ALGÈBRE. — Sur deux représentations des demi groupes finis. Note (*) de M. Marcel Paul Schützenberger, présentée par M. Georges Darmois.

Soit Σ un demi groupe (1) d'applications d'un ensemble fini E dans luimême. A tout $\sigma \in \Sigma$ on fait correspondre dans certains problèmes l'application « inverse » σ définie sur $F = \mathfrak{P}(E)$ par $\sigma x = \{ \cup y : \sigma y \subset x \}$. Les σ fournissent une représentation de Σ anti-isomorphe de la première. Attachons à tout σ les deux matrices carrées à indices dans F suivantes :

$$S_{\sigma}: S_{\sigma}(x; y) = 1 \quad \text{si } \sigma x = y; \qquad S_{\sigma}(x; y) = 0 \quad \text{si } \sigma x \neq y,$$

$$S'_{\sigma}: S'_{\sigma}(x; y) = 1 \quad \text{si } x = \sigma y; \qquad S'_{\sigma}(x; y) = 0 \quad \text{si } x \neq \sigma y.$$

 S_{σ}' est la transposée de la matrice d'application attachée à $\overset{-1}{\sigma}$ et S_{σ} est la matrice correspondant à l'extension de σ à F. Supposant que Σ est le demi groupe de toutes les applications de E dans lui-même, nous donnerons une base du module $\mathfrak B$ des matrices carrées à indices dans F telles que

$$S_{\sigma}B = BS'_{\sigma} \quad \text{pour tout } B \in \mathfrak{G} \quad \text{et} \quad \sigma \in \Sigma$$

Notations. — On utilisera les matrices particulières suivantes dont les éléments sont égaux à o ou à i. (On a indiqué pour chacune d'elles ci-dessous la partie de $F \times F$ correspondant aux éléments non nuls).

$$\begin{array}{llll} T: & x=:E-y; & B_0: & x=:\varnothing; & B_1: & \varnothing\not\simeq x\subset y; & B_2=:B_1T: & \varnothing\not\simeq x\subset E-y. \\ B_3: & x\cap y\not\simeq\varnothing\not\simeq x\cap (E-y); & C_0: & x=:y=:\varnothing; & C_3=:TC_0: & E-x=:y=:\varnothing; \\ B_1'=:B_0+B_1; & C_1'=:B_1'^{-1}; & C_2'=:(B_0+B_2)^{-1}=:C_1'T; & B_0'=:B_0+B_1+B_2+B_3 \end{array}$$

Proposition. — Les matrices B₀, B₁, B₂, B₃ constituent une base indépendante de **B**.

Démonstration. — Pour un σ donné, (1) s'écrit :

(1')
$$\sum_{y \in \mathbb{F}} S(x; y) B(y; z) = \sum_{y \in \mathbb{F}} B(x; y) S'(y; z) \quad \text{pour tout} \quad x, z \in \mathbb{F}.$$

Soit encore puisque S(x; y) et S'(x; y) ne diffèrent de zéro que si $\sigma x = y$ et $x = \overline{\sigma} y$

(1") pour tout
$$x, z \in F : B(\sigma x; z) = B(x; \sigma^{-1}z).$$

Or, pour tout σ , $z \cap \sigma x = \emptyset$ est équivalent à $x \cap \sigma z = \emptyset$. Le système (x'') d'équations se décompose donc en quatre sous systèmes tels que chaque B(x; y) ne figure que dans un seul d'entre eux et ceux-ci correspondent aux cas suivants :

$$\begin{aligned} &(\mathbf{1}'')_0: \quad x \cap z = \varnothing = : x \cap (\mathbf{E} - z), & \text{c'est-à-dire} & \quad x = \varnothing. \\ &(\mathbf{1}'')_1: \quad x \cap z \neq \varnothing = : x \cap (\mathbf{E} - z), & \text{»} & \quad \varnothing \neq x \in z. \\ &(\mathbf{1}'')_2: \quad x \cap z = : \varnothing \neq : x \cap (\mathbf{E} - z), & \text{»} & \quad \varnothing \neq : x \mathbf{E} - z. \\ &(\mathbf{1}'')_2: \quad x \cap z \neq \varnothing \neq : x \cap (\mathbf{E} - z). & \end{aligned}$$

Montrons maintenant que si B(x; y) et B(x'; y') figurent dans le même sous-système, ils sont égaux.

 $(1'')_0$: Quel que soit $z \neq \emptyset$, E, on peut trouver σ et σ' tels que $\sigma z = \emptyset$ et $\sigma' z = E$. Donc $B(\emptyset; z) = B(\emptyset; \sigma z) = B(\emptyset; \emptyset)$, d'une part, et, d'autre part, $B(\emptyset; z) = B(\emptyset; \sigma' z) = B(\emptyset; E)$.

