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I. INTRODUCTION

In this note we discuss the definition of a family @ of automata de-
rived from the family @, of the finite one-way one-tape automata (Rabin
and Scott, 1959).

In loose terms, the automata from @ are among the machines char-
acterized by the following restrictions:

(a) Their output consists in the acceptance (or rejection) of input
words belonging to the set F of all words in the letters of a finite alpha-
bet X.

(b) The automaton operates sequentially on the sucessive letters of
the input word without the possibility of coming back on the previously
read letters and, thus, all the information to be used in the further com-
putations has to be stored in the internal memory.

(¢) The unbounded part of the memory, Vy , is the finite dimensional
vector space of the vectors with N integral coordinates; this part of the
memory plays only a passive role and all the control of the automaton
is performed by the finite part.

(d) Only elementary arithmetic operations are used and the amount
of computation allowed for each input letter is bounded in terms of the
total number of additions and subtractions.

(e) The rule by which it is decided to accept or reject a given input
word is submitted to the same type of requirements and it involves only
the storage of a finite amount of information.

Thus the family @ is a very elementary modification of @ and it is not

* This work has been done in part at the Department of Statistics of the Uni-
versity of North Carolina under contract number AF 49 (638)-213 of the United
States Air Force.
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246 SCHUTZENBERGER

claimed that it relates usefully to the Turing machines or to the algo-
rithms used in actual computing practice. In a more formal manner we
have

DEFiNITION 1. An automaton o € @ is given by the following struc-
tures:

(1) An automaton ay € @ (the finite part of o), that is, a finite set
of states =, a mapping (Z, X) — Z, an initial state o; € Z, a distin-
guished subset of 2’ of 2.

(2) A finite integer N, an initial vector v; from Vy and for each state
¢ in 2’ a distinguished finite union V,’ of homogeneous linear subspaces
of VN .

(38) For each pair (o, z) in (Z, X) a mapping n:Vy — Vy which is
such that each of the coordinates v;” of n(v, ¢, ) can be computed by a
finite computing program independent of the vector » and involving
only the following operations: reduction of an integer modulo a positive
integer at most equal to a finite bound K,(e, z, ), multiplication of an
integer by an integer of absolute value at most equal to a finite bound
Ky(o, z, j), addition and subtraction of two integers.

(4) For each input word f = z; z,, - - - x;, the automaton computes
recursively the sequence of states o, 03, , 04, , **+ , 0, = o1f and the
sequence of vectors v, , vy, , Vi, -, Vs, = v(f) by the rules

Gy = 01 and Cip = (U,'m_l , xim)

v"'() =0 a’nd s, = n(vim—l ’ o'im—l ) xim)'

m

(5) The input word f belongs to the set F, of the words accepted by
a if and only if o;f € =’ and, then, if the vector v(f) = v;, does not be-
long to V., .

As expected, this definition can be considerably simplified and in
Section I we verify that it is equivalent to the following one:

DeriNITION 1’. An automaton a € @ is given by a (homomorphic)
representation u of the monoid F in the ring Zy of the integral N X N
matrices (N, finite) together with the rule

Fa = {f € Fiufiny 5 0}

where uf;,» denotes the (1, N) entry of the matrix uf.

It follows that the theory of Kleene (1956) can be applied and in
Scetion 111 we verify that the family R of all the sets I'o with « € @
has the following property
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If F’ and F” belong to R the same is true of their intersection, union,
set product F'F” (i.e., of the set of all words f = f’f” with f* € F’ and
f” € F”), and formal inverse F”° (i.e., of the infinite union of all the
set products F’, F'F' F'F'F', --- F'F' --- F', -..).

However, because of the arbitrariness implied in the conditions (2)
and (5) of Definition 1, it is not necessarily true that the complement
F — F’ of an F’ from R also belongs to R. This, together with some
miscellaneous remarks of a negative character, is verified in Section 1I
by way of counterexamples.

Furthermore, I am unable to formulate for the family @ the deep
part of Kleene’s theory, namely to characterize R starting from a reason-
ably simple subfamily of sets in terms of meaningful set theoretical
operations.

In Section IV, the family Ry = {F.:a € @ of the regular events is
characterized in terms of our present notations and in the same section
we apply some elementary remarks from the theory of sequential ma-
chines (Moore, 1956) or transducers (Huffman, 1959) in order to obtain
a third definition of Q.

I am most indebted to Professor D. Arden from M.L.T. for many dis-
cussions of the content matter of this paper which have greatly con-
tributed to the development or to the clarification of several points.

A. PRELIMINARY REDUCTION

We shall say that the automaton « from @ is semi-reduced if there
exists a collection of finite integral matrices u(o, ) which are such that
the vector 5(v, ¢, ) is simply the product vu(s, ).

I1.A.1. To any a € @ there corresponds one equivalent semireduced
o' € @ which is such that for every input word f the vector v(f) is a pro-
Jjection on a subspace of the vector v'(f) of the automaton o'.

Proor. Let us consider a fixed triple (o, Z,7) and write in explicit
form the computing program giving the jth coordinate of the vector
7(v, 0, 7).

Since this program is assumed to be finite there exists a finite natural
number M[=M(o,z,j)] and a set of M quadruples of integers
(2, 11(9), 12(7), 0(2)) satisfying the conditions: (a) 1 = ¢ = M; (b) for
all values of 7, 71(2) and 7,(7) are nonegative numbers at most equal to
N +1; (¢) o(z) = 1,2,3 or 4.

We now define a sequence of 1 + N + M numbers a(z, v) by the
following conditions: (a) a(0,v) = 1; (b) a(s, v) is the sth coordinate
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of v when 1 =7 = N; (¢) a(N + M,v) is the jth coordinate of
7(v, ¢, ) which we try to compute; (d) for each #(1 £7 = M),
a(N 4 7,0) is the value of a(#(%),v), reduced modulo a(é(z), ),
when o(7) = 1 and, when o(z) = 2, 3 or 4, it is respectively the value
of the product, the sum, or the difference of a(4(7), v) and a(4:(7), v).
Here, as usual, by the value of a reduced modulo b we mean the smallest
nonnegative integer which is congruent to @ modulo b.

At the cost of some increase in the length of this program we can
assume that only multiplications by bounded nonegative factors are
used. Indeed, since by hypothesis | a(7:(7), v) | £ Ki(o, z,7) when
o(7) = 2, we can always replace this line of the program by a subroutine
which consists in a multiplication by the nonnegative number
Ky(o, z,j) 4+ a(is(7), v) followed by Ki(7, x,j) subtractions of the
multiplicand.

Also, since there exist only finitely many triples (o, z, j) we can take
a fixed finite constant K which is larger than 2 and larger than any of
the numbers 2K, (o, z, j) and 2K:(s, x, 7). We shall always denote by
a(7, v) the value of a(7, v) reduced modulo K! .

