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On A Family of Formal Power-Series

M. P. Schliitzenberger

1. Introduction

In [6] we considered three modules Rpol(X)(: Rrat(x) C:Ralg(x) of
formal power-series (with coefficients in a unital ring R) in the non-commuting
variables x ¢ X. These formal power-series are related to polynomials and to
Taylor series expansions of rational and algebraic functionms.

We recall that the family CE: of the so-called regular events consists

of all subsets of a finitely generated free monoid F(Z) that are a finite union

of sets of the form ¢ lh (= {g € F(Z) : ¢g = h} ) for some homomorphisms ¢ of

F(Z) onto a finite quotient monoid ¢ F(Z) = {h} ([2],[7]). It is trivial that:

(I.rat). The generating function cg; =X {g: geF'} of any F' ¢ dE:
belongs to Rrat(x)'
(I'.rat). Any a e R (X) can be represented in the form a = GcF, =

rat

Lim £ {6g : ge F', deg g < n} for some suitable F'e Cﬁ:
N -~ ©
and homomorphism 0 : F(Z) —> Rpol(x)'
However, if one replaces the condition that ¢ F(Z) is finite by the

condition that ¢ F(Z) is abelian in the definition of d%: , the generating

function of ¢-1h does not necessarily belong to Ralg(x) [5]. Then one may ask



what type of monoids give a family'dtf of subsets of F(Z) having the properties

(I.alg) and (I'.alg) derived from (I.rat) and (I'.rat) by substituting Ralg

to Rrat' We shall show that a partial answer is given by the extensions of a

free group by a finite monoid [4]. This provides alternative proofs of some

theorems of [1] and [3].

This note is part of common research with N. Chomsky.

2. Preliminary definitions.

Let there be: 1) Three finite sets Z, S and X; 2) a homomorphism 1#
of F(Z) onto a finite monoid K; 3) Three mappings Q', ¢g' and ;( of (XK,S,X)
into F(Z), S and the family of all subsets of K, respectively. For our present
purpose. there is no loss of generality in assuming that ﬁfg # 7&1 if g#1
and that every g € F(Z) has at least one right factor in each 7<(k,s,x).

For any g = (g,s) € G = (F(2),S) and x ¢ X : a(g,x) = a(g,s,x) = g',
the word of highest degree such that g a'(dfg,s,x) = g'g", with g" eb)((vbg;s,X).
0(8.x) = 0(g,s.x) = o' (Pg,5,0), g.x = @(g,1), 0(g,x) ¢ G.

In the usual fashion we extend this mapping (E,X) -> G to a
representation of F(X) (= the free monoid generated by X) by mappings of G

/

. g = ;b{i-, ¥e Wrlte -;b‘ = (gs(;a‘,ﬁv, o alz 8.
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For each 5-tuple j = (ji) with arbitrary ji, j3 € F(2); 2, j4 € S5 jg ¢ F(z)v{0}

we define:

¢(3)

be -a set of new variables. For each j e J, p(j) € R;ol(XLJY) is defined

as follows:

If j j
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J be the set of all

jl < j3 = j5’
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D £ # 1, (§1,39).f
{(fe F(X) : £41, (§y,ip.f=
< f' < f}, if ig e F(2).
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is a proper (i.e., # f)

of any C(j) with

(j3,j4)}, if jg5 = 0;

left factor of £.

(j3,j4); j5 < a(jl,jz,f') for each f',

jS = 0 belongs to

which satisfy any one of the conditions

j3 < 35 <iys or jg =0,

[N

.ql

do € §5 < 4,

4.

X € X(j C(j)] +Z {XY«X(jl,jz,X),G(jl,jz,x), j3: j&: jS)

\(‘1

p(jlsjzaj3:j4sjl)+ z {Y(jlajZ,jsg,S’jsg) Y(jsgas,j33j43jsg')

Let Y = {y(j)

: j e J}

4 (qij 434, ng) RJ (qqq} 951 934

13



P(3) = PU.d0,d3,04035) + 2 (¥(3q,3,5,8,8,0) y(8,8,33,3,,35) : s €S, g <3l
Clearly, each equation expresses a unique factorisation property of the

words of C(j) as products of elements of X and words from other sets C(j').

