On A Family of Formal Power-Series M. P. Schützenberger

1. Introduction

In [6] we considered three modules $R_{pol}(X) \subset R_{rat}(X) \subset R_{alg}(X)$ of formal power-series (with coefficients in a unital ring R) in the non-commuting variables $x \in X$. These formal power-series are related to polynomials and to Taylor series expansions of rational and algebraic functions.

We recall that the family \mathcal{K} of the so-called <u>regular events</u> consists of all subsets of a finitely generated free monoid F(Z) that are a finite union of sets of the form $\phi^{-1}h$ (= $\{g \in F(Z) : \phi g = h\}$) for some homomorphisms ϕ of F(Z) onto a <u>finite</u> quotient monoid ϕ $F(Z) = \{h\}$ ([2],[7]). It is trivial that: (I.rat). The generating function $c_{F'} = \Sigma$ $\{g : g \in F'\}$ of any $F' \in \mathcal{K}$ belongs to $R_{rat}(X)$.

(I'.rat). Any $a \in R_{rat}(X)$ can be represented in the form $a = \theta c_F' = \lim_{n \to \infty} \Sigma \{\theta g : g \in F', \deg g < n\}$ for some suitable $F' \in K$ and homomorphism $\theta : F(Z) \to R_{pol}(X)$.

However, if one replaces the condition that ϕ F(Z) is <u>finite</u> by the condition that ϕ F(Z) is <u>abelian</u> in the definition of \mathcal{K} , the generating function of ϕ^{-1} h does not necessarily belong to $R_{alg}(X)$ [5]. Then one may ask

what type of monoids give a family & of subsets of F(Z) having the properties (I.alg) and (I'.alg) derived from (I.rat) and (I'.rat) by substituting R alg to R alg. We shall show that a partial answer is given by the extensions of a free group by a finite monoid [4]. This provides alternative proofs of some theorems of [1] and [3].

This note is part of common research with N. Chomsky.

2. <u>Preliminary definitions</u>.

Let there be: 1) Three finite sets Z, S and X; 2) a homomorphism γ of F(Z) onto a <u>finite</u> monoid K; 3) Three mappings α' , σ' and χ of (K,S,X) into F(Z), S and the family of all subsets of K, respectively. For our present purpose there is no loss of generality in assuming that $\gamma g \neq \gamma 1$ if $g \neq 1$ and that every $g \in F(Z)$ has at least one right factor in each $\chi(k,s,x)$.

For any $\overline{g}=(g,s)\in \overline{G}=(F(Z),S)$ and $x\in X:\alpha(\overline{g},x)=\alpha(g,s,x)=g',$ the word of highest degree such that $g\alpha'(\psi g,s,x)=g'g'',$ with $g''\in \chi(\psi g,s,x).$ $\sigma(\overline{g},x)=\sigma(g,s,x)=\sigma'(\psi g,s,x), \ \overline{g}.x=(\alpha(\overline{g},x),\sigma(\overline{g},x))\in \overline{G}.$

In the usual fashion we extend this mapping $(\overline{G},X) \longrightarrow \overline{G}$ to a representation of F(X) (= the free monoid generated by X) by mappings of \overline{G} into itself. If $f \in F(X)$, $g \in \overline{G}$ and g' = g'f, we write $g' = (g(\overline{g},f))$, $g(\overline{g},f)$.

Let f' < f denote that f' is a proper (i.e., $\neq f$) left factor of f.

For each 5-tuple $j = (j_i)$ with arbitrary j_1 , $j_3 \in F(Z)$; j_2 , $j_4 \in S$; $j_5 \in F(Z)$ we define:

$$\begin{split} c(j) &= \{ f \in F(X) : f \neq 1, \ (j_1, j_2) . f = (j_3, j_4) \}, \ if \quad j_5 = 0; \\ &= \{ f \in F(X) : f \neq 1, \ (j_1, j_2) . f = (j_3, j_4); \ j_5 < \alpha(j_1, j_2, f') \ for each \ f', \\ 1 &< f' < f \}, \ if \quad j_5 \in F(Z) \,. \end{split}$$

2.1. The generating function c(j) of any C(j) with $j_5 = 0$ belongs to $R_{\text{alg}}(X).$

<u>Proof.</u> Let J be the set of all j's which satisfy any one of the conditions $j_3 \le j_1 = j_5$, $j_1 < j_3 = j_5$, $j_3 \le j_5 < j_1$, or $j_5 = 0$. Let $Y = \{y(j) : j \in J\}$ be a set of new variables. For each $j \in J$, $p(j) \in \mathbb{R}^*_{pol}(X \cup Y)$ is defined as follows:

If
$$j_3 \le j_1 = j_5$$
 or $j_1 < j_3 = j_5$

$$\begin{split} p(j) &= \Sigma \; \{x \; : \; x \; \in \; X \; \bigcap \; C(j)\} \; + \; \Sigma \; \{xy(\alpha(j_1,j_2,x),\sigma(j_1,j_2,x),\; j_3,\; j_4,\; j_5) \; : \\ \\ & \; x \; \in \; X, \; j_5 < \alpha(j_1,j_2,x)\} \, . \end{split}$$

If
$$j_3 \le j_5 < \frac{1}{j_1}$$
 $y_2 \le g_3 < g_1$

 $p(j) = p(j_1, j_2, j_3, j_4, j_1) + \sum \{y(j_1, j_2, j_5g, s, j_5g) \ y(j_5g, s, j_3, j_4, j_5g') :$ $s \in S, g \in g'Z, j_5g \le j_1\}.$

If
$$j_5 = 0$$

$$p(j) = p(j_1, j_2, j_3, j_4, j_3) + \Sigma \{y(j_1, j_2, g, s, 0) \ y(g, s, j_3, j_4, j_3) : s \in S, g \leq j_3 \}.$$

Clearly, each equation expresses a unique factorisation property of the words of C(j) as products of elements of X and words from other sets C(j'). Hence, each equation is an identity if p(j) = y(j) = c(j) for all $j \in J$. Let J_d denote the subset of all 5-tuples such that $\deg j_1$, $\deg j_2$, $\leq d$. If $j \in J_d$ the right member of the equation which defines p(j) contains only variables y(j') with $j' \in J_d$ or with j' of the form $j_3 \leq j_1 = j_5$. In this last case $\deg j_3 \leq d$ and $\deg j_1 - \deg j_3 \leq \max \{\deg \alpha(\overline{g},x) : \overline{g} \in \overline{G}, x \in X\}$.

Now let ψ_2 g denote, for any $g \in F(Z)$, the subset $\{(\psi g', \psi g'') : g'g'' = g\}$ of (K, K). If $\psi_2 g_1 = \psi_2 g_4$, $\psi_2 g_2 = \psi_2 g_5$, $j = (g_1 g_2 g_3, s, g_1, s', g_1 g_2)$, $f \in C(j)$, induction on deg f' shows that for each f' < f, $\alpha(g_1 g_2 g_3, s, f') = g_1 g_2 g'$, $\alpha(g_4 g_5 g_3, s, f') = g_4 g_5 g'$ with the same g' and $\alpha(g_1 g_2 g_3, s, f') = \alpha(g_4 g_5 g_3, s, f')$. Thus, $C(j) = C(g_4 g_5 g_3, s, g_4, s', g_4 g_5)$. It follows that there exists a finite d^* such that for any fixed $d \ge d^*$ and $j \in J_d$, each y(j') with $j' \notin J_d$ in the right member of p(j) can be replaced by q(j'') with $q'' \in J_d$ and $q'' \in C(j'')$. Making this substitution the set $q'' \in J_d$ becomes a proper system in the notation of $q'' \in J_d$ and $q'' \in J_d$ and $q'' \in J_d$ becomes a proper system in the

3. <u>Verification of (I.alg)</u>.

(I.alg). If $\overline{\gamma}$ is a homomorphism of F(X) into an extension $\overline{G}=\{\overline{g}\}$ of a free group G by a finite monoid H, the generating function $c_{\overline{g}}$ of any $\overline{\gamma}^{-1}$ \overline{g} belongs to $R_{alg}(X)$.

<u>Proof.</u> Let G be generated by $\{z_i\}$ $1 \le i \le m$; $Z = \{z_i\}$ $i' = \pm i$ and γ^* be the homomorphism of F(Z) onto G such that $(\gamma^*z_i)^{-1} = \gamma^*z_{-i}$ for all $z_i \in Z$.

(i) Let us consider the special case of $\overline{G}=G$. Then γ is given by a homomorphism $\gamma: F(X) \longrightarrow F(Z)$ and $\gamma f = (\gamma * \circ \gamma) f$. Since γ itself is determined by its restriction to the finite set X we can assume $m < \infty$. If $\rho: F(Z) \longrightarrow F(Z)$ is such that $\rho g z_i z_{-i} g' = \rho g g'$ and $\rho g = g$ for all g having no factor of the form $z_i z_{-i}$, the word ρg is the so-called g reduced form of g and g = g with g = g = g for i.f.f. g = g = g = g.