Let W, be the set of the vectors » which can occur when the finite
part of the automaton is in state o, i.e., the set of all » which are such
that v = v(f) for at least one input word f satisfying o1f = o. Let I’
be the set of the addresses (0 < 7 < N + M) which are such that
for every v in W, , the value of a(%, v) is nonnegative and at most equal
to K.

Because of the hypothesis and of our convention that only multipli-
cations by nonnegative factors are allowed we have:

If o(2) = 1, thenz € I'.

If o(¢) = 1 or 2, then %(7) € I'.

Let us denote by o the vector whose coordinates are those of » reduced
modulo K! and verify the following statement: If v, »" € W, and
7 = o' then, for all ¢, a(¢,v) = a(¢,v’), and for all 7 € I', a(z,v) =
a(z,v').

Indeed, because of our choice of K and I’, a(7, v) is always equal to
a(7,v) when v € W and ¢ € I'. Thus, since the statement is true by
hypothesis when 7 < N, we can apply induction and it is an elementary
consequence of the properties of the congruences that when a(4:(),v) =
a@(4,(7), v') and a@(22(2), v) = a(e(z), ') we also have a(z, v) = a(s, v’)
for each of the four possible cases o(z) = 1, 2, 3, or 4.

Consequently, any a(z, v), and in particular a(N + M, v), depends
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only upon #. But, the set V of these reduced vectors contains only
(K!)" distinct elements and for all practical purposes here it may be
considered as an abstract finite set of states. Thus, we can replace a by
an automaton o’ for which the finite part a’ has the union of V and
2 as a set of states. Then, in o', the computing program for any triple
(¢’, x,j) admits the following simplifications: o(z) is never 1; when
o(7) = 2, the instruction consists in the multiplication of a(#(%), v) by
a factor which does not depend upon the vector » but only upon <, j, «
and the state ¢’ in which is the finite part of «'.

By a simple induction, it follows that we can find integers ¢; (o, , 7)
(0 = 7/ £ N) which are such that the jth coordinate of #(v, o, x) is the
linear function

00(0: l‘,]) + ,Z vi'cf’(a'7 .’13,])
1< <N

of the coordinates v, of v; since, at the cost of increasing N by one unit
we can always have a coordinate v, which is identically 1 for all f and,
since, consequently we can make the above relations homogeneous the
result is entirely proved.

Let us recall that a representation of the monoid F in the ring Zy
of the integral N X N matrices is a mapping u:¥ —> Zy which is such
that uff’ = ufuf forallf, f' € F. For any matrix m, Tr(m) denotes the
sum of the elements lying in the main diagonal of m.

I1.A.2. To any a € @ there corresponds one representation ' in Zy
and a finite set P of matrices from the same ring that are such that

Fo=1{f€ F:Tr(pyf) #0 forall p € P}.

Proor. Let us assume that « is a semireduced automaton with M
states in its finite part and, for each x ¢ X, let u'x be the (M X N) X
(M X N) matrix defined by

Wi = (ule,x))j;» if ox = ays; =0, otherwise.
Assuming that ¢; and v are respectively the initial state and the initial
vector of a, we define the M X N vector v’ by

vij=w0; if ¢=1;=0 if 43 1.

It is easily verified that u’ is a representation of F in Zy» (N’ = M X N)
and that for any input word f one has (v'u’f):; = (v(f)); if oof = o5
= (, otherwise.
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Let us now revert to the condition (5) of Definition 1 and observe that
it implies that for each ¢ € 2’ a finite collection W (o) of N-vectorsis given
together with the rule that f € F, if and only if o;f € 2’ and v(f)w #
0 for all w in W (a1f). For each state ¢ € 2’ and, then, for each vector
win W(oy) let w’ be the M X N vector defined by w;; = w; if ¢ = ¢';
= 0 otherwise.

Because of the relations established above we have (v'u/f)w’ = 0
when a;f % ;- . Thus if W’ denotes the set of all the vectors such as
w’ we have f € F, if and only if not all the products (v'u'f)w’ (w’ € W’)
are zero. This practically ends the proof because if p is the M X N
matrix defined by

Pijrir = ('wiz) X (U:'i')
the relation (v'u’f)w’ £ 0 is equivalent to Tr(pu'f) 5= 0.

B. EQuivALENCE oF DEFINITIONS 1 AND 1’

We recall that if m € Zy and m" € Zy., the kroneckerian product
m” = m ® m' of m and m’ is a matrix from Zyy whose entries are de-
fined by

Mair gy = (mi,5) X (mr,30).
Then, identically, for any a, b € Zy and a’, b’ € Zy: one has
(e ®a)(b®Y) = (ab) ® (a'd’)
and
Tr(a ® a’) = Tr(a) Tr(a’).

1.B.1. The Definitions 1 and 1’ of the family @ are equivalent.

Proor. On the one hand the statement is trivial because an automaton
as defined by 1’ is a special case of an automaton as defined by 1; in-
deed, given a representation u of F, we take as initial vector v, the first
row of ue. For any input word f the vector vuf is obtained by perform-
ing for each input letter a bounded number of additions and multiplica-
tions by bounded factors. Finally, f is accepted if and only if v,uf does
not belong to the linear subspace of the vectors whose last coordinate
is zero.

On the other hand the statement is also trivial. Because of I.A.1 and
1.A.2. we may assume that « is in reduced form, i.e., that « is given by
a representation u:F —> Zy together with a finite subset P of Zy . For
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eachf € F,let u'f = (uf) ® (uf) (€ Zxe) and let p be the sum of the
kroneckerian squares p ® p over all p € P. Because of the identities re-
called above, u’ is a representation and for any f € F, Tr(pu'f) is the
sum over all p € P of the square of Tr(pyf); thus, Tr(pu’f) 5% 0 if and
only if f € F, . It follows that without loss of generality we may reduce
the verification of the statement to that of the following:

If u is a representation of F in Zy and p a matrix from the same ring
there exists a representation u’ of F in Zy2,» which is such that for all f,
Tr(puf) = w'fines2. Indeed, for each f € F let u'f be the following
N’ X N’ matrix (N’ = N* + 2):

(i) w'far;j = w'fip = 0foralll £ j = N’; (i.e., the last row and the
first column of every u'f are identically zero).

(i) w'fi14 4w for each pair (7, k) (1 = j, k £ N) is equal to the
(7, k) entry of the matrix puf; (i.e., for each k the subvector u'fi,14j+@-nn
(when 1 = j £ N) of the first row of u'f is equal to the kth row vector
of the matrix puf).

(ii") p'fieira_nwn- for each pair (4, k) (1 = 5,k £ N) is equal to the
(7, k) entry of uf.

(iii) w'fi.x- is equal to Tr(puf).

