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A TENTATIVE CLASSIFICATION OF GOAL-SEEKING BEHAVIOURS.*

By M. P. SCHUTZENBERGER, M.D., Sc.D.,

Paris.

GOAL-SEEKING behaviour, once a great mystery, is now beginning to be
understood. In its simplest forms it is, in fact, understood to-day almost com-
pletely. Thus the theory of the simple regulator, such as the thermostat, not
only includes an extensive repertoire of techniques, but the elementary prin-
ciples, of the necessity for negative feedback for instance, are becoming scien-
tific commonplaces. In getting to know, however, about these simple systems
and their principles, we should not make the mistake of thinking that there is
nothing more to be learned. On the contrary, in real life many an important
goal is to be achieved only through some quite complex pattern of behaviour,
a pattern for which the simple concept of ‘‘ negative feedback "’ is quite inade-
quate. It is of these more complex patterns that I wish to speak to-day.

One way of studying the subject is by way of actual experiment ; but I
shall make little reference to actual experiments to-day. The fact is that before
such experimentation can be undertaken with any usefulness there must be a
preliminary period of study and thought. Before we can experiment we must
be clear about what questions we want to ask, and why these questions are
significant, and what are to be the interpretations of the experiment’s various
possible outcomes. Before we can usefully start experimenting, in other words,
we must have a well-developed theory. Such a theory must inevitably, if it is
to be precise, be mathematical ; but I hope to show in this paper that what
is necessary, at least at first, is the logic and precision of mathematical thought
rather than its more advanced techniques. If then we are to explore the pro-
perties of the more complex forms of goal-seeking behaviour we must first
construct some suitable mathematical models.

The use of mathematical models in the study of animal and human behaviour
goes back to the early nineteenth century, but those early attempts have little
in common with the contemporary researches of such scientists as von Neumann,
Wiener, and, here among us, Dr. Ashby. The last author has particularly
stressed the similarity between the activities of some types of mechanism and
that of the brain ; and this similarity must be the excuse for a mathematician
such as myself venturing into this controversial field. My aim will be to show
how certain of the more complex goal-seeking behaviours, seen in both machines
and men, can be described, and the principles made clear, by a uniform mathe-
matical framework of ideas.

* A paper read at the Annual Meeting of the Royal Medico-Psychological Association
held at Barnwood House, Gloucester, 9 July, 1953.
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Basic CoNCEPTS.

In order to make the ideas as clear as possible I shall start with a very simple
example. Let us suppose a man is on the top of a hill and that he wishes to
get to a house in the valley ; let us assume that the ‘“ goal ” is his arrival there
in the shortest possible time. Between him and the house are many causes of
delay : boulders, marshes, escarpments, and so on. Travelling in a bee-line
is out of the question. Let us consider his possible modes of behaviour.

An exhaustive, and final, solution of the problem would be given by taking
a map of the district, dividing it into small areas, finding the time taken to cross
each area individually, joining the areas into all possible chains between the
top of the hill and the house, and then finding which chain gives the smallest
total time for the journey. The path so selected is absolutely the best and has
been selected by what I shall call the ‘‘ strategy ’’ of the problem. (I shall use
the words ‘‘ strategy ”’ and ‘‘ tactic ”’ throughout this paper in the particular
senses defined, and with no correspondence to other usages, though in some
cases our ‘‘ strategy '’ will correspond to von Neumann’s ‘‘ Minimax strategy.”’)

Usually, of course, the traveller would not use so elaborate a method. A
common method would be to make the selection in stages. He would first
select a point about a hundred feet down to which he could get rapidly ; then,
arrived there, he would select another point a hundred feet lower still to which
a rapid descent was possible, and so on till he reached the house. This method
I shall call a simple factic, as contrasted with the previous strategy. The tactic
differs from the former in that the tactic does not take into account the whole
of the situation, but proceeds according to a criterion of optimality that is
applied locally, stage by stage.

This example, of the traveller on the hill, is really more general and widely
applicable than might at first appear. We can in fact replace the hillside by an
abstract space and the expected elementary times ¢; (on the elementary areas)
by some function f(P) of the points P of the space. At this level of abstraction
the problem is then to find a curve C between the initial and terminal points,
such that the integral

| sar

is a minimum.

To see more clearly how the concept can be applied when the problem is not
geometrical, let us consider an example of quite a different type. Suppose a
specialist in vocational guidance has to allot # given persons to # given jobs,
when he has already tested them and has made predictions (#% in number) of
the ‘“ suitability >’ (on some scale) of each person for each job. His “‘ goal ™’ is
such an assignment as will maximise the suitabilities over the whole set. Thus,
it might happen that three people 4, B, and C had the suitabilities shown in the
Table for jobs I, II and III.

I II III
A 9 10 4
B 5 8 4
C 3 2 I
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An ““ assignment "’ (of people to jobs) is determined when we have selected
three entries, no two being in the same row and no two in the same column.

