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On the Synchronizing Properties of Certain
Prefix Codes
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A special family J of prefix codes is considered. It is verified that
if A €J has not a certain synchronizing property, then 4 = C?
(p > 1), where C is another code from the same family.

I. INTRODUCTION

Let F be the free monoid generated by the set (“alphabet’”) X; F con-
sists of its neutral element 1 (the so-called “empty word”) and of the
set X*=X UX*U ... U X" .- of all words of positive degree (or
“length”). We denote by X* the collection of all nonempty subsets of X*
and we consider the family J of all prefix codes A that can be defined by
taking an arbitrary H € X* and by letting a word f belong to A iff f has
some right factor (or “final segment”) in H, i.e. f € FH, and no proper
(i.e., #f) left factor (or “initial segment”) of f has the same property,
ie, f ¢ FHX .

This theory is due to B. Mandelbrot, who studied in details the espe-
cially important case where H is a particular letter (the so-called
“space’) of the alphabet (cf. bibliography in Mandelbrot (1957) and
Mandelbrot (1961)). A special case obtains by selecting an arbitrary
subset of states of a definite automaton, and by defining A as the set
(provided it belongs to X*) of all words at the last letter of which the
distinguished set is reached for the first time. This construction is part
of a more general theory, due to P. G. Neuman (Neuman (1962)).

Both of the authors quoted have emphasized the synchronizing proper-
ties of the codes of the family J. Indeed, let us say that the prefix code 4
is almost surely synchronizing if there exists at least one word @ € F such
that fa € A* (=4 U AU ... U A™ -..) for all f € F. In Wino-
grad’s theory (Winograd (1963), cf. also Winograd (1962)) a would
be called a wuniversal synchronizing word. If J, denotes the subset
of all almost surely synchronizing codes of J, we intend to verify J =
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{A":p>0, A € Ji}. In other terms, if A € J is not a.s. synchronizing
then there exists a unique C € J; and natural number p > 1 which
are such that A consists of all products of p words from C. These notions
may be clarified by the following examples in which X = {z, 3}.

(i) H = {z};then A = FH\FHX* (={f € FH:f ¢ FHX"}) consists
of all words z, yz, 'z, ---, y™, --- . Since obviously FA c A* A
belongs to J; .

(i) H = {zz, zyz, zyy, yyz, yyyy}. The corresponding prefix code A
consists of H and the words yzz, yzyz, yryy, yyyz. In fact, A = C* where
C = FH\FH'X* with H = {z, yy}. Since CA* < A*C and 4* N
A*C = ¢, A does not belong to J; but it is the square of the code C € J; .

(iii) As a related counter example one might consider the prefix code
A consisting of z and of all the words of the form y%f where d = 1, 2,
.-+, n, --- and where f is an arbitrary word of degree (‘“length”) d.
Thus A ¢ J because for instance, z, yzz € A and yzz € FAX". Since
for every f € F of degree d’ one has f'z? € A* when d > d’, every word
of F can be “resynchronized.” However, under the same hypothesis
y*f € F\A*F, and one sees that there exists no universal synchronizing
word, i.e., no word which resynchronizes all the words of F.

II. DEFINITIONS AND NOTATIONS

For the sake of completeness we recall first some well-known facts
concerning prefix codes and we summarize some general properties of
the family J.

By definition, a prefix code is a set A € X* which satisfies the condition

@' :AX* N 4 = 4.

Indeed U, simply expresses that every word of F has at most one left
factor in A. Thus, letting T = F\AF, we have F = T U A*T and we
can define inductively a mapping r:F — T by setting for any word f,
of =fiff€ T;1f =+f if f = of wherea € A.Thus+f = 1,iff f € {1} U
A*. The identity 7ff = 7 ((+f)f’) is easily checked by examining the two
casesof f€ Tandf ¢ T. By construction, for all f € F, 7Ff (={zff:f €
F}) is the same as rTf (={rff:t € T}). It follows that for any f, £,
f” € F one has Card rTff'f” < Card +Tf. Indeed, on the one hand,
TIf” = r((+T)f ") < 7' Tff” and, on the other hand, Card Tf'f” =
Card »((+Tf)f”) < Card +Tf .