(iv) The restriction of u'f to the set of indices (7, j) strictly larger
than 1 and strictly less than N’ is the direct sum of N matrices identical
to the matrix uf.

The verification that u’ is a representation is a straightforward com-
putation and the result is proved because of the condition (iii).

As a simple consequence of these constructions we have:

I.B.2. The family R of all F, (a € Q) 1s closed under finite intersections
and unions.

Proor. Let F’ and F” be defined respectively by u':F — Zy and
uw’:F —> Zyr . If for every f we define u;f as the kroneckerian product
(W'f) ® (u’f) we have w;fi,var # 0 if and only if both u'f; x» and
u"fi.n» are different from zero; thus u; defines the intersection of F’ and
F”.

If for every f we define p,f as the direct sum of the kroneckerian squares
of u/f and u”f, . is still a representation and we can easily find a
(N”? + N”*) X (N”? 4+ N”?) matrix p which is such that for all f,
Tr(pw.f) is the sum of the square of u'fix» and p”fix- ; thus, by our
last reduction ., can be used for defining the union of F’ and F”. D.
Arden has pointed out to me that by using the kroneckerian product of
w'f and u”f one can obtain more economically the same result.
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II. COUNTER EXAMPLES

I11.1. If X has a single letter, R reduces to Ry (= the set of all regular
events).

Proor. Let a be defined by the representation u:F — Zy and con-
sider the following integral power series in the variate ¢:

a(t) = ao+ 2 t"(ua")1n -
n>0

By definition, Fa is the set of those words =™ which are such that
(pzx™)1,x # 0; however, as a function of ¢, a(t) is the Taylor series of a
rational function whose denominator is a factor of det(1 — ¢ ux). Thus
according to the theorem of Skolem (1934), there exists a finite set of
finite integers m, p, di, d2, --- , dr which have the property that for
any 7 larger than m, the coefficient of t" in a(t) (i.e., (ux")1,») is zero
if and only if » is congruent modulo p to one of the d;’s. Consequently
F, reduces to a regular event when X has a single letter and there
exist quite simple sets (as, e.g., the set of the words 2" where n runs
over all integers) which do not belong to R. It can be observed that
Skolem’s theorem shows that for any F. € R and f € F, the intersec-
tion of F, with the infinite set f, f°, f°, ---, f*, --- also reduces to a
regular event.

I1.2. When X has two letters or more there exists at least one F, € R
which has the following properties: F, does not belong to Ry ; the comple-
ment F — F, of F does not belong to R.

Proor. Let X = {z,9}; 2 = {0}, =1,2,3,4,5,and (2, X) > 2
defined by

o1x = 0 = 03, O3 = 04T = 034, o5l = 03
a1y = o3y = o4y = o5y = 05 ; oY = 03.

Let u(o;, ) be the following matrices

Wor,2) = e, = (3 1)

plos, ) = plos,z) = ((1) -D;

u(os , y) = the identity matrix; u(e, ) = the zero matrix in all other
cases.
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The initial state is o1 and the initial vector v = (1, 0). =" is T itself
and f is accepted in all cases except if a;f = o4 and then if the second
coordinate of v(f) is zero.

By looking at the diagram (Fig. 1) one easily sees that o1f = o4 if
and only if f = " "y2z'™ and that, then, »(f) = (1, n — n').

Thus F, consists of all words except those which have the form
&' "yz'*"; and, according to a metamathematical proof of Calvin Elgot
(1960), F, is not a regular event.

Let us verify that F/ = F — Fa does not belong to R; indeed, let us
assume that there exists a representation u':F — Zy which has the
property that u'fi,v 0 if and only if f does not belong to, F, .

Since p'z is a N X N matrix it satisfies an equation of degree at most
N and for every pair (7, j) and matrix m from Zy there exists a linear
relationship between the (7, j) entries of the N 4+ 1 matrices m, mux,
mpax’, --- , mux". Since, by hypothesis, for every finite n the (1, N)
entry of the matrix p/z" "y2z" (= p'z' "yu'z™ ) is zerofor0 < v’ < n
and different from zero for n’ = n + 1, we have shown that N’ must be
at least equal to every finite integer n. Consequently, the representation
u’ is an infinite representation, i.e., F — F, does not belong to R. Some
elementary properties of this type of sets have been described in
Schiitzenberger (1959).

I1.3. The family R = {F — Fa:a € @} is closed under (finite) union
and intersection but not under set multiplication.

Proor. By definition, F, € R if and only if there exists a representa-

y
0, O3,
/
X / X
/
/
/ X
g ’ y %
~ rd
N / Prad
~ / P
y \\\ / ’z/
\\0—5 / /’/
Xy
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tion p:F —> Zy (with N finite), that is, such that Fo={f € Fiufix = 0}.
Thus the closure properties of R for the union and the intersection are

a simple consequence of 1.3.2.
Let X = {z, y};

oo e = (Y1) (1 -1\, . (1 =2
#—'I‘"—Ol’ ”y_o 1) ”’y"o 1'

The sets

I

Fo={f € Fipfra=0 ={f € F:|fl. = |f |}

and

Fo ={fCF:ipfio=0 ={f€F:|fl.=2|fls

(where | f |. denotes the number of times the letter z appears in f) both
belong to R and we shall verify that F” = F,F, does not belong to R.

Let us define W(f) as the set of the words f’ which are such that
ff' € F”. We have (i) Forallf € F and f” € F., W(f) is contained in
W (f”f). Indeed, ff’ € F” meansthat ff’ = fif where f; € F,andf, € F,. .
Thus f”ff’ = f”fif. belongs to F” since by hypothesis f”fi € F,. (ii) If
both f and f” belong to F., W(f”f) = W(f) implies that f* = e (the
empty word of F'). Indeed, let f’f € F,., thatis | f’f|. = |f"f|, = F,
say. The product f”fz* satisfies the relations |f”fz*|. = 2k and
| f7f2* |, = k and, consequently, it belongs to F, ; thus, since Fo is a
subset of F” (because e € F,) the word z* belongs to W (f”f) and we
shall show that it does not belong to W (f).

Assume for the sake of contradiction that fz* = f,f, with f, € F, and
fy € Fo ; this implies that f = fifs with f; € F, and, consequently,
|faa* o = |fsla 4+ % = 2[fsly 5| fslo = | fsly - It follows that | fs | = k
and finally that | f”f |, = | f"fifsl. = k, i.e,f” = e.

Thus, using (i) and (ii), we can find at least one strictly increasing
infinite sequence of sets W, viz., W(f), W({"f), W{"f), ---,
W), -+ .

