Matematisk Institut Aarhus Universitet Danmark

Colloquium on

COMBINATORIAL METHODS IN PROBABILITY THEORY

August 1 - 10, 1962

CERTAIN INFINITE FORMAL PRODUCTS AND THEIR COMBINATORIAL APPLICATIONS

M. Schützenberger Boston Colloquium
Aarhus, August 1-10, 1962.

CERTAIN INFINITE FORMAL PRODUCTS AND THEIR COMBINATORIAL APPLICATIONS

M. Schützenberger Boston

I. Introduction.

This note is concerned with certain relations between properties of factorization of a free monoid (in a manner similar to that considered in group theory) and properties of words modulo a cyclic permutation of their letters.

From these we deduce identities involving infinite formal product in non-commuting variables that are related to combinatorial questions.

II. Notations.

1) For any set X we denote by \mathcal{F}_X the free monoide generated by X (with neutral element 1) and $\mathcal{F}_X^+ = \{f \in \mathcal{F}_X \colon f \nmid 1\}$.

A factorization $\mathcal{F}_X = \prod \{ \mathbb{F}_i \colon i \in \mathbb{I} \}$ of \mathcal{F}_X is a collection of submonoids $\mathcal{F}_i \subset \mathcal{F}_X$ indexed by the elements of a totally ordered set I such that the following is true.

To any $f \in \mathcal{T}_X$ there corresponds a unique finite subset $I_f \subset I$ and to each $i \in I_f$ a unique element, say, $\alpha_i f \in F_i^+$ such that $f = \alpha_{i_1} f \alpha_{i_2} f \dots \alpha_{i_m} f$ where $I_1 = \{i_1 < i_2 < \dots < i_m\}$.

For instance, if $I = \{1,2\}$, $\{F_1,F_2\}$ form a factorization of \mathcal{F}_X if every $f \in \mathcal{F}_X$ has one and only one factorization $f = f_1 f_2$ with $f_1 \in F_1$, $f_2 \in F_2$. The less straight forward definition above is needed for covering the case where I is not finite.

- 2) Let $f \sim f'$ (f and f are conjugate) if and only if there exist $f'', f'' \in \mathcal{F}_X$ such that f = f'f'', f' = f''f''. In fact, since \mathcal{F}_X is a submonoid of the free group generated by X , $f \sim f'$ if and only if they are conjugate in the usual sense because then, $f \equiv f''f'f''^{-1}$.
- 3) Let X and Y be two sets and $\phi:\mathcal{T}_Y\to\mathcal{T}_X$ be a homomorphism. We shall say that ϕ is a c-homomorphism if and only if
 - (i) $\varphi^{-1}1 = 1$
 - (ii) for all $g,g'\in\mathcal{F}_{Y}$ and $f\in\mathcal{F}_{X}\setminus\mathcal{F}_{Y}$ ϕg $f \neq f \phi g'$

Then the subset ΦY of \mathcal{F}_X will be called "c-free". It is clear that a c-free set $A \subset \mathcal{F}_X$ generates a free submonoid (noted {1} \cup A^*) or in equivalent fashion that a c-homomorphism is a monomorphism because the condition (ii) above is stronger than the condition

$$U_d$$
) For all $f \in \mathcal{F}_{Y} \setminus \mathcal{F}_{X}$

$$(\varphi \mathcal{F}_{Y}) f \cap f(\varphi \mathcal{F}_{Y}) \cap \varphi \mathcal{F}_{Y} = \emptyset$$

which, as it is well known, insures that Φ is 1-1 (into).

III. A preliminary result.

Let us denote by \widetilde{A}^* for any $A\subset \mathcal{T}_X$ the set of all conjugates of the words belonging to the least stable subset A^* that contains A . We have

<u>Property 1.</u> If the three submonoids F_1, F_2, F_3 of \mathcal{F}_X form a factorization of \mathcal{F}_X and are generated by A_1, A_2 , and A_3 respectively, then

- (i) A_1, A_2 and A_3 are c-free
- (ii) $\{\tilde{A}_1^*, \tilde{A}_2^*, \tilde{A}_3^*\}$ is a partition of \mathcal{F}_X^+

The proof which is not difficult is based upon the remark that (i) and (ii) are trivially satisfied when $\{A_1 \cap X, A_2 \cap X, A_3 \cap X\}$ is not a proper partition of X. On the contrary when, e.g.

