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ON SOME MEASURES OF INFORMATION
USED IN STATISTICS

M. P. SCHUTZENBERGER
Paris

As 15 well known, the concepts of information with which statistics and
communication theory deal are different, both in their formal expression
and in their content. In statistics, when the problem is to estimate the value
of an unknown parameter 0 through the observation of the state £ of a
physical system, the a priori probability P(£ | 6) depending upon 0, one is
led to introduce the expression

F 9 P(x|0 .
=256 719) piio)
with the summation running over all the possible states x of £. A whole
family of theorems?: 4: 6 relates F, under appropriate regularity conditions,
to a lower bound of the variance of the difference 6 — 6 between the true
value of 6 and its estimated value 0.

On the other hand, in communication theory, one is accustomed to
evaluate the amount of information on ¢ itself by:

H =—3 P(&) log P(&)

It is remarkable that so much interest has been devoted to this last quantity
rather than to the older expression F, which was defined by Sir RoNALD
FisHER? as early as in 1921 and which has been very cursorily dealt with by
communication specialists.

Moreover, F and H are not the only measures of the information relative
to ‘something’ contained in an experiment involving a priori probability.
In the second main problem of statistics—that of deciding on the basis of
observation of & which of the hypotheses 0 = 0, or 6 = 0, is true—the
following expression

P(x| 0,) . . .,
Wz_zp(xleJIOgﬁ(x‘e{i) (1—0’1:]'—‘0,11]7{'1)

enters in a natural way. WALD? has shown that whatever be the procedure
used (sequential or not) for the test, the expectation of the number of
independent trials needed to reach a given level of security could not be
smaller than K/W, where K depends on the probability of error which
defines the level of security. In consequence, W could be termed the
measure of the information relative to the dilemma 0 = 6, or 0, afforded by
&. Indeed, quite close connexions do exist between F, H and W.
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M. P. SCHUTZENBERGER
After BARTLETT!, let us consider the modified form
H* = —% P(x| 0) log P(x| 0 + &)

and suppose that log P(x | 6 -+ &) may be developed into a series in ascend-
ing powers of &. Then, after some simplification

H* = H 4 £F - terms of higher order in ¢

On the same line of reasoning, if 0, = 0, + ¢ and 6; = 6, — &, where
¢ Is infinitely small, it may be shown that the random variate

f(x‘ 60)
P(x| 0y

(the expectation of which is W, when 0 =: 0,) is distributed with mean
2&2F and variance 4¢&%F, to terms of higher order in . More general relations
between F and W have been recently studied by KuLLpackS.

The aim of this present communication (also of reference 8) is to show that
these analogies are deeply rooted in the very nature of what we are ready to
call a ‘measure of information’. As a matter of fact, the leading principle of
the axiomatization we shall attempt is more or less a sophistication of
Woopwarp’s!® approach to the same problem: that when performing the
complete determination of £, one may stop at an intermediate level and
obtain the total information by adding together: (a) a term corresponding
to the information up to this point;. (b) a term corresponding to the informa-
tion from this point on, weighted with the adequate conditional probabilities.

We shall however restrict the postulation of this ‘Huygens principle’ to
those intermediate observations only, which exclude  definitely some con-
tingencies, instead of requiring it for all of them, as is the case with
Woodward’s axiomatic approach which turns out to be unnecessarily
exacting. With this weaker form, a purely algebraic treatment is possible
giving, besides the ‘conventional’ H, the expressions F and W, as special cases
of the complete solution, which can be explicitly given under some regularity
conditions.

For the sake of simplicity, the argument will be split into two parts: the
first (Condition I and Theorem I) could be extended to cases other than
information, and entails the abstract equivalent of a principle of separation
of variates. The second (Condition II and Theorem II) determines the
specific character of the information i.e. introduces the ‘log P’ function.

