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C. SOME REMARKS ON CHOMSKY'S CONTEXT-FREE LANGUAGES
1. Introduction

This report is devoted to the examination of several families of subsets of a free
monoid that arise rather naturally when generalizing some definitions of classical analy-
sis to the noncommutative case. These families contain, in particular, the regular
events of Kleene and the context-free languages of Chomsky.

The main tool is the so-called formal power $eries with integral coefficients in the
noncommutative variates x € X.

By definition, such a formal power series, r, is a mapping that assigns to every
word f € F(X), (where F(X) is the free monoid generated by X) a certain positive or
negative integral "weight" <r, >, the coefficient of f in r. Thus, in fact, a formal power
series is just an element of the free module with basis F(X).

In fact, if instead of considering only a subset F' of F(X) we specify a process pro-
ducing its words, it seems natural to count how many times each of them is obtained and
the formal power series is the tool needed for handling this more detailed information.

Of course, with this interpretation we only get positive power series, i.e., power
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(XII. LINGUISTICS)

series in which every coefficient <r,f> is non-negative. The general case may be
thought of as being associated with two processes and then the coefficient of f is the
difference between the number of times f is obtained by each of these processes.

In any case, we shall define the suppor{ of r as the subset F = {fe F:<r, £>#0}.

The power series form a ring A(X) with respect to the following operation:

multiplication by an integer: the coefficient of f in nr is simply n<r, f>

addition: <r+r',f>=<r,f>+ <r',f>, for all f

multiplication: <rr',f>= Z<r,f> <r', ">, where the sum is extended to all factor-
izations f = f'f".

It is clear that when r and r' are positive, the support F;ﬂ_, of r+r' is just the
union of the supports of r and of r'; similarly, the support of rr' is the set product
FrFr" For arbitrary r the interpretation is more complicated.

It is convenient to introduce a topology in A(X) in order to be able to define the limit
of a sequence. Among the many possibilities that are available the simplest one is based
upon the following definition of the distance: " r-r' " = 1/n if and only if <r,f>= <r',f>
for every word f € F of degree ("length") strictly, less than n and <r,f># <r',f> for
at least one f € F of degree n.

Thus, ” r-r' ” = 0if <r,e># <r',e>, where e is the empty word and ” r-r' " = 0 if
r=r'.
It is easily checked that " r-r' " < sup (" r-r" " , || r'-r" ”) for any r, r', r" € A(X), and

that the addition and multiplication are continuous. The norm ” r" of r is just n r-0 " .
Clearly, || r|| = 1/n, where n is the smallest integer such that <r,f> # 0 for some f of
degree (= length) n. Thus r has a finite norm if and only if <r,e># 0.

We now introduce the important notion of an inverse.

By definition r € K(X) is invertible if r' = e~r has a finite norm, i.e., if <r,e>= 1.

If this is so, the infinite sume+ = '

n>0

= r" satisfies the identity r" - r'"r' = r" -

r'r"=ze, i.e., r'"r=rr" = e.

This suggests the notation r" = r—1 and, since r". is invertible, one can also con-
struct (r")—l.

It is easily verified that (r")—1 = r, and thus there is no inconvenience in considering
the infinite sum r" as the inverse r"1 of r. It is worth noting that if r, is a positive
element with finite norm, then (e—-rl)'—1 is positive and has as its support the subset
F’:, = U (Fr )n in Kleene's notation.

1 n>0 1

Thus we are able to interpret all of the usual set theoretic operations except for
complementation and intersection.

With respect to the first, we can observe that by construction the formal power

series ( - = x)—l is equal to Z{f: fe F(X)}.
xeX

Consequently, if we associate with the subset F' of F the formal power series

156



(XII. LINGUISTICS)

Fr = > f(i.e., the power series with <rF,,f> = 1iffe F' = 0, otherwise) the sup-
port of ( - EX x)"l - T'p is precisely the complement of F' in F.
X €

With respect to the intersection, we can define a Hadamard product which associates
with any r, f € A(X) the new power series r®r', defined by <r®r',f>= <r,f> <r',f> for

all f. Clearly, the support of r®r' is the intersection of the supports of r and r'.

However, the Hadamard product is no longer an elementary operation and this may
explain why some otherwise reasonable families of subsets are not closed under inter-
section (cf. below).