We consider the following special case of the representation defined in the preceding section:

1) K and S are identified with F' = $\{g \in F(Z) : \deg g \le d\}$ where d = max $\{\deg \gamma x : x \in X\}$. 2) $\gamma g = g$ if $g \in F'$, $\gamma g = the right$ factor of degree d of g if $g \notin F'$. 3) $\alpha'(k,s,x) = \rho(s\gamma x)$; $\chi(k,s,x) = k \rho(s\gamma x) = \sigma'(k,s,x)$. Thus, if $g = (g,s) \in (F(Z),F)$ one computes successively syx, $\rho(syx)$, $g \rho(syx)$; $\alpha(g,s,x)$ and $\sigma(g,s,x)$ are determined by $\alpha(g,s,x)$ $\sigma(g,s,x) = g \rho$ (syx) and $\sigma(g,s,x) = \psi(g \rho(syx))$. Induction on deg f shows that for each f the word $\alpha(1,1,f)$ $\sigma(1,1,f)$ is precisely equal to ρf and the result is a consequence of 2.1.

(ii) In the general case [4], $\overline{\gamma}$ is given by a homomorphism $\phi: F(Z) \longrightarrow H$, and a mapping $\gamma: (H,X,H) \longrightarrow F(Z)$. Then $\overline{\gamma}f = (\gamma*\circ\gamma(\phi 1,f,\phi 1), \phi f) \in (G,H)$ where $\gamma: (H,F(X),H) \longrightarrow F(Z)$ is defined by the identities: for all $h,h' \in H,f,f' \in F(X),x \in X$

 $\gamma(\mathsf{h},\mathsf{l},\mathsf{h}') = 1; \ \gamma(\mathsf{h},\mathsf{fxf'},\mathsf{h}') = \gamma(\mathsf{h},\mathsf{f},(\phi\mathsf{xf'})\mathsf{h}') \ \gamma(\mathsf{h}\phi\mathsf{f},\mathsf{x},(\phi\mathsf{f}')\mathsf{h}') \ \gamma(\mathsf{h}\phi\mathsf{fx},\mathsf{f}',\mathsf{h}') \, .$

Let $X' = \{x'(h,x,h') : (h,xh') \in (H,X,H)\}$ be a set of new variables; ξ and γ' are the homomorphisms of F(X') into F(X) and F(Z) induced by $\xi x'(h,x,h') = x \text{ and } \gamma'x'(h,x,h') = \gamma(h,x,h'). \text{ If } \overline{H} = (H,H) \cup \{0\} \text{ we define}$ a representation $(\overline{H},F(X')) \longrightarrow \overline{H}$ of F(X') by the identities: for all $x' \in X'$, 0.x' = 0; for all $x'(h,x,h') \in X'$ and $(h_1,h_2) \in \overline{H}$, $(h_1,h_2).x'(h,x,h') = (h_1 \phi x,h')$ if $h = h_1$ and $h_2 = (\phi x)h'$; $(h_1,h_2).x'(h,x,h') = 0$, otherwise.

Thus, for any h \in H, the restriction of ξ to $F_h' = \{f' \in F(X') : (\emptyset 1, h) \cdot f' = (h, \emptyset 1)\}$ is a 1-1 mapping onto $\{f \in F(X) : \emptyset f = h\}$ and for each $f' \in F_h'$,

$$\begin{split} \gamma' f' &= \gamma(\phi 1, \quad f', \; \phi 1) \,. \quad \text{It follows that} \quad c_{\bar{g}} = \stackrel{\bigstar}{\xi} c_{g,\bar{h},\bar{h}'}' = \Sigma \; \{ \stackrel{\bigstar}{\xi} \; f' \; : \; f' \in F(X') \; : \; \rho \gamma' f' = g, \; \overline{h}, f' = \overline{h}' \} \quad \text{for suitable} \quad g \in F(Z), \; \overline{h}, \; \overline{h}', \; \in H. \end{split}$$