Let us assume now that F” = {f € F:u"fix» = 0}; we observe that
for given f the set W (f) of the vectors consisting of the N”th row of the
matrices u”f’ where f’ € W(f) form a linear space whose dimension is at
most N”. Since we can build an infinite strictly increasing sequence
W (f”™f) of such spaces it follows that N” is infinite, i.e., that FoF o = F”
does not belong to R.
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11.4. If X contains two letters or more, there corresponds to any subset
F’ of F one automaton satisfying the conditions (1), (3), and (4) of Defini-
tion 1 and having F’ as its set of accepted words.

Proor. This is a trivial consequence of the existence of isomorphie,
integral, finite dimensional representations of the monoid F.

Let first X = {z, y};

(1 1Y\, _ (1 0).
”x—OI’ F"y_‘ll)

and take v = (1, 1) as initial vector. According to a theorem of Harring-
ton (1951), the relation vuf = wvuf’ implies f = f’; thus for any subset
F’ of F if the subset V' of V. is defined by V' = {v' = wuf:f € F'}, we
have reciprocally F’ = {f € F:ouf € V'}. Clearly, this algorithm satisfies
the conditions (1), (3), and (4) but not necessarily (2) and (5).

When X contains n = 3 letters z; , the same result subsists because we
can associate to each z; the matrix pf; where fiy = z, f, = ¥ and
fi=y 'zwhen2 <i=<n— 1.

III. KLEENE’S THEOREM

Although this part could be written without explicitly using the
notion of the ring A of the formal integral power series in the noncom-
mutative variates x € X, it seems more natural to do so and we recall
here, without proofs, a few definitions and results on A. These are very
special and shallow cases of theorems used by many authors in the
study of other problems. An especially valuable reference is Lazard
(1955).

DxrFINITION 2. A is the ring of all formal infinite sums

a= 2. f(a,f)
feF

with integral coefficients (a, f). )
The addition and multiplication in A are defined respectively by:

a+a =2,f((a,f) + (af); aa’ = 2 f( 2 (a,f)(a,f"))
feF feF 1 r=f

where, as always in this section, > —y means a summation over all
factorizations f = f’f” of f.

It may be easier to visualize any element of A as a generating function
in which every word f has a (positive or negative) integral coefficient
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(@, f). Thus, in particular, to each subset F’ of F' there corresponds the
formal sum (its characteristic function)

2. = 2 fxe(f)
fEF feF

with x#(f) = 1 or 0 according to f € F’ or not.

The multiplication is simply the ordinary multiplication of series using

infinite distributivity, that is aa’ can also be formally expressed as
2 fa,Na = 2 af(a, ) = 2 ff'(a, ))(d, f).
jer jer F.fEF

It may not be unnecessary to stress that this product is not the
Hadamard product =f(a, f) (a/, f) to which we were led by the construc-
tion of the kroneckerian product of matrices in Section I.

We shfxll always denote the empty word by e and by A* the subset of
all a € A in which (a, ¢), the coefficient of e, is zero. The elements of
A* are usually called quasi regular and we denote by a* the mapping
A — A* defined by a — (a, e)e. If and only if a is quasi regular (i.e.,
a = a¥*), it has a quasi inverse a’ = an 1 a" which satisfies aa’ +a=
a’a + a = a’. In a perfectly equivalent manner an element a € A has
an inverse a (a'a = a'a = e) if and only if it belongs to the group
G C A of the elements o’ which are the sum of ¢ and of the quasi regular
element a’*; then '™ = ¢ + (—a'*)’ because

da’t = (e + a*)(e + (—a'*)°)
=e+4 a* 4 (—a™*)" + a*(—a*)°
=e+a*—a*=e.

We shall find it more convenient to deal with the quas: notions because
if a has nonnegative coefficients the same is true of (a*)° but not neces-
sarily of (e + a*) 7. )

All the above operations are legitimate because A* is a continuous
topological algebra with continuous inverse when the distance between

a and d@’(a 5# a’) is defined as the supremum of the inverse of the length
of those f for which (a, f) = (d/, f).

A. Tue SuBriNG R oF THE RATioNAL ELEMENTS

DEerINITION 3. The subset R of A is the subset of the formal power
series r which have the form r = Zfe r fufi,n for some representation u
of F in Zy (N finite) which is said to produce r.
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We shall verify that R is in fact the smallest subring of A that con-
tains all the generators € X of A and is such that its intersection with
G is a subgroup; this last restriction is not trivial because, for an arbi-
trary subring A’ of A it may well happen that some a belongs to the
intersection of G and A’ but that a' does not belong to A’. If the vari-
ates x were commutative, B’ would be the ring of the ordinary rational
functions with integral coefficients and it seems natural to extend this
terminology to the noncommutative case. A slightly different definition
of R is given below.

III.A.1. R s a submodule of A.

Proor. If

a = Zf(#f)l.N, a = Zf(”’lf)l,lv’
feF feF

we take the direct sum u”:F — Zy,n of p and p’ and we apply the re-
marks of 1.3.1. for reducing to the desired form.

IIT.A.2. R is a subring.

Proor. We have to prove that if a is produced by u and a’ by ' we
can construct some u” which produces aa’. It will be simpler to prove
the result under the additional assumption that a, a’ € A* and to ob-
serve that the general case follows from III.A.1 because aa’ = a*a’* +
(a,e)a’* 4+ a*(d,e) + (a,e)(a’,e)e. We can also assume that ue and e
are the identity matrices of Zy and Zy' respectively. After these pre-
liminaries we proceed to the actual construction.

For each x € X we define u”x € Zy,x as the matrix

(ux (ux)U>

0 w'z

where by (ux)u we mean the N X N’ matrix in which all columns are
zero except for the first one which is equal to the Nth one of ux. Then,
after taking u”e as the identity matrix of Zy,»' , we extend u” to a repre-
sentation u”:F —> Zy,n+ in the usual manner.

Because of our assumptions the following relations are surely true if
f=eorx:

#”fl,i = Ilfl,i when1 =7 = N;
pfivgs = fo ﬂf{,NﬂlfI”,i whenl £ N’
1=

Let us verify now that if they hold for f they also hold for fx. Indeed we
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haveforl1 <7 < N:

Y ~
pire = 2, WL = 12‘ pfrndie = wufzy

1<jE<N+N SIEN
andforl1 =7 = N':

h <
Wheiwsr = 2o whie)u)ie + 2 Wi .
1 N 1<7=N

<J=

The first sum is just pfz;,» when 2 = 1 and zero otherwise. By the induc-
tion hypothesis the second sum is

/
Z Mfl,N#'f;,.j#’xj.i' = E F‘f{,N,ulf”xl,i’ .
N I'r=f

I 147
When 7’ # 1 this can also be written as
~ ’ yo”
L Kg1, N 1,5
9'9"=fz
since p'e1,+ = 0. On the contrary when 7/ = 1 we have
A ’ ” A ! ”
v v = wfriy + ; B NR Gr1 = Zf K1, vi g1
g'9"=fz ’

g"#e o=
and the above relations are true for all cases. Since they imply that
2 F W D = 2200 20 (wf)1n(Wf ) = aa’
jer jer " pir=y

the result is proved.
II1.A.3. R contains the quast tnverse of each of its quasi-regular elements.
Proor. As above we assume that ue is the identity matrix and we de-
fine e as pe. For each z € X, we take gz equal to the sum of uz and of
a matrix (ux)u € Zy which has all columns zero except for the first one
which is equal to the Nth column of px. For f = e or z we have

Bfi,i = wf + ﬂ;f ﬁf{,Nﬂf{,,z .

