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I. INTRODUCTION

The purpose of this note is to define a family R+ of sets of words that
is, in some sense, the simplest natural generalization of the family ®," of
Kleene’s (1956) regular events (cf, also, Bar-Hillel and Shamir (1960)
and Shepherdson (1959) and below for an abstract definition). However,
even if this point of view constitutes the main motivation and if it
suggests the terminology, our treatment of the question will be entirely
algebraic. In fact this paper can be considered as an attempt towards a
classification of the (infinite) monoids of finite dimensional rational
matrices which are the semidirect sum of finite monoids. A discussion
of these points is to be found in Schiitzenberger (1962).

The set of F of the so-called nput words (that is, the free monoid F
generated by the finite set X = {z}) is assumed to be fixed. We recall
that according to Bar-Hillel and Shamir (1960) a regular event F’ is a
subset F’ of F such that ¢ '¢F’ = F’ for some homomorphism ¢ of ¥
into a finite monoid and our construction hinges upon the algorithm
described in the following definition.

DEFINITION. A finite counting automation B8 of order ¢ is the integral
valued function of F that is given by:

(i) A finite set of (g; + 1)-tuples (a;) = (Fji, Fiz, -+, Fig11) of
regular events F; ; (1 S S M;q1, ¢, -+, qu < q).

(ii) A polynomial B (with integral coefficients) in the variates
oy, 02, *°* , 0M.

For each word f of F, 8f = B(auf, aof, - -+, auf) where for each j, a;f
denotes the number of factorizations f = fife --- fo; 41 of finto ¢; + 1
!
words such that f; € Fi.,fo € Fioy <o+, fos € Figym -
(*) This work was done in part at the Department of Statistics of the Uni-

versity of North Carolina, under Contract AF 49 (638)-213 of the United States
Air Force, and supported in part by a grant from the Commonwealth Fund.
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The functions «; themselves will be called counters and we shall say
that 8 is a linear finite counting automaton if § reduces to a linear combi-
nation of the a;’s.

For instance, a counter a of order zero is defined by a single regular
event F’ and by the rule of = 1if f € F’, of = 0, otherwise. Hence,
here « is, in fact, the characteristic function of F’.

Reciprocally, we define the support F'(8) of the finite counting auto-
maton 3 as the set of words F'(8) = {f € F:8f 5 0}.

It is easily verified that any finite counting automaton is equal to a
linear one of sufficiently higher order and, denoting by ®, the family of
the supports of the linear finite counting automata of order g, we shall
finally define ®+ as the union U,e ®,.

Clearly ®¢’ (the family of regular events) is a subset of R« and it can
be shown without difficulty that ®' = ®o. In order to show that the
finite counting automata allow operations exceeding the power of the
conventional one way one tape automata of Rabin and Scott (1959) it
suffices to consider the following example (cf. Elgot (1956)):

Let the regular event F.; be defined by the condition that the word
S belongs to F,; if and only if its last letter isz;. The counter of order
one a;, defined by the pair (F,, , F), enumerates the number of times
x; appears in the input word f. Taking, for instance, 8 = oy — oy, the
corresponding linear counting automaton 8 is such that f belongs to
F’(B) if and only if it does not contain as many z;'s as x.'s. Obviously
with the same type of counters, but with a polynomial B’ of order three
or more, the problem of deciding if F/(8’) is or is not equal to F (or if
it is or is not the complement of a finite set of words) leads to the classical
difficulties of diophantine analysis. Hence, there is some interest in
obtaining an independent characterization of the parameter g. For this
purpose let us say that deg 8 = ¢’ if ¢ is the least integer such that for
all nonempty words f the absolute value of 8f is bounded by a constant
multiple of the ¢’th power | f| ¢ of the length | f| of . It is trivial that
deg 8 is finite for any finite counting automaton because for any ¢” > 0
the total number of factorizations of a word f into ¢” + 1 factors is
itself bounded by a constant multiple of | f| *".

Our main result (to be proved in Section II) is that for any finite
counting automaton B: (i) deg B is equal to the greatest lower
bound of the (not necessarily integral) numbers r = 0 such that
lim ;15w | |7 | 8f| = 0. (ii) There exists a linear finite counting
automaton identically equal to 8 whose order is precisely deg 8.
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In fact each linear finite counting automaton 8 with deg 8 = ¢ > 0
is closely associated with an extension by a finite monoid of a free
nilpotent group of class at most ¢ (of a free abelian group if ¢ = 1).
We intend to examine the special case of ®; and ®, in another paper.