2. Relation with Ordinary Power Series

This can be expressed in a loose way by saying that ordinary power series are
obtained from the elements of A(X) by disregarding the order of the letters in the words
f e F. Formally, let ¢ be a bijection (one-to-one mapping onto) X - X. An ordinary

n, n n
power series T in the variates X, € X is an infinite sum r=X a ¥ 1x2. . .xgm
i nn,...n 1 72 m
n. " "m
extended to all the monomials i’l ’—‘_2 ce ’_{m .
We can consider that any such r (with integral coefficients a n n ) is the image
_ 172" " "'m
by the homomorphism e of at least one r € A(X) by defining a n n 2as the sum of
LIRS W

<r, f> extended to all of the words f € F(X) containing the letters X, 0y times; the letters

n. n n

X, n, times ... etc.; i.e., to all words f such that af = 3{'1 1:?22 ce ﬁmm, where a is

the homomorphism sending F(X) onto the free commutative monoid generated by X. It
is trivial that a(rl:i:rz) = ar, £ ar,; ar;r, = er,ar, = ar,ar;; a(rIl) = (arl)—l identi-
cally.

Also, when X contains a single letter no difference need be made between formal

172

(noncommutative) and ordinary (commutative) power series.

Since the theory of ordinary power series is an extremely well-developed chapter
of mathematics, the existence of the homomorphism e¢ may at times be used for the
study of the formal power series and of their support. The discussion of some elemen-
tary examples of this approach is, in fact, the main content of this report.

3. The Algebraic Elements of K(X)

In ordinary calculus, one usually considers as especially elementary functions the
polynomials, the rational functions, and the algebraic functions.

By definition, a polynomial is the function represented by an ordinary power series
with only finitely many nonzero coefficients; a rational function is the quotient of two

polynomials; an algebraic function is a function of the variates with the property that
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it satisfies identically some algebraic relation expressed by a polynomial.

X,X
For example, > is a rational function of X x| and X Xy, and the function r of the
1-%X
2
commutative variates xl and 3('2 that is such that ilizf‘z - T+1 = 0 identically is an alge-

braic function.

We can imitate this hierarchy by introducing the following definitions: an element
re A(X) is a polynomial if its support is a finite set; an element r € A(X) is rational
if it can be obtained from the generators x € X as a finite expression using only the sum,
the product, and the inversion (of invertible elements).

It is clear that the polynomials form a subring of A(X). Indeed, this ring is what
is usually called the free ring generated by X.

In a similar manner, the set R(X) of the rational elements is a ring, i.e., it is closed
under addition, subtraction, and multiplication. Furthermore, it is closed under inver-
sion (of invertible elements). In fact, R(X) is the smallest subring of A(X) closed under
this last operation and containing X.

It is easily verified that for any r € R(X) the "Abelianized" ordinary power series

r = ar represents a rational function.

Consider, for instance, the formal power series r with <r,f> = 1 if and only if

7 3+?.n1 3+2n2 3+2nm 5
f= X5X) X% Xy e XpX X5 and <r,f>= 0, otherwise. This series r
belongs to R(X) because r is equal to xz(e X, e xz) 1) 2 and er can be reduced

to the quotient of two polynomials by writing
ar = ig(e—k_ 23 e—)—cz —1)~1 ?(;
() ) 2
(e—xl)(e -X =X, x3 -1 xél
xé 1 (l-xl)
1 - xZ 2

17 *1%2
The family of all subsets of F that can be the support of a rational element of A(X) has

been defined elsewhere. ' It is not difficult to verify that it is closed under union, inter-
section, set product, and Kleene's star operation.

Having recalled these facts, we proceed to the definition of an algebraic element
of A(X).

For this purpose, we consider a finite set E of m new elements § and we denote
by ¢ an m-tuple of polynomials °’g in the (noncommutative) variates y e Yy=xU_ " that

satisfy the condition that <trg, e>= <0'g,€. >=0forall§, &' e :
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Now let W denote the set of all m-tuples w = (Wl’ Wosoono wm) of elements of A(X).
We consider & as a mapping of W irfo itself by defining the coordinate ng of the trans-
formed vector ow as the element of A(X) obtained by replacing in the polynomial ?r'g every
symbol £' by the corresponding coordinate We of We-