A₁ n X = X' with $\emptyset \ddagger X' \ddagger X$ there exists a factorization of F into the three monoids $\{1\} \cup X'^*$, $\{1\}$, $\{1\}$ $\cup X''$ \mathcal{F}_X $(X'' = X \setminus X')$ where the last one is generated by the c-free set $X'' \cup X''X'$ Observe that the uniqueness of the factorization implies that no word of A $_1$ X $_2$ $_4$ $_3$ begins with a letter from X $_4$. This allows to "eliminate" X $_4$, by considering a set Y and a monomorphism $\gamma: \mathcal{F}_{Y} \to \{1\} \cup X$ " \mathcal{F}_{X} . Then \mathcal{F}_{Y} has a factorization tion $\{G_1, G_2, G_3\}$ such that $\forall G_2 = F_2$, $\forall G_3 = F_3$ and $\forall G_1 = F_1 \times X^{'*}$. Furthermore one can show that \forall is a c-homomorphism and that the truth of (i) and (ii) for $\{G_1,G_2,G_3\}$ implies the truth of (i) and (ii) for $\{F_1,F_2,F_3\}$. Iterating 2n times this construction gives a free monoid \mathcal{F}_{Z} , with a factorization $\{H_1,H_2,H_3\}$ and a c-homomorphism $\Psi:\mathcal{F}_Z\to\mathcal{F}_X$ such that $\bar{\psi}_1 = F_2$ and that all the words of degree less than n in $\overline{\mathcal{F}}\mathcal{F}_{\mathbf{Z}}$ belong to $\overline{\mathcal{F}}\mathbf{H}_{2}$. Since n is arbitrarily large, this gives the possibility of proving that A, is c-free and the rest of the proof is rather straight forward.

The method is essentially that of Lazard [2]. The same technique shows:

 $A_2 \subset F_2$, $A_3 \subset F_3$ satisfying the hypothesis of Property 1. Finally let $\{F_i\}$ (i \in I) be a factorization of F such that the sets A_i (i \in I) generating the submonoids F_i have the two properties

- (i) The sets A_i (i f I) are c-free (ii) The sets A_i^* (i f I) form a partition of \mathcal{F}_X^+ .

Taking any one of the F_i 's, say F_j we can construct a factorization F_{j_1} , F_{j_2} , F_{j_3} of this monoid satisfying the hypothesis of Property 1.

The same argument shows that the collection $\{F_i, \}$ is Iwith I obtained by replacing in I the element j by the triple (j,1), (j,2), (j,3) still satisfies (i) and (ii).

Now let us consider an injective mapping μ of \mathfrak{F}_{x}^{+} into the interval [0,1], each number of this interval being represented by its ternary expansion

$$r = \sum \{r_n 3^{-n}, n>0\}$$
 $r_n = 0, 1, 2$.

The first digit of μ f gives a partition $\mathcal{F}_j' = \{f \in \mathcal{F}_x^+ : \mu f)_1 = j \}$ (j=0,1,2) from which we can derive a factorization F_1, F_2, F_3 of \mathcal{F}_X by Property 2. Then, using the second digit in an obvious fashion we obtain a factorization of each of the three monoids F_1, F_2, F_3 .

Passing to the limit we obtain a subset $H = \{h\}$ of elements of \mathcal{F}_{X} and a total order < on H having the following properties:

- 1) h<h if and only if \muh<\muh
- 2) The collection \mathcal{H} of all the monoids $\{1\} \cup h^*$ form a factorization of F .
- 3) Every $f \in \mathcal{T}_X^+$ is conjugate to some power of one and only one $h \in \mathcal{H}$.

Because of the property expressed by 3 we shall say that H is a "cyclic transversal" of $\mathcal{T}_{\mathbf{X}}$.

IV Formal products.

Let us now consider \mathcal{O}_X the large algebra of \mathcal{F}_X over $\underline{\mathbb{Z}}$. Any subset $A \in \mathcal{F}_X$ has a (non-commutative) generating function $\overline{\mathbb{A}} = \{f\colon f \in A \} \in \mathcal{O}_X$.

