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Full Decodable Code-Word Sets”

M. P. SCHUTZENBERGERf anp R. 8. MARCUS}

Summary— This paper considers further how the decodability
condition imposes restrictions on a set of code words. A generating
function is defined that describes the composition of the code
words. The relation between the generating function and a “full”
set of code words is found. This relation shows that the sum of
arbitrary probabilities associated with the words of a full set must
be one. A full set of code words is one to which no code word can
be added and still keep the set decodable. It is also shown that
a full set is “completable.” For a completable set of code words
any string of symbols can be made into a sentence by adding a
suitable prefix and a suffix.

INTRODUCTION

EVERAL authors have considered the restrictions
S that are imposed on the set of code words by the
decodability condition."”® (A code-word set is
decodable if no string of symbols can be broken up into
code words in more than one way.) Most of the results
thus far have had to do with the lengths of the code words.
This paper includes some conclusions relating to the more
detailed composition of the code words.

It is important to consider the composition of the code
words, as well as their lengths, when the symbols are not
of the same cost. For example, in the Morse code the dot
is shorter in time duration than the dash. The less costly
dot, therefore, should be used more frequently for ef-
ficiency of information transmission.

In particular, this paper defines a generating function
that describes the composition of the code words. The
relation between this function and a “full” set of code
words is found. A full set of code words is one to which
no code words can be added and still keep the set de-
codable. It is also shown that a full set is ‘“‘completable.”
For a completable set of code words, any string of symbols
can be made into a sentence by adding a suitable prefix
and a suffix.
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STATEMENT OF THE PROBLEM

Let us consider an information-carrying channel with
D symbols, d;, j = 1, --- , D. For any given string of
symbols, s, we write |s|; = the number of occurrences of
symbol d; in s, and |s| = the total number of symbols
in s. Thus, |s| = D.; |s|;. A code word, w, is a particular
s. The code-word set, P, is a set of M code words. Sentences
are strings of words and they form the infinite set
P = {P,}. It is always understood that the lengths of
the code words are bounded. Without this hypothesis,
the conclusions are somewhat different.

It is convenient to associate with the set {d;} an
arbitrary set of probabilities, p; O_p; = 1, p; > 0,
j=1,---,D). Then we write Pr(s) = []; p!"'". We may
now define the generating function of the words, ¢p,(t):

b = X Prw)!™ = 3 ait, W
where
a; = Z Pr (wy)
lwkl=1
n, = max {| w |}.

Similarly, we define the generating function of the sentences,
Pp(1):

®p(t) = D2 v(s) Pr(9t"” = X0 AL, 2
seP n
where
A, = 2 v Pr®
lsl=n
v(s) = number of decompositions of s into words.

A code-word set, P,, is then uniquely decodable or, let
us say, just decodable (d), if »(s) = 1 for all s in P. (Of
course, ¥(s) = 0, if s is not in P.) P, is said to be full (F)
if no word can be added to P, to form a code-word set
that is decodable. P, is said to be completable (C) if any
string, s, can be made to fit in P by adding some suitable
prefix and suffix. (Symbolically, we write: P, is C if
VsdzandyaasyeP.)®

The four theorems that will be presented show that the
four following statements are equivalent for decodable
code-word sets:

I. P,isfull

II. P, is completable.

III. ¢p, (1) = 1 for some particular p; set.

IV. ¢p, (1) = 1 for all p; sets.

®3)

¢ The symbols zsy denote the string z, followed by the string s,
followed by the string y. Here z and y may vary for different §’s.
V means for all; 3 means there exists; 3 means with the property
that; ¢ means belonging to.
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THEOREMS

Theorem I: If P, is C, then ¢p,(1) = 1.

Method of Proof: Since the sentences are defined re-
cursively, the 4, are given by a difference equation and
are the sums of roots to the nth power, as shown in section
1). For P, completable, we show that the A, cannot
become vanishingly small, as shown in sections 2)—4).
But for P, decodable, the 4, cannot become larger than
one. Thus the root of minimum modulus, the real root,
must be one.

Proof:

1) A, = X BT, €))
i=1
where T'; are the roots of ¢, (1) = 1

B, are constants.
Eq. (4) is true, since 4, is given by

14,l = Z aiAn—i' (5)
i=1
The solution of the difference (5) is given by
A= 2B, ©
where p; are roots of p" — a,p"" ' — -+ — a,, =0
B; are constants.
Letting T = o™, we have
T~nm — alTl—nm _ asz—nm - . — anm — 0
=1—-aT — a0l — - —a,T™"
=1- ¢P0(T)'

This proves (4).