For instance, if o-g = xlgzxz; o-€2= x1x2+x1§1x2§2; and if w is the vector

1

(3x XX, X, +2x ) the w coordinates of ow are

3 4
u‘wgl = xl( 2+2x3) X, = X%, + lex3 2
ow, =x,%X, +x,(3x,x%x,%,) X (x2+2x4)
gz 172 1 1 72717 72\"2 3
_ 2.3 2. 4 3 4
=X X, +3%%5 + 6x1x2x3 X XX X5 = 2X XX 1 XX g -
It is clear that ¢ is a continuous mapping in the sense that if w, w' € W are such that
"w—wg | <1/n for each g€ -] ') (i.e., for short, if ||w-w'| < 1/n, then |sw-ow!|.< 1/n.
Indeed, the relation " w-w' " 1/n expressed the fact that the coefficients <wg f>

and <wg, f> are equal for every coordinate § € *, and for every word f of degree <
Since the coefficient of every word of degree n in the polynomial in the letters x € X
obtained by the substitution §' - We or ' -~ w'g, in "g depends only on the terms of lower
degree, the result is a simple consequence of the definition.

In fact, because of our hypothesis on o, a stronger result can be proved when w and
w' satisfy the supplementary condition that <w,,e>= <wé, e>= 0 for all §. Then,
obviously, this last condition is still verified for ow and ow' (because <o,.,e> = 0).
Furthermore (because <crg, §'>=0), we can conclude from "w—w' " 1/n that ﬁ -trw'"
1/n+1. This, again, is a direct consequence of the fact that the coefficients of the terms
of degree n+l of ow are determined univocally by the coefficients of the terms of
degree <n of w.

Let us now consider the infinite sequence w, w s, W_, ..., where W= (0,0,...,0)

LEEE n

n+1 ?wn. By applying our previous remarks and using induction, we can easily

show that for all n and n' > 0 we have "w -w

and w

ntn! | <1/n. Consequently, we have proved
that w = lim w_ is a well-defined element of W and that lim B’wn -w, =0 This sug-
n--co n--co

gests that we speak of w as of a solution of the system of equations § = cg (i.e., w=ow),
since, in fact, for each §, We is equal to the formal power series in the x € X obtained
by replacing in "g each £' by the coordinate wg.

We shall say, accordingly, that wg is an algebraic element of K(X). Because of our
definition of o, any w has a f_i_l:xite norm (i.e., <w§, e> = 0). This restriction would be
artificial; we shall denote by S(X) the set of all formal power series that is the sum of
a polynomial and of a coordinate wg, defined above, for some suitable finite set of poly-

nomials @, or, as we prefer to say, by a set of "equations" § = Tg-
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It is not difficult to verify the fact that S(X) is a ring closed under the formation of
inverses (of invertible elements). Indeed, let r and r' be obtained as the coordinates
wg and W'E_, of the solutions w and w' of the equations w = ow and w' = ¢'w'. For the

. — - . cos s Law| '
sake of clarity, we assume that ¢ and o' are defined by two dl?]_(:lf‘lt sets -, and -,

n
of m and m' elements, and we consider the union of : , and of a new letter £".

—J
Then, if we denote by o" the direct sum of T and @', it is clear that the new equation £" =
o’§+o"§, determines wg,, = r+r'. Similarly, the equation £" = ££' determines wé’ = rr'.

In order to get (e—-r)"1 -e (= b2 rn) it is enough, for instance, to add the new
equation £" = ££" - . n>0

As a final remark it may be pointed out that (as for rational elements) the homomor-
phism e sends the algebraic elements of A(X) onto the Taylor series of the ordinary
algebraic functions. These last series are easily proved to converge in some small
enough domain around 0. Let us also mention that §(X), as defined constructively here,
can also be shown to be identical to the set of all formal power series with integral coef-
ficients that satisfy a set of equations of the type w = ow, described above, provided, of

course, that such solutions exist.

Example 1.
Let Ugl = xlglxz + X%,
o";2 = 5152 + xlg,lx2 + X X,.
Since the first equation involves only gl, it can be solved for its own sake, and one easily
obtains r=w, = = xxi. Then the second equation gives
&1 172
n>0
. -1
w, =rw, +r, thatis, w, = r(e-r) ".
§2 gz g2
Thus, by definition, a word f belongs to the support of We if and only if it can be
2
n, n n, n n_ n
factorized as a product (xllle) xlzxz2 “e (xlmxlm) of words belonging to the sup-

port of r.