Hence, each equation is an identity if p(j) = y(j) = c(j) for all j e J.

Let Jd denote the subset of all 5-tuples such that deg jl’ deg jz, <d. If

j € J4 the right member of the equation which defines p(j) contains only

variables y(j') with j' ¢ Jd or with j

of the form j3 < j1 = In this

j5-
last case deg j3 < d and deg j; - deg j3 < max {deg a(g;x) i ge G, xeX).

Now let ’Yég denote, for any g ¢ F(Z), the subset {(1kg',74g") : g'g" = g}
of (K, K). If o8y =Yg Y8y = Fo8s> 3 = (818583,5:8),5":8189)» £ e C(I),
induction on deg f' shows that for each f' < £, a(g1g2g3,s,f') = glgzg',

1y = . 1y — 1
a(g4g5g3,s,f ) 8,858 with the same g' and o(g1g2g3,s,f ) o(g4g5g3,s,f ).

Thus, C(j) = C(g4g5g3,s,g4,s',g4g5). It follows that there exists a finite d¥%

each y(j') with j' ¢ J in the

such that for any fixed d >d* and j e J d

d’

right member of p(j) can be replaced by y(j") with j" e J, and C(j') =C(i".

d

Making this substitution the set (p(j)) . 3 becomes a proper system in the
J € Jgq

notation of [6] and 2.1. is verified.



3. Verification of (I.alg).

(I.alg). 1If ; is a homomorphism of F(X) into an extension G = {E} of

a free group G by a finite monoid H, the generating function s of any

-1 =
¥ g belongs to Ralg(X).

o
w

Proof. Let G be generated by {zi} l1<i<m Z= {zi,} i'=+4+ i and vy

be the homomorphism of F(Z) onto G such that (7*zi)_1 = 7*z_i for all

(i) Let us consider the special case of G = G. Then ; is given by a
homomorphism vy : F(X) => F(Z) and ;f = (y* o y)f. Since y itself is
determined by its restriction to the finite set X we can assume m < o,
If p : F(Z) —> F(Z) 1is such that pgzjz_;8' = pgg' and pg =g for all
the word pg 1is the so-called

g having no factor of the form 242 5

reduced form of g and y¥%g = y*g with pg' # pg i.f.£. y¥g' # y¥*g.

We consider the following special case of the representation defined in
the preceding section:

1) K and S are identified with F' = {g e F(Z) : deg g < d}
where d = max {deg yx : x ¢ X}. 2) Ve =8 if ge F',}p g = the right
factor of degree d of g if g ¢ F'. 3) a'(k,s,x) =p(syx); ;X'(k,s,x) =

k p(syx) = o'(k,s,x).



Thus, if E = (g,s) € (F(Z),F) one computes successively syx, p(syx),

g p(syx); a(g,s,x) and ¢(g,s,x) are determined by «a(g,s,x) oc(g,s,x) = gp (syx)
and o¢(g,s,x) = ﬁﬁ(g p(syx)). Induction on deg f shows that for each £ the
word a(l,1,f) o(1,1,f) is precisely equal to pf and the result is a conse-
quence of 2.1.

(ii) In the general case [4], ; is given by a homomorphism ¢ : F(Z) =-> H,

and a mapping y : (H,X,H) —> F(Z). Then ;f = (y*oy(41,£,41), é£f) ¢ (G,H)

where y : (H, F(X), H) —> F(Z) 1is defined by the identities:

for all h, h'e H, f, f'e F(X), x e X

" y(h,1,h") = 1; y(h,fxf',h') = y(h,£,(dxf')h") y(hdf,x,(S£'")h") y(hdfx,f',h').