The regularity Conditions III and IV could be presumably weakened by
introducing another postulate which is satisfied by H, F and W: the condi-
tion that the information be non-negative. Further research would be
needed along this line, which we shall only mention here together with the
not too difficult possibility of extending Theorem I to non-finite cases, under
proper restrictions. A more general theory (using modular instead of distributive
lattices and idempotent linear operator instead of equivalence relations) may be
developed and gives an axiomatic definition of the variance (as corresponding
to H and not to F) and of the so-called ‘chi-square’ measure of discrepancy
(as corresponding to W) [see reference 11].

First of all, let us make it clear that we are not looking for a measure of
the information provided by one given result of the observations, but for a
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MEASURES OF INFORMATION USED IN STATISTICS

measure of what amount may be obtained on the average with the help of a
given observational set-up. For representing the general situation, we shall
consider a physical system whose state & is still unknown. For the sake of
simplicity it will be supposed, throughout the paper, that & can take on
only one of a finite set E of values x, y, z.... In practice, even if & were a
continuous variate, this quantification could always be assumed, since any
real measurement may be done with a finite precision only.

The a priori probabilities with which & may be any of the states x, y . . . will
be written P(x), P(y) . . . and we shall suppose that they are functions of some
unknown parameter(s) symbolized by 0. With respect to the physical
system, an observer ; is characterized by the degree of accuracy with
which he is able to recognize £. For instance, if £ is 2 numerical variate with
possible values 0, 1, 2 or 3, an observer {2, may be unable to know more about
& than to ascertain whether it is zero or not; another one, (2,, whether it is
odd or even efc. Accordingly, to each observed Q; corresponds an equivalence
relation p; between the possible states of &; that is to say, a partition of E
into disjoint subsets (X), (Y) ... (Z), Q, being unable to ‘separate’ two states
when they pertain to the same ‘class of equivalence’ of p;.

Between equivalence relations on E exists the usual partial ordering
relation p’ << p (p’ is finer than p: every class of p’ is contained in a class of
p), which means that the observer Q' is able to perform every distinction
between states which 2 can do. Further, if p’ < p, and if X is a class of p,
we shall denote by p’[X] (the ‘restriction of p’ to X’) the equivalence relation
induced by p’ on the subset X of E. If, for some subset X, p'[X] =: p"[X]
we shall write: p’ =: p[X] (‘p and p’ are identical on X’).

With these notions at hand we may now compare observers, or rather
pairs of observers.

Definition: The two pairs of equivalence relations (p;, p;) and (p, p,),
where p;, < p, and p, < p,, will be said to be in the relation ~ if, and only
if, there exists a partition of E into disjoint subsets £’ and E” such that

pi=: pelE']s ps= pJE]l; pi= plE"]; pr=: po[E"]
For instance, let E = {a, b, ¢, d, ¢, f, g} and:

pi = (abe)(d)(e)(Sf2); p; = (abe)(d)(efe);  px = (ab)(ed)(e)(f2);
pe = (ab)(cd)(¢f2)

One sees that (p;, p;) ~ (pr> p.), by taking E’ = (¢fg) and E” =: (abed),
for then:

PIE'l = pilE']l = (e)(f2);  p,[E'] = p.[E'] = (¢2)
p; = [E"] = p,[E"] = (abo)(d); pilE"] = p,[E"] = (ab)(cd)

It is readily demonstrated that ~ is again an equivalence relation on the set
of all ordered pairs of equivalence relations. For that it is enough to remark
that from p; and p; (with p; << p;) E” is unequivocally determined as the
union of those classes which are in the same time classes of p; and of p;.
[Parenthetically, let us observe that if, in addition, p; < p, one has too,
p: < pi and (p,, pi) ~ (p;; p,) so that the ~ relation looks quite like an
abstract version of the equality relation between two fractions.]

20



M. P. SCHUTZENBERGER

Consider now, for a given finite E, the set R of all the equivalence relations
on E, and a function f( ) of R in to some additive group a.

