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1. INTRODUCTION

In this note we consider a very restricted class of transducers, i.e., of
automata which transform finite input words into finite output words
(cf. Moore, 1956). The simplest case is the transformation consisting in
the replacement of every input letter x by an output word »(x) which
is eventually the empty word ey . Algebraically, since the set Fx(Fy)
of all finite input (output) words is the free monoid (Chevalley, 1956)
generated by the input alphabet X = {2} (the output alphabet Y = {y}),
this transformation is simply an homomorphism »: Fx — Fy .

If 7 is such that 9(f) = 9(f') only if f = f/, it iS called an encoding
(with unique decipherability) and then % is an isomorphism.

Next in simplicity are the transformations realized by a conventional
[one way, one tape (Rabin and Scott, 1959)] automaton supplemented
by a printing device (Huffman, 1959). Upon reading « on the input tape
and, accordingly, going from the state s to the state s’ = sr, a word
n(s; ) function of s and z only is printed on the output tape which is
moved the corresponding length. Trivially, any mapping from Fx to F'y
can be performed by a transformation of this type if no restriction is im-
posed on the number of states. We shall always assume here that S =
{s} is a finite set. This forces drastic limitations on # and, in particular,
it introduces a difference between the right transformations (where read-
ing and printing are done from left to right) and the left transformations
(where both operations are done in the opposite direction). For example
no (finite) right automaton can perform the task of reproducing the
input word when it ends with a given letter and of printing nothing when
it does not.

Consequently the composite operation which consists of transforming
first the input word by a right automaton, and then of transforming
again the output word by a left automaton cannot as a rule be carried
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out in a single pass; we shall call it a transduction and we shall describe
some of its elementary properties:

1. The transductions form a set closed by finite composition and also
by inversion when this last operation has a meaning (Huffman, 1959).

2. The transductions transform regular events (Kleene, 1956) on the
input words into regular events on the output words and any regular
event can be obtained in this manner.

These two properties indicate that there is no difference between the
languages which can be accepted by finite automata and the languages
which can be produced by any bounded number of finite automata; here,
the boundedness condition cannot be omitted as is easily shown by
Chomsky’s counter examples (cf. Chomsky, 1959).

For notational reasons it is more convenient to define a transduction
n with sets of states (S, S’) as the transformation from an input word
f = mxs - - - 2, and a pair of states s; ¢ S, s’ ¢ S’ to an output word that
is obtained by replacing every letter x; by a fixed output word
n(8: ; % ; Sn—iy1) Where the states are given inductively by the equations
Sit1 = 8;z; and Sh_je = Z;Sn_j41 . With this definition, right (left) trans-
ductions correspond to the special case where n(s;; z; si) does not
depend effectively upon its right (left) argument and where, conse-
quently, S’ (S) can be taken as reduced to a single state and, finally,
omitted.

The finite closure property 1 shows that this new construct is equiva-
lent to the composition of a right and of a left transduction; encodings
correspond to the case where S and S’ reduce to a single state and, then,
the property 1 shows that the deciphering can always be performed by a
transduction.

Example. Let X = {2, 2} and Y = {1, x5, y3}. Every input word
hasa uniquefactorizationf = z;' 2;* - - - (¢ 5 7’) into runsz;* consisting
of the same letter x; repeated n; times, and we suppose that we want to
perform the transformation n which lets invariant the runs of even length
and replaces every run of odd length by y; .

Thus, for example,

3 2 3 4 2 2 4
NTy Lo L1k X1 = Y3T2 Y3 L1 -

This can be realized if for any factorization f = f'zf” we follow the two
instructions: (1) Print out z if it belongs to a run of even length. (2)
Print out y; or nothing when z belongs to a run of odd length according
to whether z is or is not the last letter of this run.
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In order to carry them out it is sufficient to know that f’ and f” re-
spectively end and begin by runs of length n’ > 0 and »” > 0 in the
letters 2’ and z” because: (1) x belongs to a run of even length if 2’ =
x = z” and n’ and n” have different parity or if 2’ = z ¢ 2” and n’ is
odd or if 2’ # z = z” and n” is odd; (2) x is the last letter of a run
of odd length if x 5 z” and n’ is even, or if 2’ # x = 2”.