Let X' = {x'(h,x,h') : (h,xh') ¢ (H,X,H)} be a set of new variables; 45
and y' are the homomorphisms of F(X') into F(X) and F(Z) induced by
§}<'(h,x,h') =x and y'x'(h,x,h') = y(h,x,h'). If H = (§,H)U (0} we define
a representation (E,F(X')) —> H of F(X') by the identities:
for all x'e X', O.x' = 0; for all x'(h,x,h") e X' and (h ,h,) e H,
(hl,hz).x'(h,x,h') = (h1 ¢x,h') if h = h1 and h, = (éx)h'; (hl,hz).x'(h,x,h') =0,
otherwise.

"= {f'e F(X') : (4Ll,h).f' =

Thus, for any h ¢ H, the restriction of E to Fh

(h, ¢1)} is a 1-1 mapping onto {f ¢ F(X) : #f = h} and for each f'e Fl,



y'£' = y(41, £', 41). It follows that cg = &‘c' - - =7 {Ef' : f'e F(X') : py'f's=

g, h.f' = h'} for suitable g e F(2), }T, H', e H.

Now let S, K, "y/, oz',X , o' be the same as in (i), S = (S,ﬁ). For
each s = (s,}T) € E, x'e X', we define: &'(k,-s_,x') =Ot'(k,s,§x'); )Z (k,;,x') =
{(X(k,s,fx'), h') : h' ¢ E}; a'(k,s,x') = (c'(k,s,fx'), h.x'). It is trivial that
(g,(S,H)).x' = (a(g,s, fx'), (c(g,s,fx'), H.x')), identically. Hence, Cé,h,ﬁ'

(or ¢ -1) is a component of the solution of a proper system p'e Rgi[l(x‘u Y).

' - -
g,h,h'
Clearly, if one extends E to a homomorphism R‘i‘;‘lgl(X'u Y) —> R§§1(X‘“Y) by f y =y
for all y e Y, p =§p' is again a proper system and (in the notation of [6])

p(n) = Ep'(n) for all n. This concludes the verification of (I.alg).

4, Verification of (I'.alg).

Let Z, G, y* be the same as in section 3, 1 <m<co;&' = {F'cF@) : F' =

oy e, ).
(I'.alg) . Any a e R* (X) can be represented in the form a = 1lim Z {6g : g e F',
deg g < n} for some suitable F'e &' and homomorphism 6 : F(Z) —> Rpol(X)'

Proof. (i) Let a be a component of the solution of the proper system

(p) =p ¢ R;SI(XUY). The support, Supp. b, of any formal power-series b is the
J

set of all words having a non-zero coefficient in b. Since each pj belongs to

Rpol(XUY) there exists d¥* < o such that any f ¢ {f'e Supp. Pj, 1<j<M



either belongs to F(X) or has a factorisation

= £ ith £, £, ... f F(X), e, Y. € X,
£ flyil fzyiz £, fdyid a1 Vith £, f) a+1 € Ty i €

—
IN

(aB
I

dng f < d*. We introduce a set Z = {z(j,f,d,e) : 1 < j <M, f ¢ Supp. pj,

1 <d<d¥, ¢ =+ or -} of new variables and make the definitions:
If f e F(X)() Supp. pj, 0z(j,f,d,e) =< pj, f>f if d=1and e =+, =1,
otherwise; Z:jf =z(j,f,1,+) z(j,£,1,-) z(j,£,2,+) 2(3,£,2,-) ... 2(j,£,d%,+)
z(j,£,d*,-).

If £ = fly.