As in the last proof above:

W = O, EfaeiTe +fZ Do Bfiwufl Rz, .

12{ZN "JI=f 1SV EN
Thus:if 7 = 1,
Bfryy = ufriy + pfry + ﬂ;f ﬁf;,Nl-tf”xm +- f’fZ:f ﬁf{,zv#f”%.zv .

Ifz 1,
’
Wiz = pfte: + D, Bgi.mgLs -
g'9"=g
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Consequently, the initial relation is valid in all cases. Let us now
compute d; . We have

@i = D fafui = 2 fufui + 2. (Fafiw)(Fufls)-
jer jer er

In particular, for « = N, we have ay = a + @va, that is, e = (¢ + av)
(e — a) and, since a is assumed to be quasi regular, ay =
(e —a)" —e=a

III.A.4. Reciprocally, any element @ = 2 scrf(uf)1n, of R, can be
obtained from the generators x € X by a finite number of ring operations
and formation of the quast inverse (of quasi-regular elements).

Proor. It is convenient to verify first the following statement: If s
is a N X N matrix whose entries s;; are N° distinct noncommutative
variates, any entry of the quasi inverse u of s is a rational element with
integral coefficients in the ring of the formal power series in the vari-
ates s;; .

When N = 1, the statement is trivial because, then, u reduces to uy
which is equal to the quasi inverse of s;; ; when N = 2 we shall use in-
duction and base the verification upon the popular fact that any entry
u;; can be interpreted as the sum of all paths from 7 to 7 on the complete
graph with vertices 1,2, --- , N. Since any such path can be decom-
posed in a unique manner described below with respect to the return of
the vertex 1, the verification is a straightforward clerical operation.

Let us assume that the result is already proved for N — 1 and con-
sider the (N — 1) X (N — 1) matrix ¢ obtained from s by replacing by
zero all the entries s;;and s;;(1 = 7 < N) of s; by the induction hypothe-
sis the quasi inverse v of ¢ does exist and its entries v,;(2 < 7,7 < N)
have the desired properties. We define a N X N matrix » by the follow-
ing relations below and we shall verify later that it is the quasi inverse
of s by showing that us = u — s.

Un = (sil —I' E 81i84s + Z Slil),ijl)O
2 N 2 N

<iz <iis
If7 1,
Uy = Uy + Unty ; Ui = Ua + Ui + UaUn
where, as an abbreviation,
- - ~
Uy = 8; + Z 81055 Uy = Sa + Z, V33851 -

245 2<TEN
If 4,5 % 1,

Ui; = Vi + Uale + un) ;.
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By the induction hypothesis, all the u;;’s can be obtained from gener-
ators by the specified operations and we verify that us = u — s. We
have to examine four cases:

Case 1.
(us)u = unsn + Z U851 = UnSn + z_, uljsjl + un Z U181
2<jEN PEES 2<JEN
= unsy + (e + un)( Z 81]311 + Z 81500 38511)
257 2<7,7jEN

= uusu + (e + un)(e — su — (e + uu)_) = Un — Su.
Case 2.If 2 <7< N
(us)li = uUusi; + (8 + Un) Z U158 s

2<j<N

= wusi + (e + un) (| Z s + 2. SumgsSii)

<]_1 N

= unsn, + (e + ull)( Z S”S” + Z 8157 (Uyr qu‘))

<j'SN
= unsu + (e + un(@: — 81:)
= Ui — Sui .
Case 3. If2 <71 <N
(u8)in = UaSu + 2 U358 41

2<J<N

= %iSu + @aUnsu + Vi85 + Z uu(e + U)W 8
<

SN 2<jEN

= uu[Sn + unsu + e + Z (8 + uu)umsn] — Sa

2<j<N

= dale + (¢ + un)(su + Z susn + 2, suwpgsa)] — sa

2<7,JEN
@ale + (e 4+ un)(e — (e + un) )] — 81
= din(e + Un) — Sa = Ui — Sa .
Case 4. Finally, if 7,7 # 1
(us)sj = UisSij + D UipSi;
2<TT<N
= UpnS; + WaUuSi; + vij — Sij + Z Ui (e + Un)urjr855
277 <N
i — Sij + Uu(e + un)lsi; + Z WyjrSjrj] = Uij — Sij
2<j'sN

and the statement is verified.
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We now revert to the proof of III.A.4 and we consider an element
r € R produced by the representation u:F — Zy . Without loss of gener-
ality we may assume that r is quasi regular and we consider the formal
sum s = D .cx xpx, that is a N X N matrix whose entries s;; are the
elements ) zx zux:; from R. The sum s can be interpreted as a quasi-
regular element of the ring of the power series in the variates € X with
coefficients in Zy . Let us observe that for any two elements of this ring
having the form fuf and f'uf’ the product (fuf) (f'uf’) is equal to ff'uff’.
Consequently, the quasi inverse u of s is equal to the sum of fuf extended
of all the elements of F except e and the entry wu,;; is the sum of fuf;; ex-
tended to the same set. Since we have seen previously that u;; is a rational
element in the entries of s, the same is true in particular of u;x = @ and
the result is verified.

As a point of marginal interest in the applications of probabilities to
regular events, we consider the homomorphism (of ring) N which sends
every r € R with finitely many nonzero coefficients onto the correspond-
ing ordinary polynomial in the commutative variates & = Ax; A extends
in a natural fashion to R and we have

III.A.5. For each r € R, \r is a power series, converging in some open
domain around zero and representing there an ordinary rational function in
the commutative variates T = Azx.

ProoF. Let 7 = D scrfufi.y . We consider the matrix D eex Fux = 8
and the ordinary polynomial equal to det(/ — s) in the commutative
variates £ = Az. For small enough e, det(I — As) has its value arbi-
trarily close to 1 when all the & are less than e. Under this condition the
matrix I 4 D ns18" = (I — s)7' = [det(I — s)] Adj(I — s) exists
and its (1, N) entry, that is, Ar, is a rational function of the ordinary
variates Z.

B. RepuctioN TO STANDARD FoRM

In this section, we apply classical algebraic techniques to obtain a
minimal representation producing a given element r of E; at variance
with the other parts of this paper we deal here with arbitrary (not
necessarily integral) numbers.