Consequently, all that is needed is the parity of n’ and n” and the last
and first letter respectively of f/ and f”. As we shall see below this infor-
mation can be supplied by two finite state automata, one having read
f’ from left to right and the other one having read f” in the opposite
direction.

Let us now consider how this transformation could be achieved in two
passes.

The first one is performed by a right transduction with states {s.}
(0 £ 7 £ 4), initial state s and transitions:

8oy = 8y = 83T = 841 = 8,
STy = $g,
STy = 81Tz = So%y = 84¥y = 83,
83y = 84 .

Thus for any input word f’ the last state reached, s;, has index of the
same parity as the last run of f’; and 7 = 2 if and only if the last letter
of f’ is 1 . The machine has an output alphabet Z = {2} (1 £ 7 £ 4)
with the printing rule #’(s; ; £;) = 2, when s;z; = s». For example,

3 2 3 4
N (2T 1T T ) = 222RatieR 12 = 1'f.

The second pass is performed by a left transducer with states {s.’}
(0 £ ¢ £ 4), initial state s’ and transitions:

leil = 81’ if 22 and 2182’

I

= 82,; ZzSi' = 82’ lf 7 # 1 and 2281, Sll;

|

238 = 8’ if 74 and 28/

= s/;z8! =8 if 173 and sy = s,

The printing rule is given by 5”(z; ; s;/) = &1z, whenz = 2 and j 5 1;
= mrswhens = 4andj > 3; = y;whens = landj =0,2,40r¢ = 3
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and j = 0, 1, 2; = ey (nothing) in all other cases. For example,
7" ('f) = evevyseyTaayseverysevTiTiey1T; ,
that is, 7(so ; f; $o’).
II. FORMAL DEFINITION AND NERODE’S THEOREM

A transduction 7 is given by the following structures:

1. A finite input alphabet X = {z} and an output alphabet ¥ = {y}.

2. Two finite sets of states S = {s} and S’ = {s'}.

3. Two mappings (S, X) — S and (X, S’) — S’ written respectively
sz and xs’.

4. A mapping 5: (S, X, S’) — Fy written 5(s; x; s’). These mappings
are extended in a natural fashion to any f ¢ Fx by the following inductive
rules:

sex = sand exs’ = §', n(s;ex ;8') = ey forany (s, s') € (S, S').

For any feFx, xeX, (s, §) (S, 8): s(fxr) = (s)z, (fx)s' =
f(xs"), n(s; fx; ') = n(s; f; xs')n(sf; x; §).

It is easily checked that these rules are equivalent to the ones given
in the introduction. By induction the last rules gives the following iden-
tity which could be taken as a definition and which displays n as a
two-sided coset mapping Fx — Fy : for any f1, f2, fse Fx

n(8; fifefs 5 8") = n(s; fu; fofss")n(sfr s fo 5 fs8")n(sfifa s f55 87).

In a more concrete manner 5 can be realized by finite matrices whose
entries belong to the union of F'y and of a zero, 0. Indeed for any z ¢ X
let ux be a square matrix whose rows and columns are indexed by the
pairs (s;, si') € (S, 8’) and whose entries are

ne((si, si0), (85, 87)) = n(si;x585) if sw=s; and si = asjy,
= 0, otherwise.

Then if f = 125 - - -+ @, the corresponding output word 5(s;f; s’) is equal

to the entry uf((s, fs"), (sf, s')) of uf = pawzs - - pa. .
Proor. For any f e Fx and x ¢ X we have

”’fx((sia 82'), (SJ'y S;'))
= Z[uf((si, si), (s, se)]ma((se, si), (55, 85))]

where the summation is over all the pairs (s, si') € (S, S’). The only
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nonzero term in the sum is the one corresponding to the pair defined by
the equations s, = s;f and sir = sy ; we have then s; = sz and s =
fsi' , thatis, s; = s;fx and si» = fxsj . Thus the entry under consideration
is equal to n(s:; f; xsi)n(sf; x; s;5), that is, to n(s:; fx; s;v) and the
result follows by induction.