Let p denote the minimum value (possibly infinite) of Card 77a
over all a € A*. Since 1 € 7Ta for a € A*, p is positive and since
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rTa = {1} is equivalent to Fa € A*, one sees that p = 1iff A is a.s.
synchronizing.

We now return to the family J.

Property 1. For each H € X* the set A = FH\FHX" belongs to
X* and it satisfies the conditions:

U, FAX* N A = g
€n,;:FA C AF.

Reciprocally, if the prefix code A satisfies 9,;, then A = FH\FHX*
where H = A\X*A; further, H N (X*H U HX* U X*HX*) = ¢
and AF = FHF.

Proor: Let H € X*. The set A = FH\FHX" is a subset of X*; 4 is
not empty since it contains every word of H of minimal degree. Consider
a word of the form faf’ where f € F, a € A, f € X*. By hypothesis,
a = f”h for some f” € F and h € H; thus faf = ff”hf € FHX* and,
as a result, fof € A. This proves that A satisfies ‘ui,.; hence AU,’, since
AX* c FAX™.

Consider now f € F and a € A. Again @ = f”h for some f” € F and
L € H. Hence fa € FH and fa has a left factor, say f'k’, of minimal
degree that belongs to FH and, by construction, that does not belong
to FHX*. Thus F''h’ € A and this proves 9t,, .

Reciprocally consider any set A € X* and define H = A\X"*4. By
construction H N X*H = ¢ and the right factor in A of minimal degree
of every word of A belongs to H. Thus, H ¢ X*,and HCc A c X*H U
H = FH. In fact, H is the least set H such that A < FH'.

Assume now that A satisfies 9,; ; if f € F and h € F are such that
fh has no proper left factor in FH, fh has no proper left factor in 4
since A C FH. However, since H C A, we have fh € FA, hence fh € AF
and thus, fo € A. This proves FH\FHX* C A.

Assuming finally that A is a prefix code, we see that A N FHX* = 4,
ie, A = FH\FHX" because every word of FHX™ has a proper left
factor in FH\FHX*, hence in A. Thus A satisfies U,,. Since
H N X*H = ¢ and since HX* U X*HX* = FHX* c FAX", it follows
that H N (HX* U X*H U X*HX*) = 4, showing that in fact H is
the least set H' such that FH'F = FAF. Since 9%, implies FAF = AF,
it follows that AF = FHF, or, in equivalent fashion, that T (= F\AF)
is equal to F\FHF.

Remark 1. If A is a prefix code, one has A’X* N A” = ¢ for any
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positive p. Thus if A € J one hasalso A” € J for any positive p because
of the relations FA? = (FA)A” C AFA™ = A(FA)A"? C A’FA™

C A”'FA c A* 1AF = A”F which show that A” satisfies 9t,, .
Observmg that for p > p’ > 0, FA?X* < FA™ X*, one concludes tha.t
FAPX* N A” = ¢. Clearly A” ¢ J,forp > 1.

As an application let us consider two words a, a’ € A, a word @ € A™
(where @ € A° is understood to mean @ = 1) and two right factors ¢,
and ¢; of @ such that 0 < deg ¢/ < deg ¢/ < deg a’. We verify that,
provided t;/da ¢ A¥, one has deg rt.da < deg ¢/ Ga. Indeed, by the
definition of 7, there exist two elements u; and w; of X* such that ¢;/du. ,
t/au; € A* and usrt{da = u;rt/da = a. If t{ = 1, the result is proved.
Thus we can assume that none of u; and u; is equal to @ and, as a result,
both of the words a; = t/au, and a; = t;du; have @ as a proper factor
and are proper factors of a’da. However, @ € A™;d'a, da € A™"';d'aa €
A™ Hence a;, a; € A™". By hypothesis ¢ is a right factor of ¢;" and,
thus, a; € Fa;X* is excluded. It follows that either u; = u; (and then
rtida = rt;aa) or u; is a proper left factor of u; (and then deg t./da <
deg ¢;@a). The verification is concluded.

Remark 2. Let B be a prefix code and £ an epimorphism (homomor-
phism onto) of Bf = {1} U B* onto an abelian group G of order p > 1.
We suppose that A € J is contained in the kernel B' N £ 1 of {and we
prove that under these hypotheses

(1) There exists a prefix code C such that A = CP;

@ii) C € J and, moreover, C € J; if B is a.s. synchronizing,.