In the last section of this paper we verify that G« is closed with respect
to the operations of union, intersection, and set product and, by way of
counterexamples, we show that nothing more of Klecne’s (1956) theorem
remains valid for R .

It may be mentioned that the family R« is a special case of the more
general family of sets of words defined in Schiitzenberger (1961) and
that it could be partially characterized by adding the following re-
striction to (a), (b), --- (e) of Schiitzenberger (1961, p. 245).

(f). The ratio of the amount of information stored in the internal
memory to the amount brought to the machine tends to zero with the
length of the input word.

In the remainder of this section we reduce our original definition to a
simpler form and we prove a few elementary results needed in Section II.

1.1. Every finite counting automaton s equal to a linear one.

Proor. It is sufficient to prove that if @ and o’ are two counters, the
function 8 defined by the identity 8f = ofa’f is equal to a linear finite
automaton, and to use induction on the degree of the polynomial 8.

Let us recall first that to any finite family {F;} of regular events
F; there corresponds an homomorphism ¢ of the monoid F onto a finite
quotient monoid H = ¢F, and a collection {H;’} of subsets of H such
that f € F; if and only if of € H; (Bar-Hillel and Shamir (1960)).

Hence to any counter « defined by a (¢ -+ 1)-tuple (FY, Fo/, ---,
Fo.1) of regular events contained in the family {F,}, we can associate

the finite set of all the (¢ + 1)-tuples (a;) = (ks , hiy, -+, hip,,) of
elements of H which are such that
hi, € H', hiy € HY, -+, hip,, € Hi,,,

Then « is equal to the linear finite counting automaton Y _; a;, where
for each 7 and input word f the counter «; enumerates the number of
distinct factorizations f = fifs - -+ fy41 such that

!/
efi = hiy, s = hiy, -+, @f g = higy,

Let us say that this factorization is proper if none of the words f;
is the empty word. For any (¢ + 1)-tuple (hi, h2, -~ -, hgt1) of ele-
ments of H = F, we say that the function @ of F is a ¢-counter if it
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enumerates the number of proper factorizations with

¢f1=h1)¢f2=h2)”';¢f0+l=hq+1

or, as we shall say, if it enumerates the number of a-factorizations of
the input word. It is clear that any of the counters «; above is equal to
the sum of the ¢-counters defined by the same (¢ + 1)-tuple and of all
the (21" — 2) p-counters defined by the (¢’ + 1)-tuples (¢’ < ¢) which
result from the deletion of one or of several h;’sin (hi, , hiy , -+, hig,,).

Consequently, it suffices to prove the statement for the special case
in which both « and @ are g-counters. Then, in fact, the function 8
enumerates for each word f the number of pairs consisting of a a- and
of a o'-factorization of f.

Let us consider an arbitrary monoid G, a (¢ + 1)-tuple (d) =
(91,92, -+, gasr) and a (¢ + 1)-tuple (&) = (g, ¢’ , -~ , go41)
of elements of G.

We say that (d”) = (g1”, g2”5 -+ , Gar +1) is & refinement of (d) and
(d') if it has the following properties:

Every g; of (d) is equal to a product g; = gi” or gx”ges1 - - * gir , Of
consecutive elements of (d”); the same is true for every g;/ of (d’);
every gi» of (d”) is the first factor of a product corresponding to an
element of (d) or of (d').

Because of this last condition ¢” £ ¢ + ¢’ and, consequently, (d)
and (d’) have only finitely many distinct refinements when @ is finite.
The same is true when G = F, a free monoid, because, e.g., any relation
of the form f = ff” uniquely determines f” for given f, f'€F.

For instance, if (d) = (g1, ¢g2) and (d’) = (g/, g’), the set {(d”)}
of their refinements is empty unless gig» = g¢1'¢o’. If this condition is
met, { (d”)} consists of the triples (g1, g2”, go’) with gigs” = g1/, g"g2' = ¢2
and of the triples (g1, g2”, g2) with ¢//g.” = g1, ¢2"g = ¢o'. lf g1 = g/’
and g, = g2/, the set {(d”)} contains also the pair (g1, g2).