2) If P, is C, then the number of symbols in any prefix
and suffix that is needed to make s in P is bounded.
More specifically, we have

lz|+|y| <L =2n,,. 7)

This is obviously true, since if |x| > n,, we could break
up 2 into words and a string 2’ with the property that
|2’'| < n,,. Thisa’ could serve as a suitable prefix; similarly
for y.

a+L

3) If Pyis C, then ) A, > C, > 0; (for any «). (8)
To prove this, let u; be the D%s 3 |s| = a. (See Fig. 1.)
Let u! be one au,y ¢ P 3 |2| + |y| < L. Hence,
a < Iu£|§a+L.

Some of the u/ may be the same but we can pick a set of
distinet !, say »;, with the property that each u; can be
expanded into at least one v;. Let u; ; be the set of u; that
can be expanded into a given v;.
Let
Z Pr(u;) = Pr(u; ;).

UTEUT,
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Fig. 1—Abstraction from code-word tree.

Then
ZPT(ui,f) > _EPT(U-') = 1.

Now from each wu, ; pick the u; (call it w;) with the
maximum Pr(u;).. The maximum number of %; in any
u;,; is |[v;] — @ + 1. An upper bound on this number is
(@+ L) —a+1=L+ 1. Thus Pr(w;) > [1/(L + 1)]
Pr(u.,;). But Pr(v;) = Pr(x) Pr(w;) Pr(y) > P Pr(w;),
where P, = min {p;}. Hence,

a+L
E An 2 ZPT (1),-) Z pfnin EPT (w,)
pL' pL.
ZZ-I—I jZPr(u,-_,.) 27,_}4'1'501 >0

This proves (8).

4) Hence, lim ,.. 4, > C,/(L + 1)
limit exists).

5) Hence, |T,| < 1, where |T,| is the minimum modulus.
If |7, >1,4,—>0asn — o.

6) A, must be bounded. If A, were not bounded, then
v(s) would be greater than one for some s because

A,= D, v Pr(s) and Y, Pr(s) = 1.

lsl=n lsl=n

= C, > 0 (if the

This would mean that P, is not d, contrary to the
hypothesis that P, is C.

7) Hence, |T,| > 1. Otherwise A, would be unbounded.

8) Since all the coefficients of ¢»,(f) are positive, ¢, (t)
is monotonic and ¢»,(f) = 1 has one real root, and no
other root has a modulus smaller than this.”

9) Hence, |T,| =T, = 1

10) Hence, ¢»,(1) = 1 (and this is true for all p; sets).

Theorem II: 1f ¢p,(1) = 1 and P, is d, then P, is F.

Proof: If we add a word to P, to give P}, then¢p’ (1) > 1,
and T/, the real root of ¢»-,(f) = 1, is less than one. But
by Theorem I, section 6), and Theorem I, section 7),
this implies that P} is not d. Thus P,is F.

7 The fact that the real root has the minimum modulus follows
from Cauchy’s theorem. Cf. Morris Marden, ‘“The Geometry of
the Zeros of a Polynomial in a Complex Variable,” Mathematical
Surveys No. III, American Mathematical Society, New York, N. Y.;
1949. See especially Theorem (27.1), p. 95.
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Theorem II1:If P, is d and ¢p,(1) = 1 for a given p;, then

P,is C.

Proof: Suppose P, is not C. Then 3 s, 3 Vz, y zsoy £ P.
Since no s with s, as a prefix is in P, those strings in that
part of the tree that “grows” from s, can be eliminated
as possible s in P. This means that for n > |s,,

A, <1 — Pr(sy).

Of those strings that do not begin with s,, we can
eliminate that fraction whose second [s,| symbols are s,.
Thus

A, < [1 — Pr(so))’ for n>2]s,|.
Similarly,
A, < [1 — Pr(s)]”

Hence, A, — 0 as n —> «. But for given p;, T, = 1
and A, > C; > 0 for some n > N for any N. Hence, we
have a contradiction and P, is C.

for n>m|s|.

Theorem IV:1If P,is F, then P, is C.

Method of Proof: Assuming that P, is not completable,
we consider the string, 4, which cannot be completed. If
we add u as a word to P,, we obtain a new set, P,, which
cannot be decodable. We then show that this implies that
u has the same string of symbols in its beginning as at its
end, as shown in section 14). But this leads to a contra-
diction.

Proof:

1) Assume that P, is F but not C.