VERIFICATION OF (i)

Let B = B N £'1; B, = B\By; C = By'B; where By’ = {1} U B,*.
Since ¢ is an epimorphism, B; is not empty and, clearly, C is a prefix
code. We call C-degree of a word f € B*, the number of its factor from
B; and we note that no a € A has C-degree zero. Indeed, otherwise, we
could take some b € Bj, and, since ba has no left factor in A < £'1,
A would not satisfy 9, .

Let a € A of minimal C-degree ¢ and g = cice -+ ¢ € C°. Applying
RN,; to Ca0 shows that c,a = a’f’ where ' € A and where & = &, #~ 1.
Thus f E C BoT Since @ has minimal C-degree we must have in fact
f € CR,! and o’ has also C-degree ¢. By reiterating the argument we
see that gb € A for some word b € B,' which is necessarily a left factor
of a. Thus ¢ € A would have been proved if we had taken an element
e € A N B,C* of C-degree q. However, choosing ¢; € B, the relation
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gb € A shows that such an element a does exist and we can conclude
that C? C A.

It follows that Cy C & 'u for some element v € @ of order ¢. Thus,
since £ is an epimorphism, G is a cyclic group and p = ¢. Finally since
A satisfies U, , the relations A N B! = ¢, C* € A and 4 < ({1} U
(C*Y*)B,' show that A = C” and (i) is proved.

VERIFICATION OF (ii)

It suffices to show that C satisfies 9., . Assume F¢' © CF already
proved for all words ¢’ € C of degree less than m and consider a word
¢ € C of degree m and any f € F. If ¢ admits another word ¢’ € C as
a proper right factor we have fc € Fc¢' and fe € CF results from the induc-
tion hypothesis. Thus we may assume ¢ ¢ X*C, and we consider fc?.
By A = C” and 9,; we have fc” = cic2 - - - c,f whereci, ¢, - ,¢, € C
and f € F. Because of the induction hypothesis, ¢, cannot be a factor
of ¢, thus deg ¢ < deg cof , and cancelling gives fe” ' = ¢is - - - Coaf”
for some f” € X*. In the same manner, deg ¢ < deg cp,f”;
hence fe* > = ¢i6s - -+ ¢paf , and so on. Finally we obtain fc = ¢,f””
and F¢ € CF is proved. This ends the verification.

We shall need later the following formulation of this remark: If A € J
and if B = By U B, (B, # ¢) is a partition of a prefix code B such that
A C C”By! where C = By'B;, then A = C? and C € J. That C € J
when B is a.s. synchronizing is trivial.

The next remarks are not needed for the verification of the main result.

Remark 8. For h, i’ € H(= A\X*4), let Ry, = {f € X*\Fh:
Kf € Fh}. Thus W'Rws = (K'F N Fh)\FK'RF is a finite set and
Fh Ry, © Fh. Because of 9,; and U,, , any word f € Fh has a unique
maximal left factor a € A* (since A* = U {A* N Fh:h € H}), and,
by definition, either f = a € A* N Fhor f € aRw » where b is deter-
mined by @ € A4* N Fh'. Reciprocally if a € A* N FA', one
has aRu » < Fh. Thus, for each h € H, one has the equation Fh =
(A* N Fh) U {(4* N Fh')Rw 4:h' € H} where, as it is easily checked,
every word of F appears at most once in each member. Assuming that
the finite sets Ry, (h, k' € H) are given, this provides a system of
equations from which the sets A* N Fh (hence A™* itself) can be com-
puted by standard substitution methods. Another system having the
same properties consists of the equation {1} U TX = T U A and the
equations

Th = (A N Fh) U {(A N FK) Rwu:h' € H (h€H).
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These systems are due essentially to Von Mises and to W. Feller;
the relevant bibliography can be found in (Feller, 1958) and in (David
and Barton, 1962).

Remark 4. Let us verify that for A € J the set H, = AN\X*4? is
equal to A? N A?, where A = HF\X*HF. Observing that the condition
HN (X*H U HX* U X*HX") = gon H = A\X™A4 is symmetric and
recalling that F\AF = T = F\FHF, we immediately deduce that
T = F\FA and that A itself satisfies the relations A N X*AF = ¢ and
AF c FA. Thus, using A’T  (FHF)? € AF and AT N A*'F = 4,
we obtain the equations

(FHF)?\ (FHF)*"' = A’T = TA?; (FHF)? = FA®F = FA"F.

