrences of a in u is equal to the number of
occurrences of @ in v. We denote this equivalence by the symbol =. Two
subsets X,Y of A* are said to be commutatively equivalent if there is a one-
to-one mapping f from X onto Y such that for all z in X, one has f(z) = z.
We again denote X = Y. Figure 5.1 represents two commutatively
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equivalent maximal prefix codes. Actually their equivalence class does not
contain other prefix codes (compare with Figure 4.2)

Figure 5.1. Two commutatively equivalent prefiz codes

We will basically use the same arguments as in the preceding section
to prove the following result.

THEOREM 5.1. — The commutative equivalence class of any finite
mazimal prefiz code of period 1 contains at least one synchronizing prefiz
code.

The proof goes along the same lines as the proof of Theorem 4.1.
We choose X such that the integer e(X) is minimal in its commutative
equivalence class. Suppose, by contradiction, that X is not synchronizing.
Then we have

X —1=L(A—-1)(d+D(A - 1))

with | D |> 2. By Lemma 4.2 we have D # A™ since otherwise X would
be of period p > 2. Consequently, there exists a word h such that for some
pair of letters a,b in A we have

(ha)~'D # (hb)™'D

Let U = (ha)~'D,V = (hb)'D. Let g € G and Y = g~'X. We have
Y = AD and therefore

Y = W + ahbU + bhaV

Let
Y' =W + ahbV + bhalU

Since ahb = bha, we have Y = Y’. Let X’ be the prefix code commutatively
equivalent to X defined by

X' —gY' =X —-gY
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Then, one may use the same proof as in Lemma 4.3 to show that
e(X') < e(X), a contradiction. This proves Theorem 5.1

To close this section, we mention the fact that the commutative
equivalence is the object of an important open problem about codes.
It is indeed conjectured that any finite maximal code is commutatively
equivalent to a prefix code (see Berstel, Perrin, 1985).

6. THE ROAD COLORING PROBLEM

We finally discuss the road coloring problem mentioned in the intro-
duction and we relate it to the results of the previous sections.
Let A be a finite automaton given by a function

6:QxA—-Q

The underlying graph of A is the directed graph having @ as set of vertices
and an edge (p,q) iff there is an a € A such that é(p,a) = ¢. It is
therefore the graph obtained from the familiar diagram associated with
the automaton after removing the labels of the edges. It has the property
that all its vertices have the same outdegree, in fact equal to the number
of symbols in A.

A graph is said to be road colorable if it is the underlying graph of some
synchronizing automaton.

Recall that a graph is called aperiodic if there is an integer n such that
the n-th power of its adjacency matrix has all its elements strictly positive.
This is of course equivalent to the graph being strongly connected and the
g.c.d of the cycle lengths being equal to one.

The conjecture formulated in (Adler, Goodwin, Weiss, 1977) is the
following : any aperiodic graph with all vertices of the same outdegree is
road colorable.

We reformulate Theorem 4.1 as follows to obtain a solution of this
conjecture in a particular case.

THEOREM 6.1. — Any aperiodic graph such that
(2) all vertices have the same outdegree
(#2) all vertices except one have indegree one
is road colorable.

Proof. We define the renewal automaton of a finite maximal prefix code
X to be the automaton having the set P of prefixes of X as set of states and
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the transition function defined by é(p,a) = pa if pa € P and 6(p,a) = 1
otherwise. The graph underlying the renewal automaton of X is therefore
obtained from the unlabeled tree associated with X by merging all leaves
with the root. Clearly, an elementary flip does not affect this graph.Hence,
when X and X’ are flipping equivalent, the underlying graphs of their
renewal automata are the same and the result follows from Theorem 4.1.0

The road coloring conjecture is known to be true in some other
particular cases. One of them (O’Brien, 1981) is that of graphs satisfying
the additional assumptions

(1) there are no multiple edges

(ii) there is a simple cycle of prime length.

Another case, proved by Friedman (1990) is that of graphs containing
a simple cycle of length prime to the weight of the graph. The weight of
a graph is defined to be the sum of the components of an integer Perron
left eigenvector chosen with its components relatively prime.

Some further particular cases have been investigated by A. Mahieux
(1986).

In the paper of (Adler et al., 1977) the following result is proved :
let G be an aperiodic graph with constant outdegree. Let M be the
adjacency matrix of G and let n be an integer such that M™ has all
its coefficients positive. For k¥ > 0, let G(*) denote the graph having
as vertices the paths of length h in G and edges the pairs (s,t) with
s = (s1,-..,8k),t = (52,.-.,5k,5k4+1). Then G(*) is road colorable. In
terms of symbolic dynamics, this means that the system of finite type
associated with G is conjugate to one that is road colorable. This result
can actually also be proved using the construction of (Schiitzenberger,
1967) reproduced in Theorem 3.1. Indeed a splitting of the states of the
graph will allow to label the cycles in such a way as to obtain a set of first
returns containing the words described by Equations (3.3.6-7)
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