Here the strategy would consist of computing the totals corresponding to
each of the n/ possible assignments. In this example there are T X 2 X 3, i.e.,
6 possible assignments ; trials soon show that the best is that which gives 4
the job I, B the job II, and C the job III. This scores 18, and no other assign-
ment scores more.

If » is large, the computations become prohibitively heavy; a possible
tactic is then to proceed by first picking out the largest entry in the table, then
cancelling out that person and that job, then selecting the next largest in the
remaining # —- I persons and jobs, and so on to the completion of the assign-
ment. If it is applied to the table, then the score of 10 first determines that 4
is to be given job II, then the 5 gives B the job I and then C gets job III.

This tactic scores 16, little less than the maximum of 18. We see therefore
that it may be possible to achieve fairly easily a score that is only slightly
below the best when the best itself is quite impossible of achievement (as would
have been the case in this example had # been thirty instead of three).

The same principle occurs in chess-playing. If, toward the end of a game,
player 4 can see how to beat B in spite of all defences, then 4 will be following
what I have called a strategy. Often, however, this perfect way to the goal
cannot be perceived ; then 4 looks for some move that will achieve a temporary
or local advantage, such as capturing B’s Queen, or covering the largest area of
the board, or promoting a pawn, etc. Such a move is a tactic.

STRATEGY AND TACTIC.

Our next step is to see more clearly what is the relation between these two
—to show them as derivatives of a single concept. Let us go back to the man
on the hill.

Let us assume that by now he has discovered everything about the hillside,
so that he now knows the true minimal time 7'; necessary for going from every
point P; of the hillside to the house. This information he has conveniently
schematized on his map by drawing a series of isockronic curves such that each
curve joins all those places that are situated at the same (minimal) time from
the house. Thus, the curve marked ‘‘ 5 minutes *” would run through all those
places from which the house can be reached in 5 minutes but not less.

Once the map has been prepared, a simple reasoning, borrowed from the
calculus of variations, shows that, given any starting point, the optimal path to
the house is one that cuts every isochvonic curve at vight angles. (Technically
we may express this by saying that the optimal paths are geodesics in a variation
problem and that the isochronic curves are the ‘‘ transversal *’ of the problem.)

From the practical point of view, the introduction of the isochronic curves
is not a mere artifice. In some problems a computation of the solution may be
obtained easily if the path is computed backwards from the goal. Somztimes,
though more rarely, it happens that computation of the isochronic curves is
actually the quickest way to the solution—the most economical in the number
of arithmetical operations. Thus, in the problem of assigning jobs we saw that
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n! sums involving (» — 1).%/ additions had to be performed ; if, however, we
follow a method derived from the considerations just given, the number will
not exceed #(2"1 — 1), which is far fewer ; for instance, if % is 12, the number
of elementary additions falls from 5,269,017,600 to 24,564. Similar reasoning
has been used by Hoffman to design codes of minimal redundancy.

The introduction of isochronic curves enables us now to see more clearly the
relation between a strategy and a tactic. For if a point follows a path that is
everywhere at right angles to the isochronic curves then it is also moving in
such a way as to make maximal the instantaneous decrease of the remaining
time—it is moving optimally according to the local conditions. In other words,
if our man behaved as if acted on by a field of force deriving from a potential
(which had the isochronic curves as equi-potential lines), then his path would be
identical with that determined by the optimal strategy. It is now clear that
once the isochronic curves are given, i.e., once the map’s projection has been
changed to that of the really optimal metric, the distinction between strategy and
tactic disappears.

CLASSIFICATION OF IMPERFECT TACTICS.

Having considered the optimal path, let us turn next to consider the case
of the path that is grossly non-optimal, to that, say of a stone rolling down
towards the valley under the action of gravity. According to the laws of
physics, the stone, at each moment, is falling in such a direction as takes it the
longest distance down in the shortest time, when only immediately local con-
ditions are considered. Thus the difference between the behaviours (or paths)
of man and stone is simply a difference between the fields which direct them ;
the man’s field is truly optimal, for it is based on the isochronic curves, and the
stone’s field is that of its crudest approximation—the Newtonian field of gravi-
tation.

In addition to these two fields are others ; what can we say a priori of their
properties and of their values as tactics ?

First they may be classified according to what I shall call their ‘‘ span of
foresight ”’; thus, if the man coming down the hill plans each next move
according to the details of the next hundred feet he will do better than if he
were to plan only over the next ten feet. The spans of foresight are here a
hundred feet and ten feet respectively.

Should the span of foresight be equal to the distance from the goal, then
obviously the tactic and the strategy become identical.

The second characteristic that is to be considered is the behaviour’s *‘ flexi-
bility.”” Suppose the span of foresight is ““ 100 feet below’’; once the man
has covered half this distance he may discover that his provisional goal was not
the best, and that he should now take a different path for a different goal,
again at one unit of foresight ahead. Clearly, in the strategy of the traveller
with complete foresight the concept of flexibility plays no part, and neither does
it at the other extreme—the case of the rolling stone (for the latter’s steps are
assumed to be infinitesimal, so that no smaller step is possible). It is in the
intermediate degrees that the concept becomes important.