As is well known the group \mathcal{O}_X of invertible elements of \mathcal{O}_X consists of the elements of the form 1-a when a belongs to \mathcal{O}_X^+ , the module spanned by \mathcal{F}_X^+ . Further, if this is so $(1-a)^{-1}=1+\sum \{a^n \; ; \; n>0\}$, so that if \overline{A} is the generating function of a subset A of \mathcal{F}_X^+ , $(1-\overline{A})^{-1}$ is the generating function of the submonoid generated by A if and only if A is free.

Thus with these new notations the hypothesis of property 1 take the form of the identity $(1-\overline{X})^{-1}=(1-\overline{A}_1)^{-1}(1-\overline{A}_2)^{-1}(1-\overline{A}_3)^{-1}$ In fact, if $X'=A_1\cap X$ and $A_1'=A_1\setminus X'$, $X''=X\setminus X'$. The "elimination" of X' is expressed by the formal computation

$$(1-\overline{X}'-\overline{X}'')^{-1} = (1-\overline{X}'-\overline{A}_1')^{-1}(1-\overline{A}_2)^{-1}(1-\overline{A}_3)^{-1}$$

$$(1-\overline{X}''(1-\overline{X}')^{-1})^{-1} = (1-\overline{A}_1'(1-\overline{X}')^{-1})^{-1}(1-\overline{A}_2)^{-1}(1-\overline{A}_3)^{-1}$$
or
$$(1-\overline{X})^{-1} = (1-\overline{X}')^{-1}(1-\overline{A}_1'(1-\overline{X}')^{-1})^{-1}(1-\overline{A}_2)^{-1}(1-\overline{A}_3)^{-1}$$

Let us now define infinite formal products. Given a collection $\{a_i, i \in I\}$ of elements of \mathcal{O}_X^+ totally ordered by a relation < we assume that for each $f \in \mathcal{F}_X$ there exists only a finite number of elements a_i such that f has a non zero coefficient $< a_i, f>$ in them. Then for each f we define < p, f>, the coefficient of f in p as the sum

$$\sum \langle a_{i_1}, f_{j_1} \rangle \langle a_{i_2}, f_{j_2} \rangle \dots \langle a_{i_m}, f_{j_m} \rangle$$

extended to all factorizations $f = f_{j_1} f_{j_2} \dots f_{j_m}$ into an arbitrary number m>0 of factors and for each such factorization to all m-tuples $a_{i_1}, a_{i_2}, \dots, a_{i_m}$ such that $a_{i_1} < a_{i_2} < \dots < a_{i_m}$ and $a_{i_1}, f_{j_1} > \dots, a_{i_2}, f_{j_2} > \dots, < a_{i_m}, f_{j_m} > \emptyset$

Clearly 1+ $\sum \{ < p, f > f : f \in \mathcal{F}_X \} = p$ is a well defined element of \mathcal{O}_X which we can consider as the infinite formal product of the elements 1+a, with respect to < . Simple computation shows that p^{-1} is the infinite product of the elements $(1+a, 1)^{-1}$ with respect to the opposite order > .

Applying our last remark of the previous section we obtain thus for each μ the identities

(*)
$$(1-\overline{X})^{-1} = \{(1-h)^{-1} : h \in H\}$$
 or
(**) $1-\overline{X} = \{(1-h)^{-1} : h \in H\}$

where H is a cyclic tranversal. A special case of this construction has been given in [3]. A slight modification of the argument gives an identity of [5,1]. A commutative version of (**) has been used by Sherman [4].

References.

- 1. K.T. Chen, R.H. Fox and R.C. Lyndon, Free differential calculus IV, Ann. Math., 68 (1958), 81-95.
- 2. M. Lazard, Groupes anneaux de Lie, et problème de Burnside, Roma. C.I.M.E. Inst. Math. (1960).
- 3. M.P. Schützenberger, Sur une proprietè combinatoire, Paris Seminaire P. Dubreil (1958).
- 4. S. Sheman, Combinatorial aspects of the Ising model, J. of Math. Phys., 1 (1960), 202-207.
- 5. A.I. Širšov, On free Lie rings, Math. Chornik, 45 (1958), 113-122.