Now let S, K, ψ , α' , χ' , σ' be the same as in (i), $\overline{S} = (S, \overline{H})$. For each $\overline{s} = (s, \overline{h}) \in \overline{S}$, $x' \in X'$, we define: $\overline{\alpha'}(k, \overline{s}, x') = \alpha'(k, s, \xi x')$; $\overline{\chi}(k, \overline{s}, x') = \{(\chi(k, s, \xi x'), \overline{h}') : \overline{h'} \in \overline{H}\}$; $\overline{\sigma'}(k, \overline{s}, x') = (\sigma'(k, s, \xi x'), \overline{h}.x')$. It is trivial that $(g, (s, \overline{h})) \cdot x' = (\alpha(g, s, \xi x'), (\sigma(g, s, \xi x'), \overline{h}.x'))$, identically. Hence, $c'_{g, \overline{h}, \overline{h'}}$ (or $c'_{g, \overline{h}, \overline{h'}}$ -1) is a component of the solution of a proper system $p' \in R_{pol}^{*M}(X' \cup Y)$. Clearly, if one extends ξ to a homomorphism $R_{pol}^{*M}(X' \cup Y) \longrightarrow R_{pol}^{*M}(X \cup Y)$ by ξ y = y for all $y \in Y$, $p = \xi p'$ is again a proper system and (in the notation of [6]) $p(n) = \xi p'(n)$ for all n. This concludes the verification of (I.alg).

4. Verification of (I'.alg).

Let Z, G, γ^* be the same as in section 3, $1 < m < \infty$; $\mathcal{K}' = \{F' \subset F(Z) : F' = (\gamma^{*-1}1) \cap F'', F'' \in \mathcal{K}'\}$.

(I'.alg). Any $a \in R_{alg}^*(X)$ can be represented in the form $a = \lim_{n \to \infty} \Sigma \{\theta g : g \in F', n \to \infty \}$ deg g < n for some suitable $F' \in \mathcal{K}'$ and homomorphism $\theta : F(Z) \to R_{pol}(X)$.

Proof. (i) Let a be a component of the solution of the proper system $(p_j) = p \in R_{pol}^*(X \cup Y)$. The support, Supp. b, of any formal power-series b is the set of all words having a non-zero coefficient in b. Since each p_j belongs to $R_{pol}(X \cup Y)$ there exists $d^* < \infty$ such that any $f \in \{f' \in Supp. p_j, 1 \le j \le M\}$

either belongs to F(X) or has a factorisation

$$\begin{split} &f=f_1y_{i_1}\ f_2y_{i_2}\ f_3\ \dots\ f_dy_{i_d}\ f_{d+1}\ \text{with}\ f_1,\ f_2,\ \dots\ f_{d+1}\ \in\ F(X)\,,\ y_{i_1},\ y_{i_2},\dots,\ y_{i_d}\ \in\ Y\,,\\ &1\leq d=\deg_Y\ f< d*.\ \text{We introduce a set}\ Z=\{z(j,f,d,\varepsilon):1\leq j\leq M,\ f\in\underline{Supp},\ p_j\,,\\ &1\leq d\leq d^*,\ \varepsilon=+\text{ or -}\} \quad \text{of new variables and make the definitions:} \end{split}$$

If $f \in F(X) \cap \underline{Supp}$. p_j , $\theta z(j,f,d,\epsilon) = < p_j$, f > f if d = 1 and $\epsilon = +, = 1$, otherwise; c = z(j,f,1,+) z(j,f,1,-) z(j,f,2,+) z(j,f,2,-) z(j,f,d*,+) z(j,f,d*,-).

If $f = f_1 y_{i_1} f_2 \dots y_{i_d} f_{d+1} \in \underline{Supp}. p_j$ as above, $\theta z(j,f,d',e) = \langle p_j, f \rangle = \langle p_j, f \rangle$

is a proper system such that (in the notation of [6]) $\lim_{n \to \infty} \theta q(n) = p(\infty)$, the solution of p. Moreover, if $Q_j = \underline{\operatorname{Supp}}. \ q_j$, $P_j(n) = F(Z) \cap \underline{\operatorname{Supp}}. \ q_j(n)$ and if η_n is the homomorphism of $F(Z \cup Y)$ into $R_{pol}(Z)$ induced by $\eta_n z = z$, $\eta_n y_j = P_j(n)$ for all $z \in Z$, $y_j \in Y$, it follows from the definitions that, for all n, $q_j(n+1)$ is the generating function of Σ { $\eta_n g : g \in Q_j$ }. Hence it suffices to show that the sets $P_j(\infty)$ have the desired form.

(ii) Let $V \subset F(Z)$ consist of:

all words z(j,f,d,+) z(j',f',l,+) or z(j',f',d*,-) z(j,f,d+l,-) with $d \leq \deg_Y f$ and j' equal to the index i_d of the d-th factor y_i of f;

all words z(j,f,d,+) z(j,f,d,-) with $d > deg_Y$ f;

all words z(j,f,d,-) z(j,f,d+1,+).