After these preliminaries, it will be seen that any goal-seeking behaviour
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may be classified on a scale of strategies and tactics, each one depending on a
general function representing some measure of the distance between the present
position and the goal. Thus, for the stone, the function depends on the present
altitude above the bottom of the valley. Had the stone been a piece of iron
and the goal a big magnet, the function would have depended on the object’s
present distance from the magnet. Other models would have led to other
functions ; so we have many tactics, each depending on a single function. The
complete specification, and full classification, are given when to this function
we add the span of foresight and the degree of flexibility, the latter being con-
veniently measured by the minimal time at which the provisional goal may be
replaced by another.

THE STOCHASTIC ENVIRONMENT.

What we have done so far is to show that the ‘* strategy ’’ is simply one of
the tactics : it is that extreme tactic based on the best function as given by the
isochronal curves. It is now instructive to show conversely (so close is the
relation between them) that any tactic may be viewed as some sort of strategy.
This is so if the time #, taken in crossing each elementary area is not permanently
constant, as we have assumed so far, but depends on other factors of which
we know only the probability of their values. Thus one of the areas might
be a marsh that is easy to cross when the weather has been fine but difficult to
cross after rain ; if the traveller does not know what has happened prior to a
particular trip, he can give only a probability to any particular ‘‘ duration of
crossing.”” Again, another area might be a lake, to be crossed only by a boat
which may or may not be available, and so on. More generally we can assume
that the elementary times #; are not given fixed values but are given fluctuating
values, depending on some random or ‘‘ stochastic *’ process.

If now we apply the theory of inductive behaviour as defined by Wald on the
Ville-von Neumann principles, we find that the optimal strategy is just the simple
tactic of attempting to do one’s best on a purely local basis.

To illustrate this thesis let us consider some well known examples. First
consider that of the dog that wants to run to his master, who is himself walking
steadily in a definite direction. If the dog is something of a computer it
will perform an integration and will go directly to the place at which their
relative velocities will enable them to meet. If the dog is not so clever it
will continuously run directly towards where its master is at that moment.
This second tactic is, of course, the simpler of the two, but is inferior if the
master is moving uniformly. If, however, the master is making steps
backward and forward in a totally random way, as if he were undergoing
a Brownian movement, then this second tactic can be shown, by mathematical
proof, to be actually the best one possible. The tactic has become the strategy.

Here is a second example. A number of lengths of telephone wire must be
joined end to end to complete a long-distance line. Each length imposes some
small but characteristic distortion @; on the message. The overall distortion
is the sum of the individual distortions, but by reversing a length before it is
joined the distortion can be added positively or negatively. How should the
lengths be joined if the total distortion, £ + 4, is to be a minimum?
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If a hundred lengths are to be connected, the absolute optimum can hardly
be achieved, for the number of sums that would have to be calculated (if all
possibilities are to be explored) is prohibitively large. What is the engineer
to do? In practice, he adds the lengths one by one, at each new addition
adding the wire this way or that so as to make the sum as small as possible at
that particular stage. This tactic has been found to give quite satisfactory
results, its success, perhaps, depending on the fact that this tactic really is the
best possible if the wires are provided, and have to be connected, one by one.

Other examples of this thesis—that the optimal strategy often consists of
doing one’s best on a local basis—is also used in Fano’s method for finding an
optimal code, and in Gavrilov’s method for building up a switching system that
will represent a given logical function at minimal cost.

CONCLUSION.

In this paper I have attempted to show something of what is implied by
‘“ goal-seeking ~’ when the whole situation is more complex than that occurring
in, say, a simple thermostat. It is clear that the further study of these situa-
tions will have to be made mathematically. It is also clear that much more
development will be necessary on the purely mathematical side, for much of the
necessary mathematics will have to be developed specially. To the mathema-
tician many of the problems raised are new, and will need new methods.

In particular we need to know more about how much efficiency is lost when
the span of foresight and the degree of flexibility are not optimal. The pro-
blem is not made easier by the fact that often the parameters do not enter the
problem with random values, so the appropriate theorems will have to be
stated in a somewhat unusual form.

The purpose of this paper, however, was not to enter into these technicalities
but to show in a general way how the introduction of mathematics into this
branch of psychology might itself be a worth-while tactic.

SUMMARY.

When “‘ goal-seeking *’ behaviour is considered in situations of more than the
most elementary type, the problems that arise are related to those of strategies
and tactics.

I have attempted to show that clear-cut principles are involved, capable of
mathematical treatment.

It appears likely that among the factors of special importance are those of
““ span of foresight ” and ‘‘ degree of flexibility.”

The case has also been considered in which the organism faces an environ-
ment that can be characterized only in terms of probability.
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