II1.B.1. To any element r € R, there corresponds a unique integer N and
a representation & of F by N X N rational matrices that has the following
properties:

(i) There exists two sets T and S of N words each, a finite integer K and
N? matrices w(t, s) from Zy which are such that for all f € F the matrix af
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is identically equal to the sum ZK '(r,tfs)w(t, s) extended to all the pairs
(t,s) € T X 8.

(i1) The representation G produces r in that sense that gfiy = (r,f) if r
is quasi regular and that ify = (r,f)(r,e) " if (r,e) = 0 (that is, w(e,e)
has a single nonzero entry).

(iii) If u 2s any representation of F by N X N matrices that produces r,
then N = N and there exists a pair of matrices (1, W) which is such that
(uufa')s; = pgfij,if 1 = 4,5, = N and = 0, otherwise (z.e. i s a projec-
tion of u).

Proor. In the first steps of the proof we start from a given N-dimen-
sional representation u of F' that produces r and we construct by itera-
tion of the procedure described in 1 below the N-dimensional repre-
sentation g which has the properties (i), (ii), and (iii) with respect to
w; in the last step we verify that this representation does not depend
upon u but only upon 7.

1. Let I be a fixed one to one mapping of F' onto the natural numbers
that satisfies the inequality If < Iff’, for all words f and f/, and let v be
the vector equal to the first row of ue. We construct a set of words 7"
by the two following rules: (a) I '1 (that is, e) belongs to 7”; (b) in-
ductively, I = f belongs to T” if and only if f = f'z where f’ € T" and
x € X and if vuf is (linearily) independent of the vectors vuf” where
f? € T and If” < If.

By construction, 7’ contains N’ < N elements and, without loss of
generality, it may be assumed that 77 = {f:If = N’} since ff’ € 1"
implies f € T".

Let xf be the N’ X N matrix whose jth row is the vector vuf’f where
If’ = j; by construction xf = xeuf identically.

Observe that for any ¢ € 7" and x € X either tx € T’ or, else, the
vector vulx is a linear combination of the vectors vut’ (¢’ € T’), that is,
of the rows of xe; in other words, the matrix xx is equal to the product
w'zrxe where p/z is a certain N’ X N’ matrix. For any word
f = x>, -+ @, we define u'f as p'z; pw'z;, - - - p'z;, and we verify by
induction that the representation u, the associated representation u’, and
the interwinning matrix xe are linked by the identity

xf = xewf = u'fxe.

In fact, since the rank of xe is by construction equal to the number
N’ of its rows, there exists a pair (a, b) of nonsingular matrices which is
such that (axeb);; = 1if 1 <7 =35 = N’; = 0, otherwise.
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The identity (axed) (b ufb) = (au'fa™")(axeb) shows that
(b7 ufb)i; = (awfa iy if 154,75 N
=0 if 1S7=<N and N <j=N.

Thus, there exists a pair (u, u’) of matrices which are such that the
restriction of uufu’ to the indices less than N’ is equal to uf and that
any other entry of uufu’ is zero, that is, u’ is a projection of u.

Finally, we point out that the construction of u’ implies that any
vector vuf(f € F) is a linear combination of the N’ independent vectors
vut(t € T') and that consequently N’ can be defined, without reference
to I, as the rank of the vector space spanned by the vectors vuf(f € F).

2. Let I be a one to one mapping of ¥ onto the natural numbers that
satisfies If < If'f for all words f and f’, and let v’ be the (column) vector
equal to the Nth column of xe. It is clear that by replacing I by I and
by exchanging everywhere left and right multiplications we obtain a set
S analogous to 7" and that we can associate to the representation u’ a
third representation i of dimension N < N’ and an interwinning matrix
xe that satisfies the identity:

xf = w'fxe = xeif.

Again, reverting to I and taking a basic vector 7 equal to the first row
of Xe, we can apply the same construction once more and obtain a set T,
a representation i of dimension N < N associated to g, and an inter-
twinning matrix xe.

However, by definition, (%f):; = (r, tfs) where It = ¢ and Is = j.
Consequently 7' is a subset of 7" and xf is obtained from %f by deleting
a certain subset of N — N rows. Let us observe that the rank of ke is
equal to NV, its number of columns and that, by construction, T is a set
of words corresponding to a maximal set of independent rows of Xxe.
Thus, N = N and we conclude that xe is a nonsingular matrix.

3. Let us consider the intertwinning identity

X[ = xeaf = ifxe.
Since xe is nonsingular, we have identically af = (xe) '%f and i has the
property ¢ of the statement.

Since the (1, 1) entry of xf is exactly (r, f) we have Tr(qaf) = (r,f)
where ¢ is obtained from xe by replacing by zero every row except the

first one; thus, depending upon (r, ¢) = 0 or not we can find a nonsingu-
lar matrix m which is such that mgm™ is a matrix in which all the entries



264 SCHUTZENBERGER

are zero except for the (1, 1) entry or for the (N, 1) entry, and the repre-
sentation if = mafm ' has the properties (i) and (ii).

We have already seen that ' is a projection of x and, by the same
argument, it is easily verified that g is a projection of yu’, that is, finally,
of u.

4. Let us say that the set of words F’ is (right) independent if the
only linear relation

2 ep(r,ff") =0
f'eF’

which is valid for all f € F is the trivial one in which all the coefficients
¢y are zero.

It results instantly from the construction of i and i that for given
r € R and I, the set S can be defined intrinsically as the maximal (right)
independent set which is such that f € S implies that the set union of
f and of the words s € S with Is < If is not (right) independent. In
similar manner 7' can be defined intrinsically in terms of r and I only.

Consequently, if v is any N”-dimensional representation of F, that is,
such that (r, f) = vfix» identically, we can apply to » the construction
described in 1 and 2 for x and, although the first set 7”7 may be dif-
ferent from 7”, we are sure to obtain at the second and third steps
the same sets S and 7. Thus, f is also a projection of » and, conse-
quently, N” = N;in particular, if N7 = N, this implies that avfa™" = af
identically for some nonsingular matrix ¢ and this concludes the proof.

This, of course, does not preclude the possibility that (r, f) = Tr(pv'f)
for some representation » of dimension less than N and matrix p or
sufficient rank.

However, the complete discussion of this case, i.e., of the algebra asso-
ciated to r would take us too far away from the strictly linear techniques
used in this note and it will be given elsewhere.

Since we have not proved that the matrices gz(x € X) are integral
matrices, it may be worthwhile verifying that the following definition of
R is equivalent to our previous one (cf. Fatou, 1904).

DEFINITION 3'. An element a € A (i.e., a formal sum with integral co-
efficients) belongs to R if and only if there exists a representation v of F by
arbitrary finite dimensional matrices which is such that (a,f) = Tr(pyf)
for some fixed matrizx p.