We take H in 1-1 correspondence with { 0, 1, Z, (Z,Z') } and define the homomorphism ϕ : F(Z) \longrightarrow H by

 $\phi g = h_g$ if deg g < 2;

 ϕg = 0 if g has at least one factor of degree two not belonging to V;

 $\phi g = h_{z,z}$, if $\phi g \neq 0$ and $g \in z F(Z)z'$.

 $H_{j} = \{h_{z,z'} : z = z(j,f,1,+), z' = z(j,f,d*,-), f \in \underline{Supp}. p_{j}\}.$

The homomorphism $\gamma^*: F(Z) \longrightarrow G$ is defined by $(\gamma^* z(j,f,d,+))^{-1} = \gamma^* z(j,f,d,-)$ for all elements of Z.

Induction on n shows that $P_j(\infty)$ \subset $D = \{g \in F(Z) : \gamma * g = 1, \phi g \neq 0\}$. Let $\overline{P}(j,d,d') = \{g \in F(Z) : g \in \underline{Supp}.(\lim_{n \longrightarrow \infty} \eta_n g') : g' \in Q'(j,d,d')\}$ where 0'(j,d,d') denotes the set of all $g' \in F(Z \cup Y)$ of the form z(j,f,d,+)g'' z(j,f,d',-) that are a factor of some $g \in Q_j$; $\overline{P} = \bigcup \{P(j,d,d') : 1 \le j \le M, 1 \le d < d' \le d*\}$.

Then $\overline{P}(j,d,d') \subset D$ and $P_j(\infty) = \overline{P}(j,1,d*) = \overline{P} \cap \phi^{-1} H_j$.

Thus, it suffices to show that, conversely, every $g \in D$ belongs to \overline{P} . This is trivial if $\deg g \leq 2$. We assume the result proved for all words of degree < n and we consider $g \in D$ of degree n > 2.

Let the factorisation $g = z \ g' \ z' \ g''$ of g be determined by the condition that zg'z' is the left factor $\neq 1$ of lowest degree of g that satisfies $\gamma * zg'z' = \gamma * 1$. Since $\gamma *$ is a homomorphism into a free group, this implies $\gamma * g'' = \gamma * z \ z' = \gamma * g' = \gamma * 1$.

If $g'' \neq 1$, the induction hypothesis shows that z = z(j,f,d,+), z' = z(j,f,d',-), g'' = z(j',f',d'',+) g''' z(j',f',d''',-) for some j,j', f,f', d,d', d'',d''' and $g''' \in F(Z)$. Because of $\phi g \neq 0$, we have j = j', f = f', f' = f'+1 and the result is proved in this case.

If g''=1, the induction hypothesis shows that $1\neq g'=z(j',f',d'',+)$ g'''z(j',f',d''',-). Because of $\phi g\neq 0$ and $\gamma*zz'=\gamma*1$, we have z=z(j,f,d,+), d''=1, d'''=d*, (i.e. $g'\in\phi^{-1}H_{j'}$), z'=z(j,f,d,-) and z(j,f,d,+) $y_{j'}$ z(j,f,d,-) is a factor of a word of Q_j . Thus, $g\in\overline{P}(j,d,d)$ and the verification of (I'.alg) is completed.

<u>Acknowledgement</u>. Acknowledgement is made to the Commonwealth Fund for the grant in support of the visiting professorship of biomathematics in the Department of Preventive Medicine at Harvard Medical School.

References

- 1. Kesten, M. Symmetric random walks on groups. Trans. Am. Math. Soc. $\underline{92}$: 336-354, 1959.
- 2. Rabin, M. O., and Scott, D. Finite automata and their decision problems. I.B.M. Journal of Research. 3: 114-125, 1959.
- 3. Raney, G. N. Functional composition patterns and power-series reversion. Trans. Am. Math. Soc. 94: 441-451, 1960.
- 4. Redei, L. Die Verallgemeinerung der schreierschen Erweiterungs Theorie. Acta. Sc. Math. Szeged. 14: 252-273, 1952.
- 5. Schützenberger, M. P. Un probleme de la theorie des automates. Seminaire Dubreil Pisot, Paris, 13 eme annee, Nov. 1959, No. 3.
- 6. Schützenberger, M. P. On a theorem of R. Jungen. To appear in Proc. Am. Math. Soc.
- 7. Shepherdson, J. C. The reduction of two way automata. I.B.M. Journal of Research. 3: 198-200, 1959.