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1. INTRODUCTION

The aim of this note is todescribe certain elementary prob-
lems of random walks arising in the study of a restricted family
of finite automata with a push-down storage.

For any set X = {x} we shall denote by F(X) the set of all
finite strings of elements of X and we shall refer to F(X) as the
Jree monoid generated by X (the operation being, as usual, the
concatenation).

If X is considered as the input alphabet of an automaton §
consisting of sets of states S = {s} with transition function
(SxX) — S, we shall use the following notations:

iff:xil P ST xime F(X)and s € S,
s.f= s, is defined inductively
m

by s .

1

0=s, sil=(si°,xi1),...,

(s; ,x. )=s, ,ands.f=siff=e (the empty word).
j 1j.o,], < ‘j-l-l

qbsf = ¢Sf' if and only if for all s € S, s.f = s.f'.

By definition a finite automaton with push-down storage @ is
given by:
(1) a finite input alphabet X
(2) two finite sets of states S and T; two distinguished ele-
ments s, € S, t_ € T; a distinguished subset S of S.
(3) an internal alphabet X; a word g ¢ F(Z); a finite sub-
set G of F(Z). °
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(4) the following mappings:
o:(S,T,X)—S;
x : (S,T,X) — (T,T) (the family of all sets of pairs of
elements of T);
o : (S,T,X) — F(Z);
(T,z) — T.
The unbounded part of the memory of @ consists of a tape
on which words in the alphabet Z can be written or erased.
Kf= xi1 xi2 .... X, ....1is an input sequence, the auto-
n
maton starts in the initial state (s, t,, g,) where g, means that
the word g, is already stored in the memory of@.
The letters x iy xi2 +v.. X, ....areread sequentially and,
n
for each of them, the following cycle of operations is performed:
If the state of @ is (s,t,g) € (S,T,F(Z)) and the incoming in-
put letter is x i, =X

(1) the state s is changed to o(s,t,x) = s';

(2) the machine searches if there exists a factorisation
% = g')g" of the stored word g such that (t_g', t_g") € X
s,t,x).
If at least one such factorisation exists and if the one
for whichthe degree (= length) of g" is minimal is g'.g",
the word g" is erased from the memory. If no such
factorisation exists, nothing is erased and g' = g.

(3) the word a(s,t,x) = g" is written in the memory to the

right of g'.
(4) the state t is changed tot .g'g'" and the cycle is com-
pleted. °
If after completing the cycle corresponding to the n-thletter
of the input sequence f = X, X, ... X ... the state is s and
1 2 n
the stored word is g, we shallwrite f_ = X, X, ....X; € F(X),

1 2 n
s= of,), g= a(f,). Bydefinition, f, € K if (o(f,), a(f,)) € (S,G)and
f,e Kiff, € K, and for n' < f,' £K. In accordance with usual
terminology, K may be called the setof the words accepted by Q.

With respect to the probabilities we shall always assume
that there exists afinite n, a fixed nxn matrix p and a represen-
tation p of F(X) by nxn matrices such that (1) Tr p = 1; (2) for
all f e F(X) = {Tr pufx : x ¢ X} = Tr puf =0. Then, for each
f € F(X), Tr puf can be interpreted as the probability measure
of the set of all infinite input sequences which begin with f.

In particular, the case of n = 1 corresponds to the hypothe-
sis that the letters of X are produced independently with con-
stant probabilities ix = Tr pux.
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If there exists a one-to-one correspondence between the
letters of X and the states of a Markov chain with initial proba-
bilities Pr(x ;) and transitions Pr(x, | x.), one can take h equal
to twice the number n' of elements of JX and define for each
x; € X the matrix ux, by

(%) = Prix,| x,)ifk=1i,1=4i,j=n'
=Pr(x;)ifk=1i,j=n"+1
= 0 otherwise.
2. EXAMPLES

Since thesedefinitions are quite restrictive, it maybe worth-
while to indicate how they relate to more familiar structures.

(1) Let a(s,t,x) be identically the empty word e. So, only
the finite part § plays a role and @ is a conventional
one way one tape automaton (Rabin and Scott). The
family of the sets K corresponding to these automata
is usually called the family ® of regular events (Kleene)

(2) Let Z consist of a single letter. The word a(f,) = 2"
stored in the memory can be identified with the non-
negative integer m and @ can be considered as a finite
automaton with a (unbounded) counter. Clearly, given
an integer valued function g of X, it is possible to
choose S, T, (S,X) — S, etc., so that for each f = X

X, ceeeX, o
i, i

(i) af ) z °n where s_is the absolute value of the

cumulative sum Bx + Bxi +....+Bx;, = Bfn.
l 2 m

(ii) the sign of Bf, can be determined from the knowl-
edge of o(f ).
The associated probabilistic problem is that of the
elementary discrete one dimensional random walk.