 $(\mathbf{1}'')_{\mathbf{1}} : \operatorname{Si} \varnothing \neq x \subset z$, on peut trouver σ tel que $\sigma \mathbf{E} = x$ et $\sigma z = \mathbf{E}$. Donc, $\mathbf{B}(x;z) = \mathbf{B}(\sigma \mathbf{E};z) = \mathbf{B}(\mathbf{E};\sigma z) = \mathbf{B}(\mathbf{E};\mathbf{E})$.

 $(\mathbf{1}'')_2$: Quels que soient σ et z, on a $\overset{-1}{\sigma}z = \mathrm{E} - \overset{-1}{\sigma}(\mathrm{E} - z)$. Donc, comme pour $(\mathbf{1}'')_4$, $\mathrm{B}(x,z) = \mathrm{B}(\mathrm{E};\varnothing)$.

 $(1'')_3$: Nous désignons par |u| le nombre d'éléments de E contenus dans $u \in F$. Sous l'hypothèse $(1'')_3$, il existe plusieurs y tels que

$$(2) \qquad \qquad 0 < |x \cap z| \leq |y| \leq |E| - (|x| - |x \cap z|) < |E|.$$

En outre, pour tout semblable y, on peut trouver un σ tel que $\sigma y = x \cap z$ et $\sigma(E - y) = x - x \cap z$; c'est-à-dire

$$\sigma \mathbf{E} = \sigma y \cup \sigma(\mathbf{E} - y) = x$$
 et $\sigma z = \mathbf{E} - \sigma(\mathbf{E} - z) = y$.

Donc B(x; z) = B(E; y), pour tout y satisfaisant (2).

PROPOSITION. — Si le corps de base de \mathfrak{B} est commutatif, le déterminant β de $B = \lambda_0 B_0 + \lambda_1 B_1 + \lambda_2 B_2 + \lambda_3 B_3$ est égal à $\lambda_0 (\lambda_1 - \lambda_2)^m (\lambda_1 + \lambda_2 - 2\lambda_3)^{m-1}$ ou n = |E| et $m = 2^{n-1}$.

Démonstration. — λ_0 est un facteur simple de β . Formons les combinaisons suivantes de colonnes de B:

1° « Colonne z » — « colonne (E — z) » pour tous les z tels que |z| < |E|/2 et si |E| est paire pour tous les z contenant un élément fixe de E quand |z| = |E|/2. B(x; z) — B(x; E — z) = 0 si x = \emptyset ; = λ_1 — λ_2 si $x \ne \emptyset$.

2° « Colonne Ø » — « colonne E » — « colonne z » — « colonne (E — z) » pour tous les $z \neq \emptyset$, E. $B(x; \emptyset) + B(x; E) - B(x; z) - B(x; E - z) = 0$ si $x = \emptyset$; = $\lambda_1 + \lambda_2 - 2\lambda_3$ si $x \neq \emptyset$.

PROPOSITION. — Toute matrice C telle que $CS_{\sigma} = S'_{\sigma}C$, identiquement, est de la forme $C = \mu_0 C_0 + \mu_1 C'_1 + \mu_2 C'_2 + \mu_3 C'_3$ et BC = 1 si et seulement si

$$\begin{split} \lambda_0 (\mu_0 + \mu_1 + \mu_2 + \mu_3) &= I, \qquad (\lambda_1 - \lambda_2) (\mu_1 - \mu_2) = I, \\ (\lambda_1 + \lambda_2 - 2\lambda_3) (\mu_1 + \mu_2) &= I, \qquad \lambda_1 \mu_3 + \lambda_2 \mu_0 + \lambda_3 (\mu_1 + \mu_2) = o. \end{split}$$

Démonstration. — C_0 et C_3 satisfont manifestement la relation précédente de même que $(B_0 + B_1)^{-1}$ et $(B_0 + B_2)^{-1}$; le résultat en découle puisque ces quatre matrices sont linéairement indépendantes.

On trouve de même l'expression générale des matrices D (resp. D') satisfaisant identiquement $S_{\sigma}D = DS_{\sigma}$ (resp. $S'_{\sigma}D' = D'S'_{\sigma}$):

$$D = \delta_0 I + \delta_1 (B_0 + B_2) B'^{-1} + \delta_2 C_0 + \delta_3 B'_0 C_0 \qquad \text{et} \qquad D' = \delta'_0 I + \delta' T + \delta'_2 B_0 + \delta_3 T B_0.$$

- (*) Séance du 22 octobre 1956.
- (1) P. Dubreil, Algèbre, Gauthier-Villars, 1946, p. 34.

(Extrait des Comptes rendus des séances de l'Académie des Sciences, t. 243, p. 1385-1387, séance du 5 novembre 1956.)