RESEARCH MOTE

NC-173

Thomas: J. Watson Research Center, Yorktown Heights:

ON THE MINIMUM NUMBER OF ELEMENTS IN A CUTTING SET OF WORDS

by

M. P. Schutzenberger 11/1/62

Let X be an alphabet of $k < \infty$ letters and F the set of all words in this alphabet. We shall say that a subset K of F is a cutting set iff there exists only a finite number of words f of F which have no factorization of the form $f = f_1 f_2 f_3$ with $f_2 \in K$, $f_1, f_3 \in F$. We shall limit our attention to the cutting sets consisting of words of a fixed length n and we intend to verify that the minimum number of words in such a set is $n^{-1}k^n$ (1+a(k,n)) where a(k,n) tends to zero when Max $(k,n) \Rightarrow \infty$.

First inequality

Let us recall that a word $f \in F^+$ (the set of all nonempty words of F) is <u>primitive</u> (or <u>aperiodic</u>) iff $f = f^{1p}$ implies p = 1; every $f \in F^+$ can be written in one and only one manner as f^{1p} with p > 0 and f' primitive.

Two words f and f' are conjugate iff there exist f_1 , $f_2 \in F$ such that $f = f_1 f_2$ and $f' = f_2 f_1$; then fg = gf' for all $g = (f_1 f_2)^p f_1$, $p \ge 0$.

Reciprocally, if g is a right and a left factor of some word f'', i.e., if there exist f and f' such that fg = gf' = f'', induction on the length |g| of g shows that for some $f_1, f_2 \in F$ and $p \ge 0$ one has $g = (f_1 f_2)^p f_1$, $f = f_1 f_2$, $f' = f_2 f_1$, $f'' = (f_1 f_2)^{p+1} f_1$.

Finally, the number of classes of conjugate primitive words of length n is $\psi_k(n) = n^{-1} \sum_{\substack{d \mid n}} k^{n/d} \mu(d)$ where μ denotes the Möbius function [1].

Let f and f' be two primitive words whose lengths divide n and assume that for some positive p the words f^P and f^P have a common factor f'' of length n. This implies $f'' = (f_2f_1)^d$ and $f'' = (f_2'f_1')^{d'}$ where the words f_1, f_2, f_1', f_2' satisfy $f = f_1f_2$ and $f' = f_1'f_2'$. Hence, since f and f' are primitive, d = d' and f and f' are conjugate. It follows that the minimum number of words in a cutting set is at least equal to $\sum_{d \mid n} \psi_d(d) = n^{-1} \sum_{d \mid n} k^{n/d} \phi(d)$ (where ϕ denotes Euler's function) and, consequently, that $\alpha(k,n) \geq 0$.

Second inequality

We exhibit a cutting set C having exactly $\sum_{m \leq n} \psi_k(m)$ words with the help of the following construction, which has been studied by K. T. Chen, R. H. Fox, and R. C. Lyndon [2].

Let X be totally ordered by \leq and let \leq also denote the induced lexicographic order on F. Define the subset H of F^+ by: $f \in H$ iff, for all $f', f'' \in F^+$, f = f'f'' implies f < f''f'.

Clearly for each n, the set of all h ε H of length n is a set of representatives of the classes of conjugate primitive words of this length. Further, it has been proved by the authors quoted above that H = H' where $H' \subset F^+$ is defined by the seemingly more restrictive condition:

 $f \in H'$ iff, for all f', $f'' \in F^+$, f = f'f'' implies f < f''.

We recall the proof for the sake of completeness.

Let $f \in H'$; f = f'f''; $f', f'' \in F^+$. Since |f''| < |f| (where |f| denotes the length of f), the condition f < f'' implies f < f''f''' for all $f''' \in F$. Hence, $H' \subset H$.

In order to show $H \subset H'$ we verify first that H contains no word f such that there exist $f_1, f_2, f_3 \in F^+$ satisfying $f = f_1 f_2 = f_2 f_3$. Indeed, let $f = f_1 f_2 = f_2 f_3$; $f < f_2 f_1$ and $f < f_3 f_2$; either $|f_2| < |f_1|$, or $|f_1| \le |f_2|$.

In the first case, $|f_2| < |f_1|$, there exists $f_4 \in F^+$ such that $f_1 = f_2 f_4$, $f_3 = f_4 f_2$ implying $f = f_2 f_4 f_2 < f_3 f_2 = f_4 f_2 f_2$ and, consequently, $f_2 f_4 < f_4 f_2$. Thus $f_2 f_2 f_4 < f_2 f_4 f_2 = f$, showing $f \notin H$.