This definition concludes the proof because 8 enumerates all the
a”-factorizations of f where (&”) is a refinement of (&) and (a’) and,
consequently, 8 = . a” where the summation is over all the g-counters
corresponding to these refinements.

We shall have to consider now and in the following section matrix-
valued functions of F. It will always be assumed that the matrices under
consideration are finite dimensional matrices with rational entries. The
matrix-valued function u is a representation of F if the square matrices
uf are such that wff’ = ufuf’ identically for all words f and f'; it is a
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finite representation if the set {uf:f € F} is finite; it is a representation
with bounded denominator if puf is an integral matrix for some integer
p and all words f.

Any entry v of a matrix-valued function determines a numerical
function Bf = (¥f): of F, and the quantity deg » will be defined as the
supremum of the same symbol over all functions determined by the
entries of .

1.2. To every finite counting automaton B there corresponds at least one
representation u such that 8 vs determined by one of its entries.

Proor: According to I.1 it is sufficient to prove the statement for a
linear finite automaton g of order q.

Let ¢ be a fixed homomorphism of ¥ onto a finite monoid H, and con-
sider the set a; (1 = j = N) of all the p-counters of order at most q.
Let the jth coordinate at the vector v(f) be equal to a;f for each j and
f € F. We verify that for each letter x of X there exists a N X N integral
matrix px such that v(fz) = v(f)ux identically.

This is trivial if ¢ = 0 and we consider a fixed counter a of order

g > 0 with (@) = (M1, hs, -+, hgy1). We denote by o’ the p-counter
(hy, ha, -++ ,hy) of order ¢ — 1 and by a” (1 £ k£ = K) the set of
all the ¢-counters o;” of order ¢ with (a”) = (b1, b2, -+, he, B”)

where h” satisfies the condition h”¢x = heys . Since afz = of + D _p a”f
or aft = D _ra”f according to ¢x = hgiy OF @ 5% hey1 , our preliminary
result is proved.

Since B is a linear combination of the «,’s, this shows that, in fact,
B is determined by an automaton of the family @ described in the
definition 1 of Schiitzenberger (1961) and the complete result follows
from an elementary construction explained in detail in the same paper.

Let u be a given representation of F. A representation i of the same
dimension will be called a finite part of order q of p if it is a finite repre-
sentation and if for any (2¢ — 1)-tuple of words (fi, fo, -+, foqu1)
the product

Gfwfeiifs - - - Afsicwfeilifoins - - - ufeefifoem

where if; = uf; — @f:, is identically zero. Thus the hypothesis that
@ is a finite part of u implies that every matrix g belongs to the radical
of the algebra generated by the matrices uz (z € X). We define Ord p
as the lowest possible order of a finite part of p with the convention
that Ord p is infinite if x has no finite part of finite order.

1.3. If Ord u 1s finite, every function of F determined by an entry of u
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s equal up to a constant factor to a linear finite counting automaton whose
order is at most Ord p.

Proor: If Ord p = 0, the statement is trivial because the hypothesis
amounts to the assumption that u itself is finite and we can assume now
that 0 < ¢ = Ord .

We consider an homomorphism ¢ of ¥ onto the quotient monoid H
that is defined by the following conditions:

(i) of # ee if f is not the empty word e.

(ii) For all f, f € F and z, 2’ € X, oft = ¢f'2’ = h, say if and only
if gfur = af'we’ and gfr = gf'z’.

By hypothesis H is a finite monoid. We define a representation u
(with finite part @) of H = {h} by setting uh = gfur and gh = gfz.
To every (g + 1)-tuple (@)= (h1, hs, - - - , hq'41) of elements of H we
associate the matrix

pa = @haghy - -+ ghi - -+ Ghe'he 11

where, of course, i = 0and jie = the unit matrix. Let now f = x5 - - -z,
be an arbitrary word expressed as a product of the generators. Since
p = g + A we have

pf = (Ery + Ax:) (A + Arz) - -+ (BT + A2n).

Developing this expression and observing that on the one hand &
is a representation and on the other hand any product containing ¢ + 1
matrices i is zero, we obtain uf as a sum of terms of the form

Bfidxigfoie - - - Bfe' Ay Bf 11
with ¢’ < ¢. Clearly each of these terms is equal to some matrix ua as
defined above and, more accurately, we have the identity uf = D afua
where the summation is over all the counters a of order at most ¢ defined
above.

