MASSACHUSETTS INSTITUTE OF TECHNOLOGY RESEARCH LABORATORY OF ELECTRONICS

QUARTERLY PROGRESS REPORT No. 55
October 15, 1959

Submitted by: J. B. Wiesner

G. G. Harvey

H. J. Zimmermann

C. A CHARACTERISTIC PROPERTY OF CERTAIN POLYNOMIALS OF E. F. MOORE AND C. E. SHANNON

Let \overline{L}_n be the set of all Boolian functions, and L_n the subset of all Boolian functions not involving the negation operation, in the n variates a(i) (i=1,2,...,n). For any $\mu \in \overline{L}_n$, if the a(i) are random independent variates with $\Pr(a(i)=1)=p$, then $\Pr(\mu=1)$ is a polynomial (1), $h(\mu)$ in p. We give an elementary necessary and sufficient condition for the existence of at least a $\lambda \in L_n$ for which $h(\mu)=h(\lambda)$. As is well known (2), there is a natural one-to-one correspondence between L_n and the set of all simplicial complexes with, at most, n vertices. Consequently, this condition is also a characterization of the sequences of integers $\{a_j\}$ that can be the number of j-simplexes contained in a complex and its boundary. Because of this interpretation, it is unlikely that the condition is new, but I have not been able to find any relevant reference to it.

With the help of this condition and of the corresponding extremal functions $\omega(g)$ and ΣP_{n-j}^{aj} , defined below, more elementary proofs can be given for Yamamoto's inequality (2) on the number of prime implicants of $\lambda \in L_n$ and for the Moore-Shannon lower bound (1) on the value of the derivative of $h(\lambda)$ ($\lambda \in L_n$).

1. Notations

i. Let P_m^X be the set of the x first products of m of the variates $\mathfrak{a}(i)$ when these products are taken in lexicographic order with respect to the indices i. We write P_m , instead of P_m^X , when x has its maximal value $\begin{bmatrix} n \\ m \end{bmatrix}$ and $P = \bigcup_m P_m$. For any subset $P' \subset P$, $\Sigma P'$ denotes the Boolian function (belonging to L_n) which is the sum of all the products, β , satisfying $\beta \leqslant \beta'$ for some $\beta' \in P'$. Conversely, for any $\lambda \in L_n$, $P_m \lambda$ is defined as the set of all the $\beta \in P_m$ that are such that $\beta \leqslant \lambda$. Thus, $\lambda = \Sigma P \lambda$ for any $\lambda \in L_n$. The set of all products, $\beta \in P'$, of the form $\beta = \beta' \mathfrak{a}(i)$, with $\beta' \in P'$ and with $\mathfrak{a}(i)$ not a factor of β' , is denoted by $\Delta P'$ [cf. Yamamoto (2)].

ii. To every pair of positive integers x and m there corresponds one and only one strictly decreasing sequence of $m' \le m$ positive integers: $y_1, y_2, \ldots, y_{m'}$ with the property that

$$\mathbf{x} = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{m} \end{bmatrix} + \begin{bmatrix} \mathbf{y}_2 \\ \mathbf{m} - 1 \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{y}_{\mathbf{m'}} \\ \mathbf{m} - \mathbf{m'} + 1 \end{bmatrix}$$

Consequently, the function

$$D_{\mathbf{m}}(\mathbf{x}) = \begin{bmatrix} \mathbf{y}_1 \\ \mathbf{m}-1 \end{bmatrix} + \begin{bmatrix} \mathbf{y}_2 \\ \mathbf{m}-2 \end{bmatrix} + \dots + \begin{bmatrix} \mathbf{y}_{\mathbf{m}'} \\ \mathbf{m}-\mathbf{m}' \end{bmatrix}$$

(IX. PROCESSING AND TRANSMISSION OF INFORMATION)

is well determined for all non-negative integers x and m if we define $D_m(0)$ and $D_0(x)$ as zero.

For any x and m, $x + D_m(x) \ge D_{m+1}(x)$ (with a strict inequality if and only if

x > m + 1). For all x, $D_m(x) + D_{m-1}(x') \ge D_m(x+x')$ if and only if $x' \le D_m(x)$. iii. For any $\mu \in \overline{L}_n$, we define the polynomial $g(\mu)$ as the product by $(1+t)^n$ of the function obtained when $(1+t)^{-1}$ is substituted for p in h(μ). The coefficient a_i of t^j in $g(\mu)$ is the number of monomials with n - j asserted, and j negated, variates $\alpha(i)$ in the canonical expansion of μ ; when μ \in L_n , a_i is also the number of elements in $P_{n-i}\mu$.

2. Statement of the Condition

For any $\mu \in \overline{L}_n$, a necessary and sufficient condition that there exist a $\lambda \in L_n$ for which $g(\mu) = g(\lambda) \left(= a_0 + a_1 t + \ldots + a_m t^m \right)$ is that

$$\begin{bmatrix} n \\ j-1 \end{bmatrix} \ge a_{j-1} \ge D_j(a_j), \quad \text{for all } j > 0$$

3. Verification

The condition is sufficient. since, for any polynomial $g(\mu)$ that fulfills it, we can define a function $\omega(g) \in L_n$ as

$$\omega(g) = \Sigma \left(\bigcup_{j} P_{n-j}^{a_{j}} \right)$$

and $\omega(g)$ satisfies $g(\omega(g)) = g$ because $\Delta P_{m}^{x} = P_{m+1}^{x'}$, when $x' = D_{n-m}(x)$.

It can be remarked that the functions $\Sigma P_{n-j}^{a_j}$ are the only functions in \boldsymbol{L}_n for which $a_{i'-1} = D_{i'}(a_{i'})$ for all $j' \leq j$.

The condition is necessary. The first inequality is obvious. With respect to the proof of the second inequality it is enough to consider a truncated function λ = $\Sigma P_{n-j}^{}\lambda$ with a_i prime implicants. Let α and α' be any two $\alpha(i)$'s. Then, λ can be written as aa'A + a(B+C) + a'(B+C') + D, where A, B, C, C', and D are sums of products not involving a and a', and where, furthermore, $P_{n-j+2}C$ and $P_{n-j+2}C'$ are disjoint sets. It is readily checked that the function $\lambda' = \alpha \alpha' A + \alpha(B+C+C') + \alpha'(B) + D$ is such that the set $P_{n-j}\lambda'$ has a_j elements and that the set $P_{n-j+1}\Delta\lambda'$ has, at most, as many elements as $P_{n-j+1}\Delta\lambda$. By taking successively $\alpha=\alpha(i)$ and $\alpha'=\alpha(i+1)$ for all i, we can reduce the function λ to a function ΣP_j and the result is proved.

M. P. Schützenberger

References

- 1. E. F. Moore and C. E. Shannon, J. Franklin Inst. 262, 191-208; 281-297 (1956).
- 2. K. Yamamoto, J. Math. Soc. Japan 6, 343-353 (1954).