2) Hence, JuaV 2, yauy g P = {P,}.

3) Consider P, = P, Uwu and P = {P,}.

4) Since P, is not decodable, 3 » with two decompo-
sitions in P.

5) Choose v as a minimal doubly decomposable string
(minimal d.d. string); that is, a string that cannot remain
d.d. if any symbols are removed from its beginning and/or

- end.

6) Since P, is d and P, is not, one of the decompositions
of v must contain u as a word. Thus v = x,uy,, where
Z,, Y, e P.

7) Since u is not completable in P, v g P.

8) Butv e P.

9) Hence, the second decomposition of » also contains
U, 1.6,V = TUYs.

10) Assume that |2,| < |2,|. If this is not so, reverse
designations.

11) |zo| 5% |@4|. I |22| = |ai], then &, = 2,, and for v
to be d.d. either z, = 2, is d.d. or y, = ¥, is d.d., contrary
to the hypothesis that v is a minimal d.d. string.

12) Hence, |2,| < |2,].

13) Let us so choose the second decomposition that
lzs| < |zi| + |ul. (See Fig. 2.)

Otherwise, z, contains v and must be decomposed as
2, = xyuy; by the same reasoning that led to section 9).
Thus we could have chosen to consider the first v as the
word u in the second decomposition of v.

14) Thus 4 = zu, = u.y,. (See Fig. 3.)
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15) We can find (as we shall show) a «' for which the
equation of section 14) cannot be satisfied. Hence, the
assumption that P, is F, but not C, which leads to this
conclusion, is false and the theorem is proved.

16) To find %’ we consider two cases that cover all the
possibilities.

Casel):u = a'™.
Case 2):u = a‘bys; 0 < k < |u], 0 < |ys|.
We have arbitrarily called the first symbol in % “a’’ and
the first symbol in % which is not e, if such a symbol
exists, “b”.
17) For case 1), let ' = ub = a'"'b.
Clearly, «’ cannot satisfy

lul

u' = Tw = Wys; ly6[>0,

since w must start with ¢ and end with b.

18) For case 2), let ' = ub'™'.

|w| < |u| is clearly impossible, for then w would have to
start with “a”” but consist only of b’s.

But if |w| > |u|, we can write

+lul
w = xeab™ ",

where 0 < |2e]; 0 < 7 < |ul.

X5 u Yo

Fig. 3— Grouping of symbols in the string v.

t’Iul

—_— Ye

| | 6
Xg }_,,,____ [ ——

Fig. 4—Grouping of symbols in the string w’.

Then, as is apparent from Fig. 4, ' = z;w requires that
the “a” in question occur in a position that must be a
“b” from the fact that v’ = wy, This contradiction
shows that the given %’ for case 2) does not satisfy section
(14). Thus section 15) is proved and Theorem IV, in
turn, is proved.

CONCLUSION

The four theorems, taken together, show the logical
equivalence of the four properties of the statements of
equation 3), as is indicated in Fig. 5.
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Fig. 5—Diagram showing the relations of the four theorems.

Sections 1)-5) of Theorem I then show that the prob-
abilities associated with a full code-word set must sum at
least to one. Sections 6) and 7) of Theorem I show that
this sum must be no more than one if the code is decodable;
that is, ¢p,(1) < 1if P, is d. It can easily be shown that
this inequality leads to the generalized Kraft® inequality

8 L. G. Kraft, “A device for quantizing, grouping and coding
amplitude modulated pulses,”” S. M. thesis, Dept. Elec. Eng.,
M. I. T. Cambridge, Mass.; 1949.

Zakai: On a Property of Wiener Filters 15

M=

2—qk S 1,
k=1
where ¢, is the normalized cost of word w,.

Our discussion shows that the equality sign holds only
when P, is full. This inequality was obtained by Marcus®
by extending Mandelbrot’s proof® for the equal-cost case.
Mandelbrot used Shannon’s Fundamental Theorem for
Discrete Noiseless Channels’ and pointed out that a
similar inequality had been obtained previously by
Szilard. McMillan® obtained a proof in the equal-cost
case without using information-theory concepts. Note
that the proofs of this paper are also independent of the
Shannon theorem.

For the equal-cost case, the normalized cost is just
¢ = my log D, with n, = |w,|. Thus the inequality reads:

M

> D™ < 1.

k=1

® C. E. Shannon, “A mathematical theory of communication,”’
Bell Sys. Tech. J., vol. 27, pp. 379-423; July, 1948.