Since the set of all these matrices ua is finite, it is trivial that Kuf
is an integral matrix for all f of F and some fixed integer K and the
result is proved.

If ¢ is any homomorphism of F onto a finite monoid we say that the
(2p + 1)-tuple (s) = (f1, fo, -, fep+1) of elements of F is ¢-special
if foreach? =1,2,---,p

¢’f2i—]f2i = qofzi-l ) ¢f§i = §0f2i ’ ¢f2if2i+1 = f2i+1 .

Since ¢f is finite, there corresponds to any (s') = (£, f'y -+ , frps1)
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a finite positive inter a such that

(8) = (fifss Jo", Sff8 fi2y -+ -, foy , fonfopir)

is g-special for all large enough b.

Also we shall use the abbreviation s* for denoting the word
Fuf fofd -+ faafopia -

I1.4.If Ord p = q 1s finite and if (s) is ¢-special, there exists ¢ + 1

matrices ous, 1S, * -+ , ouS such that for all k
us® = Z k? jus
0<isq

Proor. By straightforward computation using the development of
s® as a product of matrices z and 4.

I15.If0 < Ord p < =, u s equivalent to a representation of the form

’

"

<8 :,,>where k' 18 a finite representation and u” a representation with

Ord p” = Ord p — 1.
Reciprocally, if the representation u is in the semireduced form

(v v
= 0 ”II

then Ord p < Ord ' + Ord p” + 1.

Proor: Let V denote the set of all the vectors » such that for all
words f’, f”af' uf”v = 0.

Because of the hypothesis that u admits a finite part g of order
g = Ord u < o, V is not empty and, after performing a suitable linear
transformation, we can assume that V consists of all the vectors having
their M last coordinates zero. Then, since for all f', f” € Fand v € V
one has uf”v € V and gf'v = 0, p and p have, respectively, the forms

P = 0
M= <0 I//) and M= (0 ﬁll)

where ¢’ and u” are representations and where dim p” = M.
It follows that @ = u — i has the form

’ ’
" v — v
14 /4

(0 oA >

and, since it is a finite representation, the same is true of u'.
Observe now that the module V* spanned by all the row vectors of
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all the matrices gf'uf” (f', f” € F) consists of the vectors having their
first N —M coordinates zero where N = dim u is strictly larger than M
because of the hypothesis that 0 < Ord u.

Direct computation shows that any product afiufedfs - - - ufeq—2fif2q—1
has the form (g
B fsu” Gifs"fs « - wfags"fif2q—1 . Because of our remark above on V*, the
condition that n = m = 0 identically, which is implied by Ord u = ¢,
implies itself that m’ = 0 identically, that is, finally, that Ord u” =
¢ — 1 and the direct part of the statement if proved.

With respect to the second part of the statement, it suffices to prove
it for Ord p’ = 0 and to apply induction on Ord u. However, if Ord u’ = 0
we can use the notations introduced above and the hypothesis that
Ord p” = ¢ — 1 implies that the matrix m’ is identically zero. Hence,
the matrices m and n are also identically zero and consequently
Ord p =< ¢. This concludes the proof of 1.5.

n
m) where n = »'fiu”fom’, m = g’fiw/fom’ and m’ =

II. VERIFICATION OF THE MAIN PROPERTY

Let » be any matrix valued function of F. If
(k) l—l l Vs(k) [ =0

for any (2p + 1)-tuple (s) (and s* defined as in I1.4), we write
deg v = 0. If it is not so, there exists a largest integer ¢ (possibly ¢ = =)
such that there exists an integer p and a (2p + 1)-tuple (s) for which
lim e | 8% [72] »s® | # 0. Then we write deg » = ¢ and we say that

lim o |5

(8) is effective for v. Necessarily deg » < deg » and, if these two param-
eters are equal, their common values is the greatest lower bound of
the numbers r = 0 such that lim |; . | f|7" | »f| = 0.

As for the symbols deg and Ord, it is trivial that deg u = deg u’
for any representation p’ equivalent to u.