Since, trivially, this factorization is unique, we always have <wg ,f>=0or 1.
2

Example 2.
Let agl = xlglngl + xlngl + xlglx2 + X X,

After setting r = e + §1 we get the simpler form r = x rX,r + e, instead of the equation

1
§1 = o-gl. Again, <r,f>= 0, or 1; with <r,f> = 1 if and only if

o
1°. 2

f contains as many X, as x
2°. any left factor f' of f contains at least as many X, as x

2
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Since the equation can also be written in the form r = (e—xlrxz)_l, it follows that every
fe Fr has one and only one factorization as a product of words belonging to the sup-
port F' of X TX,.
F' is closely related to the well-formed formulas in Lukasiewicz' notation because
f belongs to F' if and only if it satisfies 1° and, instead of 2°, condition 3°. Any factor f'
of f contains, strictly, more x, than x,, unless f' = e or ' = £.
Let us now observe that xlrx2 1 X, = X TX,.
the homomorphic image as e and writing r' = a (xlrxz), we get the ordinary equation

satisfies the equation xl(e -x rxz) Taking

— - -1 a . -2
- = Pt &
xlxz(l r') r'; i.e., T r+x1x2 0.

By construction, the ordinary power series r' takes the value 6 for X%, =0 and

thus, as is well known,

- V 1 - 4%, E (_xliz)n[léz]

rl
n>0

where [11/12] is the binomial coefficient.

Because <X TrX,, f>=0or 1, we cdn conclude that (—1)n [léz] is the number of dis-
tinct words of degree 2n in the support of X TX,.

The reader may notice that our present computation is exactly the one used in the

classical problem of the return to equilibrium in coin-tossing games.

Example 3.
L : . -
Let _°, be the union of {,n and of gi (i=1,...2m) and agree that gi—i-m = §i,, when
i=i+m. LetX = {xi} i=1,2, ..., 2m, and consider the 2m equations
2n
. 2
gi = xix, o+ x; L+87+tnt - Z xj(e+n) xj+m Xiin
=1
2m
Esn=0+10Ln.
1=1

Simple transformations reduce these to standard form, and it can be proved that

<e+m,f>= 0, or 1 with <e+n,f> = 1 if and only if f belongs to the kernel K of the homo-

morphism ¢, which sends F(X) onto the corresponding free group (with (¢Xi)-1 = ¢xi+n).
After performing the homomorphism a, we compute the value of an = u(t) for i'l =

_ _ __t . . . .
Xy ==X, =5 By construction, u(t) is the generating function of the recurrent

event consisting in the return to K, and u(l) is the probability that a random word ever

belongs to K when the letters x; € X are produced independently with constant proba-
bility 1/2m.
We find that w = u(t) is defined by the quadratic equation (4m2—t2) u2 -4m2u+ th2 =0,

which is in agreement with similar results of Kesten3 to which we refer for a more
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explicit interpretation of u(t).

4. Some Subfamilies of S(X)

It seems natural to distinguish in S(X) the subset §1(X) of those elements that are
obtained when each crg of ¢ has the special form

crg =f+Z f'€'f", where f, f'f" € F(X), and the summation is over any finite set of
triples (f', &', f") (with, eventually, the same §' occurring several times; i.e., when
each o is linear in the variates £ € : .

Within §1 (X) itself we shall distinguish the special case SO(X) for whicho = f+Z §'f";
i.e., only one-sided linear equations are considered.

Clearly, after taking the homomorphic image as a, both §1(X) and §0(X) collapse
onto the ring of the ordinary rational functions but, at the level of A(X), the sets from
§0(X) form only a very restricted subset of §1(X). as we shall see.

A second principle of classification is provided by the restriction that every coeffi-
cient in the polynomials O'g is non-negative.

Under this hypothesis, the same is true of the power series w,, and, correspondingly,
we obtain three subsets (in fact, three semirings) which we denote §+(X), .S_T(X), and
E:(X). It is to be stressed that the converse is not true. Indeed, it is quite easy to dis-
play examples of formal power series having only non-negative coefficients that belong
to —§O(X), but not even to 5 (X).

A priori the inclusion relations shown in Fig. XII-1 hold. Here, PO(X) and P:(X)

A(X)
S(X)
VRN
X s
3*‘< )

'SI’(X) \ Fig. XII-1.