Example. Let X = {a, b}; Y = {¢, d}; S = {s1, so}; 8" = {t1, ta};
810 = S0 = 80 = 81 ;80 = 8 ; by = bty = ate =t ;at, =t . n(s;: ; x;
t;=ccifct =aandi = j; = difx =aands # jorifz = band1 =
i# j;=cifx =bandi = j = 2; = ey in all other cases.

Then, for instance, n(s; ; bbab; t;) = ccc according to the following
self-explanatory scheme

S1 So S1 S1 So
bey) ble) alec) bley)
t t to 11 i1
Also we have

0d 00O 0 0 er d 0 0 ccc ceed
—CCOOO'b—OOOO~bbab—OOOO
HE=10cc 00 T lesc 0 of ' %TV\0 0dd ddd
d 0 00 0 00 O 000 O

and n(s; ; bbab; t;) is equal to ubbab( (s, t1), (52, t)).

As an immediate consequence of the definitions we derive the follow-
ing weak form of Nerode’s ultimate periodicity theorem (Nerode, 1958).
There exist finite integers m and n which are such that for any f, f', f” € Fx ,
(s, 8) e (8, 8),p,r=0,and r £ n one has n(s; f'/f/" """ ) =
g'g"g” where g, g', g” € Fy do not depend on p.

Proor. Since S and S’ are finite we can find integers m and n such
that for all (s,s') € (S, 8'),fe Fx,p = 0,0 < r < n, we have: sf" """
= sf™" Ty = "', Thus

'I)(S;f’ 2m—+pn+r ”; s/)
= a(s; £ S (s 1 5 V(ST S ).

Because of our choice of m and n the second factor is equal to p times the
word ¢ = n(sf'f"*"; f*; f"f”s’) and the result is proved.

III. FINITE CLOSURE PROPERTIES

A. To any two transductions n: (S; Fx ; 8') = Fyand & (T; Fy ; T)
— Fj there corresponds a transduction 7: (R; Fx ; R’) — F; which is
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such that forany fe Fx, (s,5") € (8, 8"), (,t') € (T, T') one has identi-
cally £(t; n(s; f; §'); t') = «(r; f; r') where the statesr e R and r’ ¢ R’
are functions of s and ¢ and of s’ and ¢’ respectively.

Proor. We define an equivalence relation ¢ on Fx by the following
rules: of = of’ (to be read: the s-class of f is the same as that of f’) if
and only if (1) for all se S, sf = sf’; (2) for all (s, s’) € (S, S’) and
teT, tn(s; f; 8') = tn(s; f'5 §').

The relation ¢ has at most | S| '*' X | T | "'XISXIS"l (| S| the num-
ber of states in S) distinct classes. Furthermore it is right regular (i.e.,
of = of implies off” = of’f” for all f”) since when of = ¢f’ we have
(1) sff” = sf'f” for any s e S (because sf = sf’); (2) for any (s, ') ¢
(S, S')andte T,

tn(s; ff"; 8') = ta(s; f5 s )n(sf; f75 8")

tn(s; /5 f7s)n(sf's f75 8') = tn(s; ff"; §').

We now define R as the set of all triplets » = (s, ¢, ¢f) and the mapping
(R, X) — Rby (s, t,af)x = (s,t, afz). In a perfectly symmetric manner

we construct a left regular equivalence o', a set of states R’ = {r'} =
{(s, ', a'f)}, and a mapping (X, R’) — R’. Finally, we put
w((s, ¢, of )5 x; (515 0'f"))

= £(tn(s; f5 af's') 5 n(sf; x5 f's') 5 m(sfz; f5 §)Y).