Finally, let it be observed that (with the notations of 1.4) deg u can be
defined as the largest ¢’ such that , us £ 0 for some g-special (2p + 1)-
tuple (s). Indeed, under these last conditions limj. | s l_q' | us® |
is proportional to gus. Reciprocally, given any effective (2p 4+ 1)-
tuple (s”) we can choose the integers a and b in such a way that (s) =
(f', 12, f2°, - fon ) faofapsr) is both effective and g-special for any
fixed ¢ and in particular for ¢ = .
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In order to simplify the proof of the main property I1.4, we verify it
separately in the special case of deg u = 0, 1. Our first and fundamental
preliminary result is a modified version of a classical theorem of Burn-
side (1911, note j).

I1.1. The three following conditions on a rationally irreducible repre-
sentation p with bounded denominator are equivalent:

(1) Ord p = 0.

(ii) For all f, f',f” € F and € > 0, limp.(1 — &)* | uf'f*f” | = 0.

(iii) The set {Tr uf:f € F} is finite.

Proor: (i)=»(ii). The condition (i) is equivalent to the condition
that u is a finite representation. Hence, it implies that deg u = deg u = 0.
Since, trivially, deg p = 0 implies (ii) the result is proved.

(ii)=»>(iii). For any f € F and k, Tr uf* is the sum of the kth powers
of the characteristic roots p; of uf. Hence, (ii) implies that for all
€ > 0, lime 2,;p/ (1 — €)* = 0 and, consequently, that | p;| < 1
for every root p; . It follows that | Truf | < Y., | p; | £ dim g, a bounded
quantity. Since by hypothesis Tr uf is a rational number with bounded
denominator, the implication (ii)=>(iii) is proved.

(iii)=>(i). Let {f}(1 £ j < N’ £ N°) be a basis of the module 91
over the rationals spanned by all the matrices uf(f € F) and write
f' = f"ifandonlyifforallj = 1,2, --- , N’ one has Tr uf’f; = Tr uf"f; .
The condition (iii) implies that the equivalence = has only finitely
many classes and it suffices to verify that in fact f/ = f” only if
uf — wf” = 0.

Indeed, let 9" be the module of all matrices m’ of 9N, such that for
all m € 9, Tr m'm = 0. By definition, for any m’ € ', m € M and &,
Tr m™m = 0 and, consequently, all the characteristic roots of m’m are
zero. Hence, for given m’ € 9N, there exists no m € M such that the
first row of m'm is the vector (1,0, 0, ---, 0). Since the representation
w is assumed to be irreducible, this shows that the first row of m’ is the
zero vector. The same remark applies to any row of any matrix of 9’
and it shows that this set reduces to the zero matrix. By definition,
S = f" only if wf’ — wf” € M’ and the proof of (iii)=>(i) (and, conse-
quently, of I.1) is completed.

’ 7
. . 0
Let us consider a representation u = (8 :”) such that @ = (8 M”>

is a finite representation. If v is any vector, it follows from 1.5 that the
vector valued function uv (defined as ufv for each f of F') satisfies the
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inequality deg wv < deg w0 < Ord u = 0 or = 1. There is no loss in
generality in assuming that after a suitable linear transformation
V = {v: deg wv = 0O} consists of the vectors having their last M coordi-
nates zero where, possibly, M = 0. We say then that x is in standard

form.
I11.2. Under the hypothesis stated

’ ’ ’ ’
” ” 13 0 V1
0 Vo
F-” _ (ﬂo ) and p=|0 #0// vo”
- 0 0

B

! !
where both py = (8 :3,,) and u, are finite representations with dim u; =M.

Proor. By hypothesis the monoid gF = {af:f € F} has a finite number
H of elements. If the triple of words (¢) = (f, f,f”) is such that gf’f =ﬁf’,
aff” = gf”,|f| > 0 we write (¢) € T (or € T;).

Trivially, any word g of F of length | g| > H’ admits at least one
factorization g = g¢igegs with (g1, g2, g3) € T. Direct computation shows
that if (t) = (f, f, /) € T, the matrix wt® = pf’f*f” is equal to

wt® = wf'f” plus k times the matrix <g 0) where, by definition, vt =
“Iflyf””f”.

It follows that either »¢’ = 0 for all (¢) of 7" and, then, the monoid
uF contains at most H”* distinct elements or, otherwise, »t’ # 0 for at
least one (¢') € T (which is an effective triple) and deg p = deg u =

Ord p = 1. More generally, for any fixed vector w, either (g 'g) w=0

for all (¢) of T and then the set {ufw:f € F} contains at most H” distinct
vectors, or, otherwise, §eg ww = 1.