Proor. By using the construction given in I.B.1. and then the con-
struction of III.B.1, we may assume without loss of generality that, in
fact, (a, f) isequal to the (1, N) entry of the matrix gf divided by a con-
stant factor. Consequently, because of the intertwining identity xf =
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xem 'gfm, i.e., gf = m(xe) 'xfm ", each entry of uf is a rational frac-
tion in which the denominator K is an integer independent of f.

Thus, if »(f) is the vector equal to the first row of gf, we can write
o(f) = v'(f) + K" (f) where v’(f) has integral coordinates and where
the bounded vector v” (f) is equal to Kv(f) reduced modulo K. It follows
that for any x € X the 2N-dimensional vector (v'(fz),p”(fx)) is en-
tirely determined by x and the 2N-dimensional vector (v'(f)”(f)) in
the sense of Definition 1 and this concludes the proof via the reduction
procedure of Section I.

Incidentally, it shows that if all the coefficients (7, f) of some r € R
are divisible by K, the element K 'r also belongs to E.

C. APPLICATIONS TO THE THEORY OF KLEENE

IITC.1.IfFo,Fo € R then F.Fo € R.

Proor. Let F, = {f:ufiv # O}; For = {fin/fi,n 5% 0}. We can assume
that for all f,ufi,» and p'fix. are both nonnegative (cf. Section 1.B).
Then, if

r= 2 f(uf)w and 1 = 3 fu'fi,
JeF jer

we have
(' f) = > (M rw(Wf )i
SR

that is, (rr’, f) 5 0 if and only if there exists at least one factorization
f = f” for which ufiy 5 0 and wfiy > 0. Thus F.F. =
{f:(rr",f) 5~ 0}. Since we know by III.A.2 how to construct u” :F — Zy n
such that (rr',f) = w”f1,y4n the result is proved.

II1.C.2.If F. € Rthen F.' € R.

Proor. Let Fo = f:(2,f) = ufiy # 0 with (2, f) = 0forall f, as above.
We can write F,) = {e} u (F. — {¢})° and, consequently, we can assume
that F, does not contain e. Then, as in IT1.B.3, it is easily checked that
F' = {f:(+,f) s 0} and the result follows from III.A.3.

There exists another type of invariance of the family of regular events
which carries over to the family R; in order to describe it we still need
the following definition.

DeriniTION 4. A restricted right transducer 7 is given by the following
structure:

(1) A finite automaton with a (finite) input alphabet Y, a (finite)
set of states £ and a mapping (2,Y) — 2.

(2) A mapping 7:(Z, Y) — F where F is the monoid generated by
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the (finite) alphabet X ; n is extended in a natural fashion to a mapping
(2, Fy) — F (where F'y is the monoid generated by Y) by the following
rules:

For any state o; € Z, 76 = e (e: the empty word).

For any state ¢; € = and input word ¢ = y4,vs, - -+ ¥i, ,

139 = (i, Yir) 1(0i, , Ys,) =+ 1(0ir_y s Yin)
where o;, = o; and, inductively, o, = (04,,_, , Yi,)-

(3) The two mappings (2, Y) — 2 and 5 satisfy the condition that
if the state o; is such that ;9 = ¢; and 5,9 = ¢ for some g # e, then
n;9' = e for all input words ¢’ € Fy (we say then that o, is a sink).

Given a restricted right transducer # and an initial state ¢; , we shall
define an element @ € A (the sum produced by n) according to the fol-
lowing rule: For each f € F, (a,f) is equal to the number of distinct
words g € Fy which are such that o1g is not a sink and that mg = f.

II1.C.3. If the subset F' of Fy belongs to Ry (defined for Y as R was de-
fined for X) then, for any state o; of =, the set Fo = n;F' = {9;9:9 € F’';
oig 18 not a sink} belongs to R.

Proor. The result is true if every state of 2 is a sink; let 2’ be the set
of the states of £ which are not a sink and assume that 2’ contains
M = 1 elements.

For each finite N we shall consider the ring By of the N X N matrices
whose entries belong to the ring A of the formal power series in the
letters from X. To any y € Y we associate the matrix vy from B, with
entries

vy = n(e;,y) if oy = o ; = 0, otherwise.

The matrices »g form a representation of Fy in By and for any g € Fy
and ¢;, o € 2’ we have

vgiy = m;g if o9 =0, ; =0, otherwise.

Let us now assume that F’' = {g € Fy:ugiy 5 0} where u is a repre-
sentation of Fy in Zy ; for the sake of simplicity we assume that r =
D s ry gugiy is quasi regular. By applying the construction described in
1.B.2. we can also assume that ug;x» = 0 for all ¢ € Fy . Finally, for any
y € Y, let @y denote the matrix from Buy obtained by replacing in
wy each entry uy.: by a submatrix identical to (uy.:) vy. Again this gives
us a representation of Fy which has the property that for any g € Fy
and o; , ¢ € 2 the (15,N;’) entry of g is equal to (ugiv) 1;9if 0,9 = o
and to 0 otherwise.
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Because of the condition (3) and of the hypothesis that r is quasi
regular, the matrix s = 2 ,cy fiy is also quasi regular and the (15,Nj’)
entry of the quasi inverse u of s is equal to the sum b;;» of (ugiv) ;9
extended to all the words g from Fy which send ¢; onto ¢; . According
to the remark ITI.A.4 and to the fact that every entry of s belongs to
R, this sum is also an element of B. Consequently the sum b; of all b;;
(where ¢, € Z') also belongs to R and this proves the statement since
Fo={f € F:(b;,f) # 0} because of our hypothesis that ug;, » is always
nonnegative.

IV. AN ELEMENTARY CHARACTERIZATION OF REGULAR EVENTS

We begin by verifying two remarks that are needed later.

DEerFiNiTION 5. Let B be the smallest subset (in fact, the smallest
semiring) of A which satisfies the following conditions:

(i) « € R for any z € X and e € Rvos.

(ii) If @, a’ € R** then a + a’ and aa’ also belong to Rros,

(iii) If @ € Rros, then a*° € Rwos,

IV.1. A necessary and sufficient condition that a € R®* is that a =
D ser fufiy where u:F —> Z%° and where Z%* denotes the subset (in fact,
the semiring) of the integral N X N matrices with nonnegative eniries.

Proor. It is sufficient to revert to 1.B, ITI1.A.2, and ITI.A.3 and to ob-
serve that if a, a’ are produced by representations into Zy* the same is
true of @ - @/, aa’ and a’; also, trivially, ue and all the matrices uz belong
to Z¥". The construction performed in I1I.A.4. does not use subtraction
either, and consequently 2 fufi x € Rre=.