Since H, is the least subset H' such that FH'F = FA®F, this shows that
H, < A® N A”. Further, for any h€ A® N A% if h = ff”
(f € X*, f” € F), the word f” belongs to F\FA?, hence it does not
belong to (FHF)®. This proves that A N A?  H,, and it concludes
the verification.

Remark 4bis. In view of the symmetric relation F\AF = F\FA, a close
connection between A and A is to be expected. We verify that there
exists a bijection (“1 to 1 mapping onto”) p:4A — A sending each
a € A on one of its conjugates (i.e., on a word of the form f”f’, where
f', f” € F satisfy a = ff”). Indeed, let « = fh € A; f€ F, h € H. If
h = ff” where f' € F and f” € X*, ff belong to T, hence ff’ ¢ HF.
However, for f” = h, (and f = 1), f’f € HF. Thus & has a right factor
f” € X* of minimal degree which is such that f”ff' € HF, and, because
of its minimality, f”ff ¢ X*HF, i.e., /’ff € A. We define pa = fff’.

Since another mapping p:4 — A can be defined in a perfectly sym-
metric fashion and since, then, both of the mappings pp:4 — A and
pp: A — A are identity mappings, the remark is verified.

Remark 5. We assume here that Card X = k£ < « and we define
a(k,n) as the minimum number of words in the sets H € X" that satisfy
the condition Card (FH\FHX*) < . For instance, a(l, n) = 1;
ak,1) = k;alk,2) = 27%E + 1); a(2, 5) = 9. The exact value of
a(k, n) is not known in the general case, but we can verify that « (k,n) =
n k" and that, assuming k, n > 1, lim nk™" a(k, n) = 1 for Max (k, n)
— o0,

Let us recall that a word f is said to be primitive iff f = 17
(f €F, p > 0) implies p = 1. The number of conjugate classes of
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primitive words of degree n is

Ye(n) = n7 22 {(k"u(d):d | n}
where u( ) denotes Mo6bius function (Moreau quoted in (Lucas, 1891)).

VERIFICATION OF a (k,n) = n~! k»

Observe that for f € X» and m > 0, any factor of degree n of f™ has
the form f'® where f’ is a primitive word of degree d’ and dd’ = n. Thus
the condition that FH\FHX"is finite implies that H contains a d-th
power of at least one word from each conjugate class of primitive words
of degree d'(dd' = n). It follows that

a(k,n) 2 25 Wid):d |n) = n7 Z{k"@):d |0} 2 vk

(where ¢ () is Euler’s function) and the inequality is verified. It follows
that, more generally, if H' € X U X* ... UX" is such that FH'\FH' X*
is finite, one has Y_{k"%®":k’ € H'} = n k" since we can derive from
H' a subset H C X» (satisfying also FH\FHX™ finite) by replacing
each h’ € H' by the set of all words & € X" which admit &’ as a left
factor.

VERIFICATION OF lim nk "a(k, n) = 1

Let =< denote a lexicographic order on F. We use the results given in
(Chen, Fox, and Lyndon, 1956) and, following these authors, we define
K © X* by the condition that f € K iff f = f'f” for f', f” € X* implies
f < f”. It is known that K consists of the first word (in lexicographic
order) from each conjugate class of primitive conjugate words of posi-
tive degree. Together with K we define K = { (f'f”)’f:ff” € K;p > 0}
and we verify the following statement:

If f € X* is such that f = fifs = fafa for 0 < deg f; = deg f, implies
fi £ fa, then f € K.

Proor: If there exists no word g £ 1, , which is at the same time a
left and a right factor of f, each relation fi = fi can be replaced by
fi < fi. Then, identically, f = fife < f, i.e., f € K. Thus we have only
to discuss the case where f admits some nontrivial word as a proper left
and right factor. Then it is known that f has the form (gig:)'*’g: where
p = 0 and where gyg, is primitive. Let g," and g’ be defined by the condi-
tions gigs = gi'g: and go'g)’ € K.

