A NON-EXISTENCE THEOREM FOR AN INFINITE FAMILY OF SYMMETRICAL BLOCK DESIGNS

By M. P. SCHÜTZENBERGER*

Centre de Génétique de l'Hôpital Saint Louis (Paris)

An incomplete block design consists of a set of b subsets or 'blocks', each block containing k different 'varieties' chosen out of v varieties in all, in such a way that each of these varieties occurs the same number r of times or 'replications' in the whole design, and each pair of varieties occurs together in a fixed number λ of blocks. The design is called 'symmetrical', if v = b and r = k: then v, r and λ are related by

 $v = 1 + \frac{r(r-1)}{\lambda}.\tag{1}$

We show in this paper that, if v is even, then such a symmetrical design can exist only if $r - \lambda$ is a perfect square.

The design may be schematized by a square $v \times v$ matrix $A = ||a_{ij}||$ in which columns correspond to blocks and rows to varieties, and $a_{ij} = \alpha$ if the *i*th variety is a member of the *j*th block and $a_{ij} = \beta$ if not. Without loss of generality we may suppose that $\alpha = 1$ and $\beta = 0$.

Further, A may be interpreted in a Euclidean space E_v as a set of v row vectors V_i , the coordinates of which are the a_{ij} 's; and the V_i 's satisfy the following conditions:

I. The V_i 's have the same length $l = \sqrt{r}$, for

$$l^{2} = r\alpha^{2} + (v - r)\beta^{2} = r.$$
 (2)

II. The angle $\phi_{ii'}$ between any two V_i 's, has the same value $\cos^{-1} \lambda/r$, for

$$V_i V_{i'} = l^2 \cos \phi_{ii'} = \lambda \alpha^2 + 2(r - \lambda) \alpha \beta + (V - 2r + \lambda) \beta^2 = \lambda. \tag{3}$$

From these relations, det |A|, the measure of the multiple vector A may be computed by reducing A to a triangular matrix B by rotations in E_v . Thus B is defined by:

If
$$i \leqslant j+1$$
, then $b_{ij}=0$, (4)

for all
$$i$$
:
$$\sum_{j=1}^{n} (b_{ij})^2 = l^2 = r, \tag{5}$$

for all
$$i$$
 and i' :
$$\sum_{j=1}^{n} b_{ij} b_{i'j} = l^2 \cos \phi = \lambda. \tag{6}$$

From (4) and (6) it follows immediately that:

For all
$$i \leqslant i'$$
 and $j \leqslant i-1$:
$$b_{ij} = b_{ij} = c_j, \tag{7}$$

and from (5) and (6)
$$b_{ii}^2 = d_i^2 = r - \sum_{j=1}^{i-1} c_j^2, \tag{8}$$

$$d_{i}c_{i} = \lambda - \sum_{j=1}^{i-1} c_{j}^{2} = \lambda - r + d_{i}^{2}.$$
(9)

Hence
$$d_{i+1}^2 = d_i^2 - c_i^2 = d_i^2 - (d_i^2 + \lambda - r)^2 d_i^{-2}. \tag{10}$$

^{*} We wish to express our grateful thanks to Prof. Penrose and to Dr Cedric A. B. Smith for their advice in the preparation of this paper.

Hence, writing $P_{\mu} = \prod_{i=1}^{\mu} (d_i)^2$, we get the linear recurrence equation

$$\frac{P_{\mu+1}}{P_{\mu}} = \frac{P_{\mu}}{P_{\mu-1}} - \frac{(P_{\mu} - (r - \lambda) P_{\mu-1})^{2}}{P_{\mu} P_{\mu-1}},
P_{\mu+1} = 2(r - \lambda) P_{\mu} - (r - \lambda)^{2} P_{\mu-1}.$$
(11)

For the initial conditions $p_1=r,\,P_2=r^2-\lambda^2,$ the solution of (11) is

$$P_{\mu} = (r - \lambda)^{\mu - 1} (r + (\mu - 1)\lambda), \tag{12}$$

and, finally, we get, by putting $\mu = v = 1 + \frac{r(r-1)}{\lambda}$,

$$\det |A| = \det |B| = P_v^{\frac{1}{2}} = r(r-\lambda)^{\frac{1}{2}(r-1)}. \tag{13}$$

Hence we have the following theorem: if v is even, a symmetrical incomplete block design may exist only if $r-\lambda$ is the square of an integer, for det |A| may be computed directly by rational operations.

It is obvious that the theorem applies only if λ admits 2 as a divisor and that, for any such λ it works for an infinite number of values of r. Obviously too, the theorem may be used indifferently for a design or its complement, for

$$r - \lambda = (V - r) - (v - 2r + \lambda). \tag{14}$$

We have listed below all the cases of application of the theorem for $v \le 100$ or $r \le 20$ ($r \le v/2$, and $r \ne v$ or v-1):

	\boldsymbol{v}	r	λ	v	r	λ	$oldsymbol{v}$	r	λ
(1)	16	6	2,	*34	12	4	70	24	8
(2)	*22	7	2	(3) 40	13	4	*76	25	8
	*46	10	2	96	20	4	66	26	10
	56	11	2	36	15	6	*88	30	10
	*92	14	2	*52	18	6	*94	31	10
	*106	15	2	*58	19	6	64	28	12
	*172	19	2	78	22	6	*86	35	14
							100	45	20

^{*} Impossible by application of the theorem.

⁽¹⁾ Kümmer's configuration.

⁽²⁾ Already discarded by Q. M. Hussain. (Cf. R. A. Fisher & F. Yates, Statistical Tables..., 3rd ed., 1948, pp. 17 and 65.)

⁽³⁾ Finite geometry modulo 3.