This definition is free from ambiguity because the three expressions
n( ; ; ) entering in it depend only upon the classes of and ¢’f’; this
is a direct consequence of the definition of ¢ and ¢’ and it concludes the
proof since it is sufficient now to check by developing the expressions
that if f = f'zf” we have £(¢; 9(s; f; §'); t') = «(r; f; ') where r =
(s, t, oex) and ' = (¢, t/, d’ex). Before verifying the second closure
properties we recall the following facts:

1. Let Rz denote the family of the subsets F’ C F; that are regular
events in the sense of Kleene (1956). The specification of an F’ ¢ R; is
equivalent (cf. Shepherdson, 1959) to that of an homomorphism v:
F;—> P where P is a finite monoid together with the subset P’ of P asso-
ciated to F’ by the relations yF’' = P'; F' = v 'P' (= {f:vf & P'}). The
equivalence on F; defined by vf = 4f’ is at the same time left and right
regular and it has only finitely many classes.

2. According to D. Huffman’s theory (1959) the transformation 5 can
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be said to be information lossless on the subset F’ of Fx if the equations
n(s; f;8) = n(s; f;8); 8 = of'; fs' = f's'; f, f' e F' imply f = f'.

B. If  is information lossless on the subset F’ ¢ Ry there exists a
transduction £(= 5 ) which is such that for any f ¢ F’, (s, s') € (S, S")
we have £(¢; n(s; f; 8'); t’) = f where the states t¢ T and t' ¢ T' are
functions of s and fs’ and of s’ and sf respectively.

Proor. Let H be the set of all the words 7(s; x; ') with z ¢ X and
K(K’) the set of all proper right (left) factors of the words of H (i.e.,
k ¢ K if and only if kf ¢ H for some f 5 ey). If o is a right regular equiva-
lence on Fy with | ¢ | classes, we say that g ¢ F'y admits a factorization
of type (of, s:, s;, Sj, si, k) (where of is any o-class; s;, s; ¢ S; 87,
s;v € 8'; ke K) if there exist f' ¢ Fx and ¢’ ¢ Fy such that the following
relations are satisfied:
of =of'; g=gk; g =alsi;f5s0);  sf =si;  fsi=sp.
Clearly, if | h | is the maximal length of an element of H, there exist at
most | ¢ | X (| 8] X | 8" ])* X | h| different types of factorization. Thus
if we write A\g1 = Ag. when the elements ¢1, g» ¢ F'y admit exactly the
same set of types of factorization, the relation A has only a finite number
of classes when the same is true of ¢ and, by construction, \ is right regu-
lar. In perfectly symmetric manner we associate a left regular equiva-
lence A\’ on Fy to any left regular ¢’ on Fx .

We now come to the construction of £ As indicated above we con-
struct the relations A and A\’ on F'y associated with the (left and right
regular) relation v on F'x used for the definition of F’, and we define 7" as
the set of all triples (s, s, A\g) with (s, s’) € (S, 8’) and Ag a \-class;
the mapping (T, Y) —> T is given by (s, s’, A\g)y = (s, 8, A\gy). The set
of states 7’ and the mapping (Y, 7’) — T’ are defined in symmetric
manner with the help of the relation \’.

For each triple (s, s’, x ¢ X) such that 5(s; z;s") # ey we select arbi-
trarily one factorization kyk’ of 9(s; z; s’) and we define ¢ by the follow-
ing rules: £((s1, 84/, N\g); y; (sa, si', Ng’)) = x if there exists g, §' ¢ F'y ;
keK; K eK';f, f'eFx; s, 836 8; 8, 85’ ¢ 8 satisfying the following
relations:

Ag = Nk; Ng' = NE'g';

g=n(s;f;sd);af =s;fs’ =500 =8;

’

§ =n(ss;f ;8);8f = 84508 = &5 28 = s;
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kyk’ is the selected factorization of n(s: ; x; s3');
fxf’ belongs to F’.

In all other cases the value of £( ) above is ey.