If deg g’ < deg giorif p > 0, gJgi is itself a factor of f. Because of
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our hypothesis on f, it cannot satisfy g.'gi’ < gig» (because the right
factor f, of f beginning with g»'g:" would be in the relation < with the
corresponding left factor fi of the same degree). However g g €K
implies g2'gi’ < ¢1'gs (= g1g2). Thus g2’y = g1g» and we have verified
f € K for this case.

Finally let us assume p = 0 and deg g;' = deg g: . Without loss of
generality we can further assume that g; has maximum degree among
the words which are at the same time a proper left and a right factor of f.
There exists gs such that g’ = gigs and g» = gsg2’. Since f = gigogs =
g1gsg2 g1 , one has gigs < go'g: where g. is the left factor of degree deg

’ 7 7 ’ 7 ’ .
g2 of gago . However gagi (= gagigs) = g1g2 (= ¢1gsg> ) from which
we conclude that g2'gp < ¢ig. and finally that g»'gy = g.gs. By construc-
tion gig. is a left factor of f. Since we have assumed ¢; to be the common
left and right factor of maximal length of f, we must have ¢g;’ = g, = 1,
hence gig: = gi'g: = g2g' € K and the verification is concluded. In fact,
K is the set of all left factors of the elements of K.

Consider now H = K N X". Each long enough word s = z;, x, - - -
z;, contains at least one factor f = i Zy,, * Tjpna € X©
(j £ m — 2n 4+ 2) which is such that f < x;, z,,, -+ X4, for
j <7 =j+ n— 1. What we have just proved shows that f € K. Thus
FH\FHX* is finite.

In a similar manner, let H' consist of all words of the form z" (z € X)
and of the form zh where z € X, h€ R N X" and h < z. We also
have Card (FH\FH'X*) < «. Indeed as it is easily verified, when
Tijoy Tijyy " Timo1 € K N X", one has x; @i;,, *** T € H' or
Ti; Tij, 0 T, € K N X" depending upon z;,, < x;; or not.
Thus a(k,n) < Min (Card H, Card H ") identically.

Now, since Card K N X™ = ¢, (m) £ m k" we have Card H =
D ocmen Y (m) £ 0K A+ Docmen nm k™) from which it follows
that for each ¢ > 0 there exists ke < © suchthatn k™" a(k,n) <14 ¢
foralln and k > k..

On the other hand,

Card H =k + (b — 1) Card (K N X"7)
Sk4+ (k—1) Docmanm E" =27k (n(n — 1) + ua)

where u, is determined inductively by us = (2k)™ and %,z = K
W + 0 — 1) (n — 2)7). Since limpsw %, = 0, there exists, for each
e>0andk > 1 some n;,e < o such thatn k"« (k, n) < 1 + ¢ for
all n > n, . The verification of Remark 5 is concluded.
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III. VERIFICATION OF THE MAIN PROPERTY

We intend to show that if A € J\J: there exists another prefix code
C € J: and a natural number p > 1 such that A = C”. For this, let
A € J and observe that condition 91,; expresses that for each @ € 4 and
f € F, r7a is a right factor of a. Thus Card 7Ta < deg a. Recalling the
notations introduced at the beginning of Section II, this proves that p
is finite and, since p = 1 is equivalent to A € J;, we assume now p > 1.
Letting @ = {a € A*:Card 7Ta = p}, we know that FQF N A* < Q
and, for each f € F and ¢ € @, 7Tfq = +Tq. The p elements of 77Tq
indexed by increasing degree will be denoted by 7o (=1 since @ < A4*),
T1¢, **+ , Tp—1 ¢- We shall use repeatedly the fact that an equation like
7fg = 7. is equivalent to the existence of an element & € A* such that
fo = arfq.

We verify first a few easy consequences of the definitions.