(3) Let X={xz}, Z={z+} (1 =i=<N) and assume that
the automaton @ is constructed so that if the stored
word g = a(f, ;) ends with the letter z; and if the n-th
input letter is X; then the cycle consists of the following
single operatlons

ifi=-j,z, is erased,
if i = -j, x, is written to the right of g.
If g is the empty word z, is written on the tape.
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Assuming that the initial word g, is the empty word, the
word a(f,) stored after reading the input word f_ can be con-
sidered as being obtained by replacing the x,'s by the z,'s and
by erasing every pair of consecutive letters with opposite indices.

For instance iff=x, x,x, x ; X , X, X, ...., the values

of aff,), alf,), .... aff,) are - >

4 -2

X5 Xy Xp; Xy Xp X35 Xy Xp; Xy X X 43 Xy X5 Xq5 evnn s

Clearly, if g_ isthe empty word e, theset Dn = {f € F(Z): a(f) = €}
depends only on N and it is infact the kernel of the epimorphism
yof F(X) onto the free group generated by {x;} (1 =i = N) that
satisfies identically 1 = yx; vx ;.

The theory of the associated random walk is due to Kesten.

3. CONTEXT FREE LANGUAGES

Let us consider after N. Chomsky two alphabets E = {5 },
X = {x} and a finite collection G of pairs (£, , f,) where §; eg
and where f; belongs to the free monoid genera{ed by the union
of X and E, but is not the empty word nor an element of 5. Tak-
ing an initial subset B' of E, we consider the least subset Lz_,e
F(X U E) that satisfies the two conditions:

(1) 2 eLy,

(2) if f=1" £, £" e Lg and (&, {;) € G, then £'f,{" € L¢.

We denote by Lg the subset of Lg which consists of the
words containing only letter from X. L, is the "context free
language' generated by the grammar G. In a loose way, Lg may
be described as the set of all words which can be obtained
starting from E' by an arbitrary number of applications of the
rewriting rules £, —f..

This formal construction is due to Post [12], but its special
importance comes from its rediscovery by N. Chomsky who has
founded upon it a general theory of natural languages.

As amatter of interest it must be mentioned that S. Ginsburg
has recently observed that artificial programming languages like
Algol are also context free languages. (Of course this remark
should not be understood as implying that actual human languages
are nothing more than glorified versions of Algol. Indeed, in
Chomsky's theory the context-free level is only an initial germ
out from which the true language emerges by the interplay of
the higher structures ruled by the so called "transformations.")

As an example, let E={¢t}, X = {a,b} and G = {(¢,a), (£,
b¢ £)}. The starting letter ¢ can be replaced by a or by b £.
Since a € F(X), a € L; inb¢ &, the first or the second ¢ can be
replaced by a or by b¢ ¢, giving the words ba¢, bb& £ £, b¢ a,
baa, bb& £a, btbi &, bab& &, bb& EbE &, ... on which the
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process has to be repeated, etc. Thus, one finds that a, baa,
bbaaa, babaa, form the set of the words of L of degree of most
5. In fact a word f belongs to L if and only if the number of a's
contained in it is equal to 1 plus the number of b's and if any
proper left factor of f contains at most as many a's as b's.
Thus, L corresponds to the set of the well formed formula in
the so-called parenthesis free notation.

An other less obvious property is enjoyed by L: in some
well defined sense every word is produced in an essentially
unique manner. In other terms there is a unique manner of in-
serting brackets in any word f € L so that these brackets indi-
cate how the word has been produced (for instance, (b(a(bba))).

This possibility does not necessarily exist for an arbitrary
context free language. Hence for a given grammar G one may
find it advisable to attach an integer n; to every word f e¢ F(X)
in such a way that:

n =0iff ¢ Lgand, if f € L;. n, = the number
of essentially different ways in which £ is produced.

Clearly, it is a desirable quality of an artificial language
that n; < 1 since, otherwise, there would be strings which would
admit several possible interpretations. Unfortunately as shown
by Bar-Hillel, Shamir and Perles the question todecide if n; = 1
identically for an arbitrary context free language is recursively
unsolvable.

Returning to the definitions introduced previously we can
state the following property:

For any context free language L one can find:

a regular event K,

a natural number N,

a mapping ¢ : X — F(X),
such that L = {¢f : f ¢ KN DN}

where, as usual ¢f denotes the word obtained when re-
placing in f every letter x, by the (eventually empty)
word ¢x, .

Moreover, the construction implies that every word is pro-
duced the same number of times by both processes. In fact the
number n c defined rather loosely above can be more accurately
defined as the number of words f e K N D_ such that {' = ¢{.

Reciprocally given any finite automaton with push-down
storage one canfind a set E and a grammar G such that the cor-
responding language L is precisely equal to K (or to K). More-
over the construction shows that every word is produced at most
once so that the correspondence between the two processes is
really one-to-one. (Cf. Chomsky 1962 a)
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4, GENERATING FUNCTIONS

The construction carried out in the last section can begiven
another interpretation which will be best explained in the case of
the language L described above.