Definition: The function f( ) will be called a .valuation on R if for every
quj;i(ru§>le of relations (p;, p;) ~ (px> p.) entails f(p;) — f (p;) = S (ps)
- Pel-

Theorem I: Any valuation f( ) of the set of all equivalence relations on the
finite £ may be written in the form f(p) == Xg(X) where the summation
extends to all classes X of p.

Proof: Consider for any equivalence relation into & classes p == (X)(Y) ..
(T) the three other relations: py, the finest among the equivalence relations
admitting the class (X), px the finest among all equivalence relations
admitting the class (Y), (Z)...(T), and p, the finest among all the
equivalence relations; one has

(po» Px) ~ (px> p) 0. f () isavaluation: f(p) = f(px) + S (px)— S (po)

Thus if the theorem is proved for all the equivalence relations with no more
than & — 1 classes, it is proved for the relations with £ classes, since

flp) = {2} +{et) + 3 &} —{ e}
zeX yeE—X zek

Now, choose for any elements of E, an arbitrary value of g(x) with the sole
condition that Z &(x) = f(py). For any X we define g(X) = f(px)— zf(x)

— flpo) whlch achzeves the proof.

Remark: Suppose now that we discover that p, was not really the finest
equivalence relation, but that there exists a still finer one, p’, differing from
it only by the fact that in p’,, the class (X) is split into (X’) and (X”). Every
equivalence relation p;, less fine than p either is > p, or is of the form
(X, (X"), (U), (V) ...(W)—i.e. is identical on E — X to some p;, > p,.

Thus in this case (pg, p;) ~ (Po> P:)

and S (pd) =f (p) +f (po) — S (o)
and f(p') will be of the form needed if, having chosen arbitrarily g(X’), we
take g(X") = g(X) — &(X") +£(p5) — f(po)-

Suppose now that p’ << p entails f(p) < f(p’) < f << o0 and that we find
some finite p, such that f— f(p,) << & and for all classes Y of
po=0<|g(Y)| <. Then the same condition may be made to hold
for py; for instance by taking

0 <g(X") = g(X") = 3{f(po) —S(po) + 2(X)} < &+ /2

This remark would lead to the possibility of extending Theorem I to general
E, under a proper definition of what is meant by an equivalence relation
with infinitely many classes and corresponding restrictions on f.

Reverting to our main purpose—which is to measure information—we
shall postulate that:

Condition I: The measure of the information H(p,) attached to the observer
is a valuation on the set (lattice) R of all equivalence relation on E.

What this means exactly seems a fair enough requirement. If Q, differs

from (), by the same ability in finer distinctions as €, does from Q,, we ask
that the differences H(p;) — H(p,) and H(p,) — H(p,) be equal.

21



MEASURES OF INFORMATION USED IN STATISTICS

If one prefers, this condition may be interpreted in an equivalent way by
assimilating H to a cost of equipment, and requiring that the expenses,
involved in the addition of a special gadget, intended to perform some finer
analysis, be independent from the total cost of the other parts of the observa-
tional machinery.

From Theorem I, we know only that if the number of states is finite, this
implies that H(p) be a sum of terms depending only on the classes of p. Of
course, so broad a definition is not enough to determine H in a really
interesting way, and we shall further postulate:

Condition II: If p << p’ in such a way thatfor a class Uof p’, p =: p'[E—U]
(i.e. if Q differs from Q' only by a further splitting of one of the classes), then

H(p) =: H(p') + P(U)H(p")
where H(p") is the measure of information attached to p” = p[U] for an
observer knowing that the state & pertains to the subset U. To this condition
we add:

Condition III: The probabilities P(X) == x % 0 are elements of some
topological communitative ring* a and H(p) a continuous functional in the

Xy P e
Condition IV: a is such, thatif for all e, b ea, a -} b =1, ab # 0, h; is a

continuous functional satisfying

(1) hy(a 4 b) = (@) + b(6)  then  hy(x) = A(x)

(2) hy(ad) = hy(a) + hy(b) then hy(x) = Alog x
where A is a semi-linear functional and log is some fixed function within the
ring of functions of a.