§§(x) \

N

Pa(X)

denote the polynomials and the positive polynomials, respectively. Insofar as the cor-
responding supports are concerned, three theorems summarize the results.

THEOREM 1. (Ginsburg-Rice). The family of the supports of the elements of §+(X)
is identical to the family ¥ of Chomsky's context-free languages.
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THEOREM II. (Chomsky). The family of the supports of the elements of SZ(X) is
identical to the family 3{’0 of Kleene's regular events.

THEOREM III. The family of the supports of the elements of SO(X) is identical to
the family £ of the sets of words accepted by an automaton of the type &/ (i.e., it is
identical to the family of the supports of the rational elements of K(X)).

In order to prove Theorem I we need to alter slightly Chomsky's definition and we
propose

DEFINITION. A context-free grammar is given by

i. Two disjoint finite sets |-, and X;
ii. A finite set G of pairs (£, g), where £ € S, ge FXUL" ). g#e, g{:

-
e

The language Dx(go, G) produced by G is the intersection F(X) N D(EO,G), where
D(E.O.G) is the smallest subset of F(XUE) which is such that goe D(go,G) a1r£1
g,6'g, € D(£_,G), and (£', g) € G implies g,gg, € D(€,G). In the usual terminology,
(resp. X) is the nonterminal (resp. terminal) vocabulary, and G is the grammar; our
definition departs from Chomsky's by the easily met restriction g ;( : for each rule
(€, g) of G.

With this notation the equivalence of ¥ with the set of all supports F'r: r e-S+(X)
is trivial.

iii. A distinguished element ﬁo €

Let G be given, and define for each § € : the polynomial O'g as the sum Z g extended
to all g so that (£, g) € G.

If we interpret the support of wg as the set DX(E,,G), it is clear that any equation
wg = ow can be interpreted as describing DX(€, G) as the union of the sets Dx(g,G)

((€, g) € G) obtained by replacing in g every letter £' by a terminal word f € DX(F,',G).

Conversely, let us assume that o is such that <0'g, g>=20forall e S
F(X, "))

By introducing enough new variates £', we can find & which is such that <0"g, g>=0
or 1, and the new polynomials c'g reduce to old polynomials o¢ when the new variates §'
are identified with the old ones in a suitable manner. Furthermore, for every new §'
(corresponding to the old variate £) we add an equation o‘g, identical to cg.

and g €

Thus the original wg is equal to a sum = w'g, (with w' = o'w') and @' can be associ-
ated with a grammar in a unique fashion, since <u:¢’,, g>=0 or 1.

This interpretation throws some light on the other families. Thus, 'S';(X) corre-
sponds to the family ‘Kl of the context=free languages in which every rule has the form
(€; f'€'f") or (£, f) with £, ', f" € F(X).

In turn, 'S;(X) is obtained by restricting the rules to have the form (€, £'f) or (£, f)
with f € F(X).

Observe now that, in any case, the coefficient <wg, f> of the word f expresses the
number of distinct factorizations of f according to the rule of grammar. Thus, for
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AN
]\/

Fig. XII-2.

any two r, r' € §+(X), the support of r-r' consists precisely

of those words that have a different number of factoriza-

tions in the two grammars associated with r and r',

respectively.

Reciprocally, given any r" € S(X), it is easy to
prove that r" = r-r' for at least one pair r,r' €—S+(X),
and the same is true for §1 and gil' or for §o and
5t
o

Summarizing our remarks, we obtain (on top of
the family of the finite subsets) the six families illus-
trated in Fig. XII-2. Here, § and 81 correspond to
S(X) and Sl(X), respectively. In order to prove that
these six families are all different and do not enjoy

further inclusion relations, it would be enough to

build three subsets, say Fl’ FZ' F3 of F(X) having the following properties:

R €X,. F £F
F,e €, F, ¢ %
F,e€ €, F £ 8.

I am not able to construct a set such as F

3,10 but there exists an F4 which is such that

Fy€ ¢ and F4;’ ‘Kl. Thus the only possible diagrams apart from Fig. XII-2 are

Fig. XII-3a and 3b. Again, there is no further inclusion relation. In fact, it seems

—

or S _
= 8 ]
74
174
171
%1
174
o]
Fig. XII-3b.