Thus, we can assume now that M > 0 and, trivially, M < dim u”
since u’ is a finite representation. According to the definition of V, it
follows that u has the form

’ ’ ’
[T 7 171
0 ”0// v
0 ”” ™

where the following conditions are satisfied:
(i) dim wm = M;
(ii) The module spanned by all the row vectors of all the matrices
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vt ((t) € T) has rank equal to its dimension M ;

(iii) »o't = O for all (¢) of T'.

Observe now that for any f€ F and (¢) = (f, f, f”) € T the
triple (') = (f', f, f’f""") also belongs to T'. Consequently, since v't’ =
v'tu"’f""" = 0 by (iii), it follows from (ii) that x’’’ is identically zero.
Since we have seen that {»/f:f € F} is a finite set, the proof of II.2
is completed.

11.3. Let the representation

Mo V1 V3
p=10 wm n
0 0 p

be in the standard form of 11.2 with:

’ ’ ’
72 Vo "
Ko —> (O MO”)’ v = (Voll) y M1

and satisfy the conditions:

po w\ _ o v\ _ . moov\,
c}eg_(o ul)—ord(O u1>~1’ Qegu2<§eg(0 us)(_Q<w)‘

Then deg u = ¢ + 1.
Proor: According to the remarks made at the beginning of this

Sl ;’2) admits at least one effective (2 p + 1)-
3

tuple (s8) = (fi,fe, -+, fop+1) Which is g-special. Thus, geg_ p=g+1
unless jus = 0for allj = 0 as we shall assume now. Then, by hypothesis,

0 n/ ny
#s =10 0 n
0 O 0
with ng 5% 0.

Because of the hypothesis that ('60 ;l) is in standard form, there
1

exists at least one triple (') = (g1, g2/, g3) satisfying the conditions of
II1.2 which is such that »t'n, ## 0. By taking ¢ large enough we can
deduce from (') a triple (¢) = (g1, g= = g¢2’°, gs) which is g-special

section, (ii) implies that (
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and for which we have

0 m n;
1M§ = 0 0 o

0 0 m

Wlth nn, = cvl'tng # 0.

We claim that by a suitable choice of a, b > 0 the (2p + 3)-tuple
(u) = (gl ’ g2a7 g3f1 ’ f2b7 f3 » TN fgi » T f2p+l) which is ﬁ-special by
construction, satisfies the inequality ,4pu # O from which the result
instantly follows.

Indeed, we have wu® = D oci k(D j1jmiv a’d’ jutious) and,
because of the linear independence of the monomials a’d”, it suffices
to show that jut; us ¥ O for at least one pair (j, /) such that ¢ + 1 =
7+ 7. Sinceforj = 1andj’ = g we have

0 0 mn
wtus =0 0 O # 0,

0 0 O

the statement I1.3 is proved.

I1.4. If u s a representation with bounded denominator, then deg u =
deg u = Ord p. Furthermore, if ¢ = Ord u 1is finite, u has an effective
(29 + 1)-tuple which s g-special for some finite part g of order q of u.

Proor: Since deg < deg < Ord, trivially, we have only to prove that
deg = deg and deg = Ord. The proof is by induction on dim g, the
initial case being trivial.

If u is irreducible, the result has already been proved in II.1 since
this remark shows that deg u = deg u = Ord u = 0 or = infinity. In the
latter case, the condition (ii) of II.1 shows that there exists an effective
triple.

Consequently, we can assume now that u = (‘60 Z:) with dim wo > 0
where yo is irreducible and where (by 1.5 and the induction hypothesis)
deg u; = deg w1 = Ord u; = deg uor = deg u — 1. Again the result is
trivial unless ¢ = deg u is finite as we shall always assume it now.