31 Forallg,qd €Qandic[0,p — 1], 7((rig)¢) = 74

ProoF: Because of the relation 77¢' = 7Tqq = 7((rTq)q’) and the
fact that 7T and rTq¢ have the same finite cardinality, there corre-
sponds to each 7.4’ € T¢ one and only one element, say 7.q, of 7Tq
that satisfies 7((rrq)¢’) = 7. However, we have ¢ = a'a’ where
d € {1}U A* o’ € A and the elements 7.4 are right factors of a’. A
similar observation can be made for ¢. Thus by Remark 1, we know that
i < j implies 7' < j'. Thus ¢ = ¢ identically and 3.1 is proved. In fact,
if f is any right factor of ,g, Remark 1 shows that 7f¢’ = 7;, ¢’ where
7 £ j. Thus, denoting by B; the set of all words f that satisfies the
conditions

(*) for each ¢’ € Q, 7f¢ = ri;

(**) for each ¢’ € Q and right factor f of f, deg 7f¢’ < deg 7f we have
proved that {r;g:q € Q} C B;, identically. As a consequence we have

32 A C B~

Proor: Let a € A and, taking a fixed ¢ € @, let the p words w; , uz,

-, up be defined by the relations w1 = 719a; Uss = 7200; UsUuy =
Taqa; * 3 Upg Up2 *** U Ut = Tp1 qQ; Up Up—1 *** Uz U1 = a. By 1 we
know that, for each ¢ € [0, p — 1], 7((7; ga)ga) = 7.qa, or, in other
terms, that the word ¢: = u; Wiy -+ * UQ@ULUp_1 * * - Uips belongs to A™.
In fact since it admits ¢ as a factor, it belongs to Q. Since for ¢ €
[1, p — 1] we have 7((7i+1 qa)qa) = 7i11 qa, that is, 7(Uit1 ¢ Ui iy - -
U2 U1) = UiprU; - - - Uga, it follows that 71¢; = U forz = 1,2, -- -,
p — 1 and 3.2 is proved.

Using the same notations it is readily seen that if b, b € B, then,bb’ ¢
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B,. Indeed we have b'qa = ¢i"us with ¢ € Q and bb'ga = bg, u; =
g2’ us us with ¢’ € Q showing that bb’ga = r5¢a. In similar fashion if b
€Byand b’ € B, it is easily seen that bb’, b'd ¢ B,.

33 Iff € Fand q, ¢ € Q are such that 7fqg = 71q and fq’ = 70 q,
then bf ¢ By U B, for anyb € By U By.

ProoF: As said before 7f¢’ = 70q is equivalent to the hypothesis that
fg’ is a certain element, say go, of Q. In similar manner, using 3.1, fg =
71 q implies that 7fgqg = 71¢ i.e. that fgg = ¢171¢ where ¢1 € Q.

Let b € By. This implies bgo,bg, € A*. Thus 7bgy = 7bf*¢’ = 70’ and
tbfgq = 7(q171q) = 71¢ showing that bf ¢ B, U B;.

Let b E Bl . This 1mphes bfql = bqO = Q()I T190 = qolquI and bql =
@' 7q: where ¢,, ¢' € Q. Thus 7bf¢’ = 7' and bfgq = (¢ rq1) mg) =
7((riq1) (mg) # 719 showing again that bf ¢ By U B; and concluding
the proof of 3.3.

This practically ends the verification of our main property. Let B =
(Bo U B)\ (B, U B,)X*. By construction B is a prefix code. Further,
if b and bf are two elements of B, U B;, the same must be true of f
because of 3 and the fact that if condition (**) is satisfied by bf it is
also satisfied by f. Thus By U B, € B*. Let now By = By N Band B, =
B, N B. Using the remarks made at the end of 2 we obtain B, € B,* and
B, © B, U By*B; U B;B,*. Thus, by Remark 2 and 3.2, A = C” where
the prefix code C = B; U B,*B, belongs to J. Finally, taking a word
a € A of the form a = b® where b € B, we have rfa = b' € C* for
all f € F. Thus the parameter p associated with C has value 1, that is,
C € J: and the proof is concluded.

IV. AN ALTERNATIVE VERIFICATION OF THE MAIN PROPERTY

A more systematic verification of the main property can be given if
one uses the theory of monoids instead of insisting on a self-contained
argument as it was done above. It will appear that the main property
follows instantly from Remark 1 and Remark 2 once proved the simple
Property 2 below.

We recall first without proof some classical results on the minimal
ideals of a monoid and some of their more or less obvious consequences.
The reader is referred for more details to the existing literature and
especially to (Clifford and Preston, 1961).

Let us recall that a homomorphism ¢ of F onto a quotient monoid is
said to be compatible with a subset F' of F iff ¢7'oF = F'. To each
F' c F one can associate a mazimal compatible homomorphism ¢ = ¢p
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by the condition that ¢F is a homomorphic image of ¢ F for any homo-
morphism ¢ compatible with F' (Teissier, 1951).