Let us assume that the successive letters are produced
randomly according to the hypothesis of section 1 and introduce
a new auxiliary variable t.

We can associate with L the usual generating function:
r' = = {t| f|Pr f : f € L} where the notation | f | represents the de-
gree (length) of f and, according to hypothesis, the probability
Pr f is equal to Tr puf.

However, for the sake of convenience, let us consider
another generating function: r = = {t|f|uf : f ¢ L} from which r'
canbededuced by the operation Tr. As it is well known r satis-
fies the algebraic matrix equation r = tpa + tubr? which simply
expresses that any word f € L which is not the word a has a
unique factorisation f = bf'f'" where both f' and " belong to L.

Thus, in particular if dim u = 1 we obtain the classical
formula

2r =1 - (1 - 4t2uaub) 172

in which the right member can be expanded in a Taylor series
converging for |t| small enough.

K dim p = N> 1, this straight-forward method is not pos-
sible because the equation is one in non-commutative variables.
However, for given pa and pb the matrix ur can be computed
from the system of n2 algebraic equation which results from the
identification of the entries in both members.

Now clearly the same remark is valid for the context free
language produced by any grammar G. Let us consider the let-
ters (£,,.... £, ) of Eas "unknown" and the letters x€¢ X as
(non commutativg) coefficients. Then to the grammar G it cor-
responds in a one-to-one manner the system of equations

5i=2{f1’(§i’fi)€G} i=12,...... )
A simple discussion shows that because of our hypothesis on G
such a system has always a formal solution (rl, O s rm)

inwhich each of the components r; is aformal power series inthe
variables of X (and coefficients in the semi-ring of non-negative
integer). In fact, for any word f the coefficient of f in r; is ex-
actly n;, the number of times f is produced by G when the initial
letter is £,.

Hence, if G is such that n; =1 identically, and if we define
therepresentation fi by the condition that for each x € X, ux = tux,
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the image of r; by i is precisely the desired generating func-
tion. As observed before this is the case for the sets K (or K)
defined by a finite automaton with a push-down storage.

For instance let us consider the set Dy introduced earlier.
Clearly, Dy is the disjoint union of the sets Dy ; (-N=1i=< N)
consisting of all words from Dy which begin with the letter x ;.
Now is f e Dy, ; the hypothesis that the first return to an empty
memory occurs at the last letter of f implies that f = x;f'x ;
where f' is a word (possibly empty) of which the memory con-
tains only x,. Hence, introducing unknown £; (-N <i =N) in
one-to-one correspondence with the letters x,; we have:

Ei=x (e g, -26) T x

This can be brought to polynomial form by replacing each equa-
tion by the pair:

For the case of an arbitrary finite automaton with push-
down storage, the equations are slightly more complicated but
their obtention is a quite straightforward matter [18].

5. PROBABILITIES OF ABSORPTION

Given a finite automaton with push-down storage A, let us
call probability of absorption 7, the probability measures of the
set of all infinite input sequences which have at least one left
factor belonging to K. From the remarks of the last section, it
follows instantly that 7, is an algebraic function of the entries
of the matrices px. This result is essentially due to Kesten. It
is worthwhile to contrast it with the fact that for finite automata
(without unbounded memory) the corresponding probability is
always a rational function of the entries of pu.

In the opposite direction, probabilities attached to a more
general type of unbounded memory usually fail to be algebraic.
For instance, let A and A' be two finite automata with counter
(i.e., let the internal alphabets of A and of A; consist of a single
letter). Simple computation shows that the generating function
of the set KN K' may have a logarithmic singularity, hence it
may be an (elementary) transcendant function [17]. From an
analytic point of view, this corresponds to the well known fact
that the Hadamard product of two algebraic functions is not
necessarily algebraic.
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Geometrically it is one way of interpreting the essentially
deeper character of the two dimensional random walk over the
one dimensional absorption problems.

A more directly probabilistic implication of these remarks
can be obtained when it is assumed that S (the distinguished final
set of states) is {s_} (the distinguished initial state) and that,
similarily, G = {g } = the empty word. Then, K defines the sup-
port of a regular évent in Feller's terminology and the process
is indeed a recurrent one if the letters x; are produced inde-
pendently with constant positive probabilities. Under this hy-
pothesis the character persistent or transient of the recurrent
event depends only on the analytic nature of the singularity of
the generating function that is nearest to 0.

Thus, if A is a strictly finite automaton, the recurrent
event, if persistent, has necessarily a finite mean recurrence
time. If A uses in nontrivial fashion its unbounded memory, the
event has always an infinite mean recurrence time and it can be
persistent only if A is in fact an automaton with a counter and if
the probabilities themselves satisfy a certain equation. Again
these results go back to Kesten. However, the techniques de-
scribed here allow generalisation from the case of a free group
to that of an extension of a free group by a finite monoid.
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