If u; is a finite representation (in particular if it is irreducible), the
result is already proved by I1.2 which shows that deg u = deg u =

Ord p = 1 or = 0 according as there exists or not an effective triple.
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Consequently, we can assume that Ord ;3 = ¢ > 0 and, by 1.5, that

— (ﬂlﬂ Vll)
Ha 0 un
where Ord up = 0 and Ord pyy; = ¢ — 1.
Then, p has the form
Mo Voo voi
0 mo vu

0 0 un

and, by applying I1.2, we can bring ( Zm> into standard form:.
0
Thus, finally, x4 has the form

Mo 1] Vool Vo1l
0 w0 vio vuo

w= 0 0 M101 Vil
0 0 0 un

where dim p = 0 if and only if deg 0 4 ) is 0. In any case, we
10,

0 V000 . 14
have u' = K = g finite representation, w,’ = e
0 M100 0 M100

a representation with Ord u," = ¢ or g1 — 1.
Let us distinguish the two possibilities:

-
(1) w’ admits a finite part @’ of order ¢ — 1. Then (”00 ﬂ0’> is a
1

finite part of order g¢; of u. Since Ord u = deg u = g, this shows that
¢1 = q. Hence, trivially, Ord u = deg u and by the induction hypothesis
deg w1 = ¢ with an effective (2 ¢ 4 1)-tuple of the required type. Since
deg u is at most equal to ¢ and at least equal to deg p;, the double
equality is proved.

(ii) Ord gy’ = @1 . Since Ord uy;; = ¢ — 1, by construction, we have
surely dim pq # 0 and we can apply I1.3 with the correspondence
po’ —> mo, man —> me and wy; — wz . This shows that deg u = ¢; + 1 and
consequently, ¢ = ¢ — 1. It follows that deg u = deg u = ¢ with the
required type of effective (2¢ + 1)-tuple. Furthermore, u; admits a

finite part g; of order ¢ — 1 and, consequently, (go g ) is a finite part
1



104 SCHUTZENBERGER

of u of order at most ¢. This proves the double equality in the second
case and it concludes the proof of the main property.

III. TWO COUNTEREXAMPLES

It has been seen in 1.1 that any finite counting automaton is equal to
a linear one of sufficiently higher order. Our first counter example is
intended to show that, of course, the converse proposition is not true.

I11.1. There exists at least one linear counting automaton of order
two such that its support cannot be the support of any finite counting
automaton of order one.

Proor: Let the regular events Fz; and z;F be defined by the condition
that f belongs to Fz; (respectively to z;F) if and only if its last letter
(respectively its first letter) is z; . Assume for simplicity that X = {y, 2}
and define 8 = a — o’ where (a) = (Fy, F, 2F) and (') = (Fz, F,
yF). Direct computation shows that if f; = y'2, f; = y’2, ¢ ¥ j there
exists for every p > 0 at least one word f’ and integer k such that
BfFEf57ff" = O and Bf.f5°f"f,f # 0.

Let now 8’ be a finite counting automaton of order one defined by
a polynomial function of the linear finite counting automata B:(7 =
1, 2, ---, M) of order one. Using the notations of II1.2, we assume
that each B; is determined by an entry of a representation u; admitting
a finite part g@; of order one. Hence, there exists an homomorphism ¢
such that ¢of = ¢f if and only if g;f = g;f for7 = 1,2, ---, M and
oF is a finite monoid.

Trivially, if of = ¢f’, there exists a finite p such that for each <, u.f* is
idempotent and direct computation shows that uff?f*?f" = uff™*f**f,
hence Bff*?f*2f" = Bff’**f*?y’, for every k.

However, the words f; considered above constitute an infinite family
of words which, pairwise, do not satisfy this relation whence the con-
clusion follows instantly.

We now prove the closure properties of Rx.

I11.2. The family of the supports of the finite counting automata of
order at most q is closed under intersection and union.

Proor: Let 8 and 8’ be two finite counting automata of order at most
g. According to the very definition of this algorithm, the function g”
and 8" of F defined respectively by the identities 8”f = Bfg’f and
B"'f = (Bf)® + (Bf) are also finite counting automata of order at
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most ¢ and we have
F'(B") = {f € F:Bf8'f = 0} = F'(B) N F'(B)
F'(8") = {f € F:(8)* + (B)" # 0} = F'(8) UF'(8").

I111.8. The family R« is closed under set product.

Proor: Observe that if (o/) = (FY, Fy, ---, Fy) and (") =
(Fy, Fy”, -+, Fy) define the two counters o’ and o”, the (¢’ + ¢”)-
tuple (&’”’) of regular events (&’”) = (Fy, Fy, ---, Fo , F\”, Fy’,
-+, Fg.) defines a counter o/” which satisfies the convolution identity
Ol"lf — Z {alflallfll :f/f// — f} .