The possibility of solving all except the last of the above equations for
giveny e Y, A\g, N'¢’, 81, 84, 81, 84 is a direct consequence of the definition
of N and N'. Taken together these equations imply that there exists at
least one triple f, x, f' ¢ Fx for which n(s; ; fxf’; si') = gkyk'q’ = ¢”
with a selected factorization; sifxf’ = s4 and fxf’s,’ = s//; faf’ ¢ F'.

Thus, if the word ¢” = gkyk’q’ has been obtained from a word f” in
F’ by a transduction with the indicated initial and final states, it follows
from Section III, A that £(¢; g”; t') will be identical to f” and, because
of the hypothesis that 5 is information lossless on F’, this proves a pos-
teriori that the above equations have a unique solution.

REMARK.

Because of the assumption that S’ is finite it is always possible to
realize in a single pass any arbitrary transduction if one is allowed to use
a bounded number of output tapes and if one has the possibility of
erasing on them.

Since the general case is rather cumbersome it may be sufficient to
restrict ourselves to the detailed examination of the procedure needed
for the deciphering of an encoding. Thus, let us assume now that S and
S’ are reduced to a single element and that consequently % is an iso-
morphism Fx — Fy . The sets H and K have the same meaning as in
Section 1II, B and P = 9Fx is the submonoid of Fy generated by H.

To any g € Fy we associate the set Ag of those k ¢ K which are such
that ¢ = pk for some p & P; \g contains at most | h | elements and,
consequently, the equivalence relation on Fy defined by A\g = A\g’ has
only finitely many classes; since, furthermore, it is right regular we can
construct a conventional automaton whose states are identified with the
various possible Ag’s and whose transitions are given by (Ag)y = A(gy).
We still observe that for any g € F'y either A\g is empty (and in this case
g cannot be a left factor of a word in P) or, if k £ Ag there exists a uniquely
determined element f = #p ¢ Fx such that ¢ = (nf)k = pk.

Let us now consider a word ¢” ¢ P and any factorization ¢” = gyg’ of
it; let us assume also that we have been able to record on | Ag | tapes the
words £p; corresponding to the | Ag | elements k; € \g. The automaton is
in state Ag and upon reading the letter y it will go to the state A(gy).
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For each k; ¢ Ag four cases are possible and we list below the printing
instructions to be followed in each of them:

1. k:y does not belong to H nor to K (i.e., k;y cannot be a left factor
of a word of P); then the machine erases the corresponding word £p, .

2. k;y belongs to H and not to K; the machine writes on the corre-
sponding tape the letter x ¢ X such that nx = k;y ; thus, on this tape
we now have (ép.)z.

3. k;y belongs to K and not to H; the machine does nothing on the
corresponding tape.

4. k.y belongs to H and to K ; the machine does as in 2 above but also
it takes a new tape and it reproduces on it the word £p; . This new tape
corresponds to the element &,y € N(gy) and the old tape corresponds to
the element ey £ A(gy).

At the end of the reading of g”, \g” contains ey because, by hypothesis,
g” € P and the corresponding tape carries the word £g” such that 5(&g”)
= g”. It is clear that, at any given stage of the procedure | h | tapes, at
most, are needed since we can use the tapes made free by the operation 1
above.

The proof of the validity of the algorithm is left to the reader and in
Tables I and II we give a complete account of the construction of the
state diagram and of the deciphering of the word a‘ba’b’a® for the follow-
ing example:

X={e§(1=i=5); Y =/{aqb};
7 = aa; nx2 = baa; nr; = bb; nxs = ba; nxs = bb;
K = {ey, a, b, ba, bb}.
(This is an encoding because it is a left prefix code in the three words:

u = a;v = ba;w = bb) (Schiitzenberger, 1956). We find £(a‘ba'd’a’) =
x12x2x1x3x1 .