. 1 =
i fd+1 € Supp. Py as above, 0z(j,f,d',e) =< p.

f eee v . 3
2 Vi j

d

£ > f1 if d'=1, and € = +; = fd' if 1<d' < dng f+1 and e =+; =1,

otherwise; ij = 2(3,£,1,Dy,  2(,£,1,-) 2(,£,2,9Dy;  2(3,£,2,5) ...
1 2

. Z(jsf:d’+)yi Z(j,f:d:-) Z(j,f,d+1?+) Z(j’f’d'*'l:') ve e Z(j,f,d*,‘i‘) Z(j,f,d*,-).
d

Thus, ©q, = p, where q, =% (&.f : f ¢ Supp. p. } and = (q.) € R*(ZUY)
q = P; 1 {;J Supp. P, q = (q;) e REC
is a proper system such that (in the notation of [6]) lim 8q(n) = p(x), the
n =—> ©
solution of p. Moreover, if Qj = Supp. 45 Pj(n) = F(2) () Supp. qj(n) and if q n

is the homomorphism of F(ZYY) into Rpol(z) induced by ‘]n z =z, ‘7nyj = Pj (n)

for all z e Z, vy.

j € Y, it follows from the definitions that, for all n, qj(n+1)

is the generating function of X { qng T g € Qj }. Hence it suffices to show that

the sets Pj(w) have the desired form.



(ii) Let V¢ F(Z) consist of:
all words z(j,f,d,v z(',£',1,+) or z(j',f',d*,-) z(j,f,d+l,-)
with d < dng f and j' equal to the index id of the d-th factor
all words =z(j,f,d,+) z(j,f,d,-) with d > dng f;
all words =z(j,f,d,-) z(j,f,d+1,+).
We take H in 1-1 correspondence with { 0, 1, Z, (Z2,Z2') } and define
the homomorphism ¢ : F(Z) <> H by

gg =h_ if deg g < 2;

g
pg = 0 if g has at least one factor of degree two not belonging
to V;
¢g=hz 2 if ¢g#0 and ge z F(2)z'.
3
H, =(h  _,:2z=2(,f,1,4), z' = z(j,f,d*,-), f ¢ Supp. p.}.
] z2,2 J

The homomorphism y* : F(Z) e> G 1is defined by (y* z(j,f,d,+))-1 =
y* z(j,£,d,-) for all elements of Z.
Induction on n shows that Pj (@)D =1{geF@2) :y*g =1, dgg # 0}.
Let P(j,d,d") ={geF(2) : ge Supp.( 1lim »]ng' ) : g'e Q'(j,d,d")} where
n =—> o

0'(j,d,d'") denotes the set of all g'e F(ZUYY) of the form z(j,f,d,+)g" z(j,£,d',-)

that are a factor of some g ¢ Qj; P =U{P(j,d,d') :1<j <M, 1<d<d' <ad¥.
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Then P(j,d,d")C. D and P.() = P(j,1,d%) = P ¢t H, .
Thus, it suffices to show that, conversely, every g ¢ D belongs to P.
This is trivial if deg g < 2. We assume the result proved for all words of degree <
n and we consider g e€ D of degree n > 2.

1 1

Let the factorisation g =z g' z' g" of g be determined by the

condition that =zg'z is the left factor # 1 of lowest degree of g that satisfies

y* zg'z' = y*%1., Since y* is a homomorphism into a free group, this implies
y¥e" = y*z 2’ = y¥gl = y*1.

If g" # 1, the induction hypothesis shows that
z = z(j,f,d,+¥), z' =z(j,£,d',-), g" = =z(j',£',d",+) g"' z(3',£',d"",-) for some
ji,j', £,£', d,d', d",d"'" and g"' ¢ F(Z). Because of ¢g # 0, we have j = j',
f=f"',d" =d'+l and the result is proved in this case.

If g'" = 1, the induction hypothesis shows that 1 # g' =
z(j',£',d",+) g"' z(j',£',d"",-). Because of ¢dg # 0 and y* z z' = y*¥1, we have
z =z(j,f,d,4), d" =1, d"' = d*, (i.e. g' ¢ ¢_1Hj,), z' = z(j,f,d,-) and
z(j,f,d,+) yj, z(j,f,d,-) is a factor of a word of Qj. Thus, g € F(j,d,d) and

the verification of (I'.alg) is completed.
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