Fig. XII-3a.
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most unlikely that € C § 1’ and the original scheme probably represents the true situa-
tion.

The counterexamples F, and F; are very simple:

Let F, {xlx2 1 n>0} This set is produced by G = {(& X gxl) (&, x )} and thus
F, € ‘61 C % . On the other hand, it is known that F, does not belong to 2.8

Let F, {xlx2 121" n,n'>0n#n'}. Itis known® that F,; € Z, and it is not difficult
to show that F3 does not belong to & because of the relatively simple structure of a

'
grammar G which produces infinite sets of the form {xnx X+ : n,n' linked by a certain

17271
relation}.

Indeed, as the reader can verify, any set of this type is a finite union of finite sets
and of sets having the form:

{x?+Nx2x?'+N': N,N',n,n'20; n=0 (mod p), n'=0 (mod p')} for some integers N, N',
p.p'.

(The proof is based upon the fact that, when X has a single letter, ¥ reduces to
the family of regular events.)

For the construction of F4 we need a more explicit description of & 1

F' belongs to ‘fl if and only if there exist

(a) A finite set Y;

(b) Two mappings ¢ and & from F(Y) to F(X) that are a homomorphism and an anti-
isomorphism (i.e., &gg' = 2g' ®g);

(c) A regular event G' C F(Y) that is such that F' = {¢g<1>g: g€ G'}.

The proof of this statement follows the same lines as Chomsky's proof 1 of the fact
that the support of any r € EZ(X) is a regular event.

The same technique, of course, is valid for the more general case of EI(X) (with
the obvious modifications) and it displays every element of ‘61 obtained by the three
following steps:

1. Taking the words g from some regular event on F(E);

2. Forming the products gg*E, where 6* is a new symbol, and E is the "mirror
image" of g;

3. Making a transduction 6 of E and of g into F(X), and erasing §*.7

Let us now return to our problem. For any f € F(X) (X = {xl, xz}) let A\ f denote the
difference between the number of times X, and X, appear in f.

We claim that F, belongs to ¢ and not to ¢, where F, = {f: Mf=0; \f'>0 for all
proper left factors of f}.

The first part of the claim has already been verified (Example 2).

Let us now observe that if F' € ‘Kl is such that for all integers n < 0 there exists
a g € F(.*!) which is such that g,8 g, € G' for some g,,g,, and that \¢g <n, then
F'# F,. Indeed, since G' is a regular event, there exists a finite set of pairs (gl, g'z)

which are such that for any g € F(_*}) either F([-]) g F([-)) N G' is empty, or else
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g,8 g, € G' for some of these pairs. Thus, under this hypothesis, we can find that f =
¢gig g'1 @ g8 g'i € F' which is such that its left factor f' = ¢gig satisfies \f' < 0, and thus
feF andf¢ F 4

It follows that if F" € ‘él is contained in F4, we can find a large enough integer n'
which is such that no f € F" has a factorization f= f1f2f3f4 with xfl >n; )‘flf =1;
Xf1f2f3 > n (and xf1f2f3f4 = 0 because by hypothesis f € F4). Since clearly F, contains
such words, we have proved that F" € ‘61 and F" C F4 implies F" # F4; that is, F4/ ‘Kl.

These remarks can be pictorially expressed by saying that the words of F" have, at
most, one arbitrarily high peak. It follows from the definition of F4 that this last set
contains words having an arbitrary number of arbitrarily high peaks. Thus, incidentally,
we have proved the stronger result that & is different from the family of subsets obtained
from (fl by closure under a finite number of set products or set unions.

5. Some Miscellaneous Remarks

a. As an easy source of counterexamples we could consider the special case of X
reduced to a single element because then no difference exists between commutative and
noncommutative power series. _

The results known thus far contribute to the statement that in this case ¢ and 81 are
equivalent to %o. No result is known for S§.

However, although the proofs that € = 3?0 and that 81 = Z are quite easy, the proof
8 Nonetheless, the fact that when
X = {x} any r € S(X) is the Taylor series of some ordinary algebraic function of n allows
us to construct simple families of sets that cannot belong to §.

that Z = 9?0 is a rather deep theorem of Skolem.

N N N
A rather general instance is the family of the infinite sets ¥ x 1, X 2, cee, X m, .. }

which have the property that lim Il\}n+l is infinite (i.e., which have the property that the
m
ratio Nm+l/Nm exceeds for some finite m any prescribed finite value).