IV. RELATIONSHIP WITH REGULAR EVENTS

As we shall deal here with fixed initial states, we write for any subset
F'(G") of Fx(Fy):

WF' = {geFy:g = n(si;f;8), feF'};
7 'G = {feFx:n(si;f;8') G}

A. The subset G’ of nFx belongs to Ry if and only if 77'G’ belongs
to Rx .
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TABLE 1

K ey ¢ b ba bb Correspg?;i;;%izga;tes and
€y -+ t

a + t: = ha

b + ts = b

aa -+ t = ta
ab to = tb = tha = tob
ba + ty = tsa

bb + + ts = tb

baa + + te = ta

bab t; = t4b

bba + te = tsa
bbb t; = ts5b

baaa + te = tea

baab + t3 = tﬁb

Proor. By definition there corresponds to every F’ ¢ Rx a right regular
equivalence y with finitely many classes such that F’ is a union of v-
classes; in the proof of Section III, B we have seen how to construct A
associated to v and such that nF” is a union of \-classes; since A is right
regular and has only finitely many classes, this proves the forward im-
plication. In particular, since F'x belongs to Rx , this shows that the total
output nFx is a regular event.

Now let G’ be a subset of 7Fx that belongs to Ry ; G’ is defined by a
certain right regular relation A with finitely many classes and we con-
struct the relation ¢ on Fx by the following conditions:

of = of' if and only if (1) s;f = sif’; (2) forany s’ ¢ S, An(s1 ;f;8") =
M(si; f'; §'). o is right regular because, if of = of’, we have s,ff” =
sf 7 and Mp(sis ff7; 8') = (Wa(se; f; f'S))n(suf; 75 §) =
AnCse; 55778 )n(sif’; f75 8") = An(s1; f'f”; §') where the second and
third equality result from the right regularity of A and where the second
equality is a consequence of of = gf’. Also, ¢ has at most | S| X | A | 171
classes and 5 'G” is a union of s-classes. This concludes the proof.

B. Provided that X contains two letters or more, there corresponds to
each G” ¢ Ry a right transduction % such that G” = 9Fx .

Proor. Because of our hypothesis on X it is sufficient to prove the
same statement for an arbitrarily large (finite) input alphabet and then
to perform a preliminary encoding.
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The result is trivial if G” is finite and, by Kleene’s theory, it is suffi-
cient to show that if G and G’ are the total outputs respectively of the
right transductions 7 and 5’ (with the disjoint input alphabets X and X”)
we can construct right transductions #;, 72, 73 (with input alphabet
X u X’) such that their total output is respectively G u G’, GG, and G*
in Kleene’s notation. The construction given below is the simplest to
describe.

Let S and S’ be the set of states of the right transducers 7 and »; we
can assume that S and S’ are disjoint and we define S” as the union of
S, 8’ and of two new states s;* and so* for which we have:

TABLE II

Tapes
Input word States ———-—— e e Instructions
TT T2 T3
S
a
ts [
a ||
. ll T T T T — T]
) |
a |
h T T + xn—T1
b |
tz
: |
N T Tl — T2; s —T1
a I
te T 'I‘ To — T2
a I
te - I n —T1
a
te T ry — T2
b
b
s T T2 > T3; x5 — T2
a
ts x3 — T3
a

te - xr, — T2
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1. si*2” = siz” or = s/'x” and n:(s:%;2”) = (s ;2”) or = 7'(s/';2")
according to z” ¢ X or ¢ X'.
2. so*z” = so* for all ” and 79.,(s”; 2”) = ey for all s”, ” such that
S”CE” — SO*-
3. §”2” and 7%:(s”; x”7) are the same as in the original transducers
7:(8”;
when s” € S and 2” ¢ X or when s” ¢ 8’ and 2” ¢ X'.

4. n:8"2" = s* when s” ¢ Sand 2”7 ¢ X’ or when s” ¢ S and 2” € X.

For ny: §"2” = 2”7 and 72(s”; 2”7) = m(s,*; 2”7) when s” ¢ S’ and
2” ¢ X’ and s”"2” = s;* when s” ¢ 8’ and 2” € X. For 53, we take G =
(and 8 identical to S’) and we define s”z” = ™ and 73(s”; 2”) =

ns(s1*; 2”) when s” ¢ S and ¢ X’ or when s” ¢ §' and 2”7 ¢ X.
The verification is left to the reader.

REcE1vED April 3, 1960
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