IV .2. R is the smallest submodule of A that contains B and any r € R
can be written under the form r = ' — v” with v’, " € Rvos,

Proor. Since every r € R can be obtained from the generators z by a
finite number of additions, subtractions, multiplications, and formation
of inverses it is sufficient to prove that if the result is true for r, , 7, € R
it is still true for r3 = »r + r; ra = rn — 1oy rs = mr: and
76 = (e — r*)”". Let us assume that 7, = r’ — n”; 7, = o’ — r,” where
r, rr” and r” belongs to R™*. We have:

= (rn"+nr)— (" +nrn"); n=@m+n")—m +r);
rs = (r'r + ") — (n'n” + ')

where again all the elements between brackets belong to Ko since this
set is a semiring.
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With respect to rs we observe first that m* = r* — 77* and that
r € Rros implies (¢ — r*)™" — e = s € R and, then, r* € R®s since
* = (e — 8) — e

Now, for any a, b € R with a = a* b = b* we have

e—a+b=(e—a)e+ (e —a)"'d)
= (e—a)(e+ (e —a)b)(e — (e — a)7'D)
(e — (e —a)0)"
= (e—a)(e— ((e —a)7b)")(e — (e — a)7')™".
From this we get the identity

(e—a+b)7"= (e~ (e—a)'b)

(e — (e —a)ble —a) ) (e — a)™

=[(e — (¢ —a)b(e — @) 7'b) (e — a)7]

— (e —a)b(e — (e — a)"'b(e — a)"b) (e — a)7].
Thus, taking, @ = r* and b = 7%, we can display (e — rm* 4 ¥ as
the difference of two elements from RE®°* and the result is proved.

1V .3. A necessary and sufficient condition that F . € Ry s that there exists
some r € RS which is such that

Fo={f€F:(r,f) # 0}.

Proor. The condition is necessary because, if @ € @, is defined by a
set = of N states, a mapping (Z, X) — Z, an initial state o; , a distin-
guished subset =’ of = we can associate to every f the N X N matrix
ufir = 1if o;f = ¢ ; = 0, otherwise, which gives a representation of
F in Z%*. Trivially, if p is defined by p.r = 1if 7/ = 1 and ¢, ¢ 2';
= 0, otherwise, we have Tr(puf) = 1 or 0 according to f € F, or not.

Thus, using the construction described in I.B.1 we can find a repre-

pos

sentation u’ of ¥ in Z%” which is such that the sum

r= > fufiv = 2 fTr(puf)
jeF Jer

has the desired properties.

For proving the sufficiency we start with any u:F — Z3° and we con-
sider the mapping 8 which sends 0 onto 0 and every positive integer onto
1 where 0 and 1 are boolean elements. (i.e.,00=01=10=0=0+4+0
and11=1=14+0=0+4+1=1+4 1); 8is an homomorphism of

pos

semiring and it can be naturally extended to Zy~ by defining fm when
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m € Zy" as the matrix whose entries are 8(m;;) € 0,1. Trivially, for any
m,m’ € Z¥* we have Bmm’ = BmpBm’ and BZZ* has at most 2¥° < oo
distinct elements. Thus, the set gmf:f € F is a finite monoid M and
Fo = {fiufv #£ 0} = {f:Bufiry 5 0} is the inverse image by the homo-
morphism Bu:¥ — M of a subset of M. In other words, F, satisfies the
condition that F, = g '8F, where 8 is a homomorphism of the free
monoid F into a finite monoid and, according to the theorem 6 of Bar-
Hillel and Shamir, this is a necessary and sufficient condition that F,
belongs to Ry .

IV .4. A necessary and sufficient condition that F. € Ry ts that there
exists an element r € R which is such that | (r, f) | is bounded for all f € F
and that Fo = {f € F:(r,f) £ 0}.

Proor. The construction indicated in the proof of IV.3 shows that the
condition is necessary. In order to prove that it is sufficient, it is enough
to take any prime number p at least equal to twice the upper bound of
| (r, ) | and to observe that the homomorphism y which sends every
integer upon its residue modulo p extends naturally to an homomorphism
of Zx onto the finite algebra of the N X N matrices over the Galois field
of characteristic p; thus F, = {f € F:ufix 5% 0} = {f € Fiyufix % 0}
and our remark is again a simple consequence of the theorem of Bar-
Hillel and Shamir.

A. AN INTUITIVE DESCRIPTION OF Q&

IV.A.1. A necessary and sufficient condition that the element a from A
belongs to Rros is that it be produced by a restricted right transducer.

Proor. It is trivial that 0, ¢ and each letter  from X can be produced
by a (restricted, right) transducer; let us assume that the elements r and
7' of RP® are produced by the transducers (4, Y, =) and (4, Y, ') re-
spectively where, without loss of generality, we may assume that the
two input alphabets ¥ and Y’ and the two sets of states = and 2’ are
disjoint. We consider new transducers ” whose input alphabet Y” is the
union of ¥ and ¥’ and whose set of states =” is the union of 2, 2’, a new
initial state o1” and a new sink ¢,”; for any such %” we shall have the
following rules:

(1) o"y” = o and 1"(a1",y") = n(o1,y) f ¥y’ = y € V; o"y" =
a_llyl and 77”(”1”, y//) — n/(o,ll’ y/) ]'f yll p— yl E YI.

(il) o”y” = oy and v”(¢”,y”) = (o, y)if¢” = ¢ € Zandy” =y € Y
and, similarly, ¢”y” = ¢'y’ and 9" (¢”,y”) = 4'(¢'y’) if ¢” = ¢’ € T’
and if y” = ¢y € Y.
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1. Let now 7,” be defined by the supplementary rule

(iii) ¢”"y” = o¢” when ¢” = ¢/ € 2’ and y” = y € Y when ¢ =
c€EZandy” =y €Y.

By construction 5,” produces the sum r + .

2. Let 7,” be defined by the rule (iii) when ¢” = ¢’ € 2’ and y” =
y € Y and the rule

(iv) ¢”y” = o'y’ and 4" (¢”, y”) = 7v'(e1, ¥') wheno¢” = ¢ € 2 and
y// — yl € Y.

By construction, 1,,” produces rr’.

3. Let us assume that r is quasi regular and take for (%, Y/, 2’) a
copy of (n, Y, 2);if »,” is defined by (iv) and the rule (iv’) obtained
by exchanging in (iv) the alphabets ¥ and Y’ and the sets 2 and 2’ we
obtain a transducer which produces the quasi inverse of r. According to
Definition 5 this proves the necessity of the condition IV.A.1; that this
condition is sufficient is a simple consequence of the construction indi-
cated in the verification of ITI.B.3.

Since it has been remarked in IV.2 that any element of B can be ex-
pressed as the difference of two elements of R we have at the same
time verified that the definition 1 of @ is equivalent with the following:

DEeFINITION 17. AN automaton o of @ consists of a pair of restricted right
transducers together with the rule that a word f € F 1is accepted if and only
if (r,f) & (v',f) wherer and r’ are the formal sums produced by the two
transducers.
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