Since the convolution product is distributive over the addition, we can
associate to any pair of finite counting automata 8’ and 8” a third finite
counting automaton B”’ such that 8”’f = > {(BF)(B"f"):f'f" = f},
identically, and the result is proved since, by construction, F'(5'"") =
F'(B)F'(B").

It has been shown elsewhere (Schiitzenberger (1961, counterexamples
I1.2 and I1.3)) that the family of the sets of the form

F(B) =F — F'(B) = {f € F:pf = 0}
is distinet from ®s and that it is not closed under the formation of set
products.
II1.4. For each ¢ > 0, ®yq # R, and, consequently, R« s not closed
under Kleene’s star operation .
Proor: Let again X = {y, 2z} and define the following regular events:

Y*={y7y2:"'7yn""}7 Z*={Z,22,"',Zn,"'}
G, = (Y*Z*)? (with Gy = {¢}).

(K)

Hence, f € G, if and only if f = """ - .. ofpd®" ... yffd = ¢
say, where all the coordinates k,, ki, - -- , kq, k' of the vector K are
positive integers.

If (ap) denotes the pair (G,(Y*U{e}), G,_,) of regular events, it
is clear that the corresponding counter a, of order one is such that
af = kyif p € Gy, apf = 0, otherwise. A similar construction holds
for k,’ and it follows that the following function B, is a linear finite
counting automata of order g¢:

B.f = 0if fis not in G ;
Bof = (kr — k') (ks — ko') -+ (kg — k) if f=g".
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Hence, f belongs to F’(3,) in all cases except if f € G, and if k, = k,’
for some pair of coordinates of K. We show that F’(8) does not belong
to (R.q_l .

Indeed, by II.4 any linear finite counting automaton g’ of order ¢’
is determined by some entry of a matrix representation u of F' admitting
a finite part @ of order ¢'.

For suitable integers a and b the (4¢ + 1)-tuple (s) = (¢, ¥°, 2,
&, 2, e, 2, 2%, 2%) is m-special and for any vector K the word
SB = y2b+ak122b+uk1' . y2b+aqu2b+akq' is equal to g(x) where K = 2bU 4
aK with U = (1, 1, --- 1).

Consequently, according to 1.3, 8’s™ is a polynomial, say b'(K), of
degree at most Ord 8 in the coordinate of K. Now, if F(8') = F(B,)
they have the same intersection with the set {s®} and, consequently,
b'(K) must be zero whenever k; = k. for some ¢ < ¢q. Hence b'(K) has
degree at least ¢ since it admits the product (B; — &/)(k, — k') ---
(kg — k') as a factor.

This concludes the proof that if F(8') = F(B,) then F(8’) is not
contained in Ry .

We have seen that G; = Y*Z* belongs to ®& and by definition
G* = U{G,:q > 0}.

By the same argument as above it follows that F(8’) cannot be equal
to Gy* if B has a finite order since this would imply that 5 (K) has
infinite degree. Thus, R+ is not closed under Kleene’s star operation.

Of course for any set F’ of R« it is possible to construct a finite di-
mensional integral representation u of F such that a word f belongs to
F"™ if and only if some fixed entry of uf is not zero [cf. Schiitzenberger
(1961), p. 258 and 265]. Thus, as a byproduct, we have obtained the
result that R« is a proper subfamily of the family of the sets words ac-
cepted by the automata of Q.

Recervep January 23, 1962

REFERENCES

Bar-HiLLEL, Y., AND SHAMIR, E. (1960). Bull. Research Council Israel 8F, 155.

Burnsipg, W. (1911). “Theory of Groups of Finite Order,” 2nd ed. Cambridge
Univ. Press.

Evcor, C. C. (1960). Trans. Am. Math. Soc. 92, 61.



FINITE COUNTING AUTOMATA 107

KLEENE, S. C. (1956). In ‘“‘Automata Studies.’”’ Princeton Univ. Press, Princeton,
New Jersey.

RaBIN, M., aND ScorT, D. (1959). I.B.M. J. Research 3, 114.

ScHUTZENBERGER, M. P. (1961). Information and Conirol 4, 245.

ScHUTZENBERGER, M. P. (1962). Certain elementary families of automata. Proc.
Polytech. Inst. Brooklyn. Symposium on Math. Theory of Automata.

SHEPHERDSON, J. C. (1959). I.B.M. J. Research 3, 198.