In the second case, $|f_1| \leq |f_2|$, there exists $f_4 \in F$ such that $f_2 = f_1 f_4 = f_4 f_3$ implying $f = f_1 f_4 f_3 \leq f_2 f_1 = f_1 f_4 f_1$ and, consequently, $f_3 \leq f_1$. Thus (since $|f_1| = |f_3|$), $f_3 f_1 f_4 \leq f_1 f_4 f_3 = f$, showing again $f \notin H$.

Consider now $f \in H$ and any factorization f = f'f'' with $f', f'' \in F^+$. By our last remark, f'' can never be a right factor of f. Thus f < f''f' implies f < f''. Hence $f \in H'$, and the proof is concluded.

Now let C be the set of all the left factors of length n of all the words of the form h^p with p > 0, $h \in H$, $|h| \le n$.

We verify that C is a cutting set, i.e., that any infinite sequence $s = x_1 x_1 \dots x_i \dots$ of letters of X has at least one factor in C. Since $X \subseteq H$ we can assume n > 1, and since Card $X < \infty$ we can also assume that the left factor $f = x_1 x_1 \dots x_i$ of length n of s is \leq any other factor $x_1 x_1 \dots x_i$ of the same sequence s. If $f = x_1 x_2 \dots x_i = x_i x_i \dots x_i$ of the same sequence s. Thus any factor $f = x_1 x_2 \dots x_i = x_i x_i \dots x_i = x_i x_i$

In the remaining cases, let $g = (f_1 f_2)^p f_1$ be the word of maximal length < |f| which is a right and a left factor of f. We verify that $f_1 f_2 \in H$. Indeed, because of the maximality of |g|, the word $f_1 f_2$ is primitive, and we can define g_1 and g_2 by the conditions $g_1 g_2 = f_1 f_2$ and $g_2 g_1 \in H$.

If $|g_1| \le |f_1|$ or if p > 0, the word g_2g_1 itself is a factor of f since $f = (f_1f_2)^{p+1} f_1$. Hence, $f_1f_2 \le g_2g_1$ and $g_2g_1 \le f_1f_2$ (= g_1g_2), showing that $f_1f_2 = g_2g_1 \varepsilon H$.

If p=0 and $|f_1| \leq |g_1|$, there exists f_3 such that $g_1=f_1f_3$, $f_2=f_3g_2$, and the left factor g_2f_1 of g_2g_1 is a factor of $f=f_1f_2f_1=f_1f_3f_2f_1$. Hence, since $g_2g_1\leq g_1g_2=f_1f_2$, the word g_2f_1 is equal to a left factor of f, that is, $|g_2|=0$, since by hypothesis $f_1=g$ is the longest word to be a right and a left factor of f. It follows that g=0 and $|f_1|\leq |g_1|$ imply $f_1=g_1$ and the verification is concluded.

Now, Card $C = n^{-1}k^n (1 + \alpha^{\dagger}(k, n)) = \sum_{0 < m \le n} \psi_k(m) \le \sum_{0 < m \le n} m^{-1}k^m$ $= n^{-1}k^n \sum_{0 \le j < n} n(n-j)^{-1}k^{-j}. \quad \text{Thus for each } \epsilon > 0 \text{ there exists a}$ finite number k_{ϵ} such that, for all $k > k_{\epsilon}$ and n, one has $\alpha(k, n) \le \alpha^{\dagger}(k, n) < \epsilon.$

Finally, let the set C' consist of all the words x^{n+1} ($x \in X$) and of all the words x'f where $x' \in X$, $f \in C$, and where the first letter $x'' \in X$ of f satisfies x'' < x'. C' is a cutting set because it contains $x_1 x_2 \dots x_n$ if $x_1 x_2 \dots x_n$ is \leq any other factor of length n of the infinite sequence $x_1 x_2 \dots x_n$. Now, $\frac{1}{n+1} \frac{1}{2} \frac{1}$

For n = 1, 2, or 3, one has $\frac{\text{Card } C}{\text{d} \mid n} = \sum_{k \in \mathbb{Z}} \psi_{k}(d)$. For n = 4, the same bound is attained by the set C'' consisting of all words xx'x"x"" where x, x', x", and x'" satisfy one of the following mutually exclusive conditions:

- $x = x^{1} = x^{11} = x^{111};$
- ii) $x^{1} < x$ and $x^{1} \le x^{11} \le x^{111}$;
- iii) $x^{1} < x$, x^{1} x^{1} and x^{1} x^{2} ; iv) $x^{1} < x$, x^{1} x^{2} x^{3} x^{4} x^{4

For n = 5 and k = 2 the minimum number of elements in a cutting set is $9 = 1 + \psi_2(1) + \psi_2(5)$.

REFERENCES

- [1] C. Moreau, in E. Lucas, Théorie des nombres, Paris, 1891, pp. 501-503.
- [2] K. T. Chen, R. H. Fox, and R. C. Lyndon, "Free differential calculus IV," Annals of Mathematics 68, 82-86 (1958).