In order to prove that no set of this type belongs to S we consider any r € S(X) (X=x).
m .
Without loss of generality we may assume that <r, e> = 0. By definition, r=a_+ Z airl,
i2
where m is finite and the ai's are polynomial in x. By comparing the two members of
the equation, we see that for each n<r, x" > must be equal to a linear combination with

fixed coefficients of sums of the type = <r, xn1> <r, xn2> ce <r, xnm'> extended to all
representations of n-h as a sum n, +n, ... n o where h 2 1 is bounded by the degrees
of the a.'s, and m' are bounded by the degree m of the equation. It follows that if N is
such that <r, xN+k> = 0 for 0 <k <mN, then <r, xn'> =0foralln'2N; i.e., r is a
polynomial. N. N
Since the condition imposed on the set{ b'e 1, x 2, .. } amounts to the existence of at

least one such N for every finite m, our contention is proved.
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2
A similar method could be applied to show that {xn tn> 0} does not belong to S§.
b. Our next example shows that the intersection problem even for so restricted a
family as ‘{l is an undecidable one.

Let - )= {g}, X= {a, b, c} and consider the two grammars:

—

G = {(¢, ata), (£, bED), (£, o)}

G'= {(é, c), (€, figf'i): ie I}, where (fi’ f'i)(i € I) is an arbitrary set of pairs of elements
from F = F(a, b).

The language Dx(g,G) is a special instance of Chomsky's mirror-image languages
and there exists an f € Dx(g G)nN DX(E,, G') if and only if one can find a finite sequence
il. 12’ i3 ey i of indices such that the word f, 1f i e f.rl is equal to the mirror image
of f’inf'in_1 ce f'izf'il. Thus clearly the intersection problem for G and G' is equivalent
to the classical correspondence problem of Post5 and since this last one is undecidable,
our contention is proved.

c. It may be mentioned that other principles could be used for distinguishing inter-
esting subsets of words. For example, Ginsburg and Rice2 have shown that € contains
as a proper subset the family ‘(' corresponding to the case in which the set of equations
w = ow has the following property which these authors call the "= sequential property":

There exists an indexing §1, gz e €, of the variates £ € [ -, which is such that for all

___;
j the polynomial ¢§. does not involve the variates §J with j' > j.

In Chomsky's terminology this means that no g ., (j' >j) appears in a word g that is
such that (§ g) € G. (Then, clearly the rewrltmg process must be started from § -g

Another possibility is to consider the subset S (X) of those s € S(X) that are such
that <s,f>= 0, or 1, for all f.

It has been shown by Paxrikh4 that there exist sets of words in & (in fact, in the
closure of ‘51 by finite union and set product) which cannot be the support of an s € ‘él(X)
having this property.

In our notation, Parikh's example is described as follows:

" E162 + 6483 % " x)81%) + x)6p%ps %, T %2 F OAPY
o’§3 = xz§,3xz + xz§4x2; °'§4 =x + xl§4.

From this reasoning we deduce the following equations in which, for short, w, denotes
the coordinate of w whose index is gi:

w_=Ww. W +W4 3;

o 172
w, = l(w1+w?_) X,
Wy = xz(w3+w4) Xy
W, = X, + X,W,

W4 = Xl + X1W4

These equations can easily be solved because they are "sequential" in the sense of
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Ginsburg and Rice. Indeed, the last equation can be written Wy =X\ W, = X,. That is,

- — fo—w V=1 _ n
(e—xl)w‘l-x1 and we have Wy = (e xl) xl—ngoxl.
i s S | _ n _ n
Similarly, w, = (e X,) "%, = X X,. Thus W3 = X,WaX, + I X,X|X,, and, con-
n>0 n>0
sequently, Wy = z = x;nxrllx;n; w, = = z xllnxlzlxlin. Thus we finally obtain

€
n

m n_m n' m" n_m._n

o Z Z X) XX, Z ) |t Z X) XX X5
n>0 m>0 n'>0 m'>0 n>0 m>0

m n_m'-n'

= Xl szl Xl

The last summation is, after all, quadruples (m,n, m',n') of positive integers, and the

r(m,n, m'n')

coefficient r(m, n, m', n') has the following values:
rlm,nm',n')=0 if m+# m' and n# n'

1 if m#m' and n=n'

1 if m=m' and n# n'

2 if m=m' and n=n'.