Theorem II: Under IV, the necessary and sufficient condition for H(p)
to satisfy I, II, III, is that it has the form:

H(p) == > x Alog x

where the summation runs over classes X of p, and A is any continuous
semi-linear functional.

Progf: The sufficiency is a matter of straightforward verification. As to
the necessity, Condition I implies that:

H(p) == Zg'(x) = X x. g(x) for some g(X) = g'(x)/x.
Consider an equivalence relation with four classes: p = (X)(Y)(Z)(T).
Condition IT with U = Y 4+ Z 4 T implies:
H(p) = xg(x) +22(») + 2g(2) + 12(?)
=uxg(x) + O+ 2+ +eg+1)

J J
vt e

2 z t t
+ y . ( y 7) —*- y : . (—7 i )}
szt e tt) Tyt a4t 4zt
* i.e. very roughly speaking, a set in which abstract operations 4+ and X are defined. so as

to satisfy the usual conditions except that it may happen that ab = 0 even when a # 0 and
b #0.
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Let us transform this by writing: 1 —x=y 4+ z+¢; ' =y(1 —2)7Y
2= 2(1 —x)7; t' =¢(1 — x)and k(a; b) = g(ab) — g(a) — g(b). Then
after regrouping the terms we get

k(Y31 —ax) + 2k(2'; 1 —x) +thk(t'; 1 —x) =0
in particular, if ¢ were zero, x and y keeping the same values, one would have
k(Y31 —2)+ @+ 0kE' + ;1 —x)=0
Then, by subtraction of the last two equations, one obtains:
(2" + k(2 4+t 1 —x) = 2k(2"; 1 —x) +t'k(t'; 1 — x)

Hence after IV (1), since ak(a; b) is additive in its first argument: ak(a; b)
= A(a) where A may depend on b, but not on a. Butk(a, b) is symmetrical
in @ and b; this, in turn, implies that k(a; b) = 1/ab A’(ab) and the above
equation gives A'(y'(1 — %)) + A'((2" +¢)(1 —x)) = A'(») + A'( 2+ )
= 0 where » and z - ¢ are restricted only by y + 2z 4+ ¢ << 1. Since A’ is
additive, this means that A’(xz) = 0 for all u(0 <<« < 1) so that one has
h(a; b) = g(ab) — g(a) — g(b) =0 for all a,b ea; a-+b<<1; ab+#0.
Now, by Condition IV (2) this gives g(a) = A log a which achieves the proof
of the theorem.

Remark (1): The two successive steps I and II involved in the above
axiomatic could be replaced by the single postulate I’ (under Conditions I1I
and IV and finite E).

I':For all p = (X)(¥)(2); pt = (X)(Y+2); p, =p [E — X] = (¥)(2)
pi= (X + ¥)(2); ¢ = (X)(¥) onc has:

H(p}) + P(X)H(p}) = H(p;) + P(Z)H(p})

Indeed, it can be shown by recurrence that I’ implies J. This formulation
which does not require the concept of valuation may be interpreted as a
principle of ‘virtual decomposition of the observations into successive
dichotomies’, since it requires that the information attached to the distinction
of £ between X, Y, Z may be computed on the sole basis of the information
attached to the dichotomies p’ and p”.

Remark (2): When one confines oneself to information depending only on
the numerical values of the P(X), as is the case in communication theory, the
Condition IT may be replaced by additivity for the composition of independent
variates (Woodward). Then, if a valuation is continuous and depends only
on the P(X), a necessary and sufficient condition for it to be additive for the
composition of independent variates is that it should have the form: Xx log x.