The fact that this coefficient is equal to 2 for certain words exactly measures the
"ambiguity" of the grammar. It would be interesting to give examples in which this
grammatical ambiguity is unbounded.

I mention that conversely the following process gives elements s € §+(X) with
<s,f>=0, or 1.9

Let ¢ be a homomorphism of F(X) into a finite monoid H (i.e., let us consider a
finite automaton), and B a mapping that assigns to every pair (h,h') € (H, H) an integer
B(h,h'). For any word f € F(X) let ﬁ*f be the sum Eﬁ(¢f1,¢fz) extended to all factorizations
f= flfz of f, and say that f is accepted if and only if ﬁ*f does not belong to a prescribed
finite set Z' of integers.

Then the formal sum s = T f' extended to all f' which are not accepted (i.e., s=
= {f: p*f' € 2'} belongs to 37(X).

An equivalent defini'tion8 is: Let u be a representation of F(X) by finite integral
matrices uf and assume that there exists a constant K which is such that for all words f
the value (uf)l,N of the (1, N) entry of uf is, at most, equal to K times the degree
(length) of f.

Then the set of all f with the property that ufl’ N # 0 is the set of the words accepted
by an algorithm of the type described above (and reciprocally). As an auxiliary result,
we have shown that the complement of a set F' belonging to the simplest subfamily of
2 which is different from 3?0 belongs itself to the far higher family €. In general, the
complement of a set from F' does not.

Trivially, this construction applies to sets of words defined by the condition that
some linear function of the number of times each letter x € X appears in them has a

168



(XII. LINGUISTICS)

given value. It is quite remarkable that the sets defined by two or more such constraints

(for instance, the sets of words which contain the same number of times X X, and X3
n -
1=
I conclude these rather disconnected remarks by an interesting construction of ¢

or the set {xrllxrzlx n > 0}) do not seem to have any relation to €.

which is due to Parikh and which can also be applied to S(X).

6. Parikh's Construction4

Let us consider a grammar G satisfying the usual conditions and extend to a homo-
morphism A - A the mapping j :'::‘ ~ A defined by j€ = = {g: (£, g) € G}.

Foranyge F(X U ::,), the support of jg is the set of all words which can be derived
from g by the application of one rule of G to each of the occurrences of a symbol £'e€ ':,.
Every element of this set has either a strictly larger total degree (length) than f or the
same total degree but a strictly larger partial degree in the variates x € X. Thus the
supports of the elements f, jf, jzf, ey j?, ... are all disjoint. Their union, say F',
is a subset of the set D*(f, G) of all words derivable from f.

Of course, ‘_]5?‘__'1 is, in general, different from D*(f,G) because of the extra condition
that every £' € -, is rewritten at each step. However, when considering only the inter-
section D*(f.G) N F(X) = Dx(f,G) we have F' 1 F(X) = D*(f,G) N F(X), since in order to
get an element f € F(X) we have to rewrite each § € : at. least once at one time or
another.

Let us now denote by u the sum Z {g: £ € :'} for any subset Z' of : The ele-

mentt=u+ = jnu belongs to A, as we have seen, and it satisfies the Schroder-like
n>0
equation u + jt = t.

Conversely, we can write t = (e—j)“1 u, where € is the identity mapping A - A. Let
60 denote the retraction A(X U :) - A(X) induced by 60§ = 0 for each § € : ; (a retrac-
tion is a homomorphism that allows a subset invariant and sends everything else into
this subset; here the subset is that of the words not containing a single § € Z.)
Example. : = {a, ﬁ}; X= {a, b}; ',:':" = {a}
G = {(a, aap), (e, 2), (8. b)}-

We have
ja =aaf + a
iB = b.

Thus u=ea; ju= a+ aaf;
jzu (at+aaB)(ateaP) b = azb + aaaPfb + aaPab + eaPaafb
u = a(ataap)(ataap) bb + (ateaP)(ataap) bab + ((a+aap)?b)® b
= a3b2 + azbab + azba?‘b2 + terms of degree =1 in the £¢€ :, etc.
The support F{ of 6ot is the set of the well-formed formulas in Lukaciewicz notation.

M. P. Schiitzenberger
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