Proof: Let 7 and { be two independent variates, taking respectively the
states Y;Y,Y 5 and Z,Z,Z,. Let & = n X { be their abstract product,
taking the 3 X 3 states X; (i,7 = 1,2, 3). Let 5” (respectively {*) be the
variates obtained from # (respectively {) by confounding the states numbered
2 and 3. Since H is assumed to be a valuation, the information H(n X {)
on & is a sum: H(n X {) = > x;¢(x;;) which by hypothesis is equal to

ij

H(y) + H({) = ;yig(yi) + ; 2;8(2;)
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DISCUSSION
One has
D = H(n X {) — H(n X {*) — H(p* X ) + H(n* X {*)
= (H(n) + H({)) — (H(n) + H(L*) — (H(n*) + H(]))
+ (H(*) + H({Y))
= 0 identically

and, on the other hand, supposing that z, = 2z; = z and writing g(ab)
— 2(2ab) = k(a, b):

D = yok(yg 2) + y3k( 3, 2) — (2 + D3)k(D2 + 935 2) =0

which implies, since continuity is postulated, that £(y;, z) be independent
from y,.

But £(y;, 2), again, is symmetrical in y; and 2z, so that it is a constant K,
and we obtain finally, letting u = y,, 2

gu) — g(2u) = K forall 0<<u<1

The theorem follows, since this is Schréder’s equation, which is known? to
have as its only solutions g(u) = K log u. Observe that the proof would have
failed if we had not assumed that g and £ are numerical functions, for we
could not have proved that £(a, 4) is a constant. Indeed, in the more general
case, not only information, but the results of applying any linear operation
to them (i.e. expressions of the form X A; P(X)A,log P(X)) satisfy the
requirements of additivity for the composition of independent variates.
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DISCUSSION

J. C.R. LickripeEr: As I understand it, Shannon’s measure H, would be ‘just another
measure’ if it did not lead to the Channel-Capacity Theorem. The fact that H leads
to that remarkable insight gives H a definite status. In problems concerning coding
of information for efficient transmission through restricted channels H is the natural
measure.

If it is true that measures are noteworthy insofar as they lead to new orderings and
relations of facts, then the question arises: do the other measures you have discussed
lead to discoveries comparable with the Channel-Capacity Theorem?
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DISCUSSION

R. Syski: The author has formulated his results in terms of lattice theory, and
postulated that the amount of information H(p) is the valuation on the modular
lattice R of all equivalence relations on the set E.

I think that a formulation in terms of measure theory could be possible. In fact,
some particular cases to which the author refers admit such a formulation. Shannon’s
entropy is defined as an integral of a certain measurable function, taken with respect
to the probability measure, over the measure space with appropriate Borel field.
Similarly, the concept of sufficient statistic was discussed by Halmos with the help
of the Radon-Nikodym theorem (Ann. Math. Stat., 20 (1949) 225.) Since the measure
on sets is also the valuation on lattices (Boolean algebra), the author’s approach and
the measure theory approach are closely related. I should like to ask, therefore, what
are the advantages in using lattice theory here?

Secondly, Dr. McMillan recently used metric informational lattices (Bull. Amer.
Math. Soc., 60 (1954) 558). Is his treatment related to that of the author’s as far as
the selective information is concerned ?

M. P. ScHUTZENBERGER in reply: I would answer Dr. Licklider: partly, yes. The
Frechet-Darmois-Cramer- Rao and the Wald-Wolfowitz theorems are the counter-
part of the Channel-Capacity Theorem; the first applies when the signal is of a
continuous nature and the loss function is quadratic and provides a basis for Tuller’s
inequality; the second when a fixed signal has to be detected with as few elementary
observations as possible. Both give an upper limit to the efficiency of a given trans-
mission set-up. This may be shown under proper restrictions to be attained asymp-
totically when a long enough delay is allowed.

In reply to Mr. Syski, measure theory could be used as well. The point here is
that the lattice under consideration is not Boolean nor modular so that the present
approach (where the aim is quite different from McMillan’s) seems to me to be
more direct.