Consider now a set A € X™* and, letting A" = {1} U A* and ¢ = ¢4,
assume that the following conditions are satisfied:

(). For all f € F\A", fA" N A'f N 4" = 4.

(9a). For allf € F, A" N FfF # ¢.

(M), ¢F admits minimal right ideals R; (z € I) and minimal left
ideals L; (j € J).

LetI' = (i € 'R N A" # g}, J = {j € J:L; N ¢A 5 ¢} and se-
lect arbitrarily a pair of indices—(say (1, 1)) in I’ X J'. It is classical
(Suschkewitsch, 1928) that there exists an isomorphism vy of R; N L,
onto a group G (which will be identified with a basis of its ring over the
integers). Letting e;; denote the idempotent contained in R; N L;
we define the J X I matrix T' by T';; = v (e1,j-€i1).

It follows instantly from the hypothesis that there exists an isomorphic
representation of oF by pairs of matrices (uf, »f) where uf (resp. »f) is a
J X J (resp. I X I) matrix with entries in {0} U @, and that one has:

411. For all f € F, uf-T = T-uf.

Consider the restriction I" of T to J' X I’ (ie.,let I"bea J X I'
matrix such that T, = T,; forj € J', ¢ € I'); let x’ and »" be the
restrictions of x and » to J' X J' and to I’ X I’ respectively. There
exists a minimal sub-group G’ of @ that has the following properties:

4.2. For each a € AY, a-T" = T'-v'a and all the entries of T, va
and v'a (a € A") belong to {0} U @G

4.3. The only invariant subgroup of G contained in Q' is the trivial sub-
group {e} consisting of the neutral element e of G.

4.4. A" consists of all the words f € F such that both u'f and v'f have at
least one entry in @

It is useful to note that since I' and I have all their entries in G, 4.1
and 4.2 imply that uf and p'a(a € A7) (resp. »f and »’a) have one and
only one nonzero entry in each row (resp. column).

One can also observe that for f € R; N L; the matrix uf (resp. »f) has
its jth column (resp. 7th row) equal to the 7th column (resp. jth row) of
T multiplied on the right (resp. left) by v(e;,1-¢fe1,1). Finally, because
of 4.3, one has G = G’ iff G = {e}, that is iff there exists at least one
word @ € A" such that aFa < A'.

We assume henceforth that A is a prefix code, i.e., that A" satisfies
the condition

@,) Forallf € F\A', A'”f N A" = ¢ which is obviously more restric-
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tive than (Us). Because of (93) and (91:), (U,) is equivalent to
() Foreach f € F,fF N A" 5 ¢ (thatis, I = I').

It is known that a consequence of I’ = I is that u gives an isomorphic
representation of oF. Thus u 'u A" = A" and, for any b € ¢F, we can
write ub instead of the more cumbersome ue 'b.

On the other hand, we shall see that » 'vA" < A" where A’ is a prefix
code such that A € A™ and that the following is true.

45. y(Ri N L N oAy = @ and J” = {j € J:L; N oA % g} is
the set of all j e J such that I';; € G for each ¢ € I.

Proor: By construction A" < »'vA". Since I’ = I implies » = ¥/,
the properties 4.1 and 4.2 show directly that f € » '»A if all the entries
of »f belong to {0} U G’. This proves that the set of all f € F satisfying
this last condition is a submonoid, say A, of F having the property
4.5 since then, L; N pA'" 5 giff e;; € pA"" for each i € I.

For the sake of completeness we verify that A'" satisfies (U,). Let
f € F\A", ie. let f be such that, e.g., (s ):r € G\&. Since every
matrix »f (f € F) has one and only one zero entry in each column, it
follows that for each f € » '»A'" one has (v ff')..» € G\G for at least
one 7”7 € I. Thus A" (F\A"") < F\A'" and the verification is concluded.

It follows from the properties of ¢ that A" = A iff » is an isomorphic
representation and that under the present hypothesis A" can be defined
directly as the set of all f € F such that fA'a < A" for at least one a € A'.
Clearly A" = F iff A is a.s. synchronizing.

Property 2. If G is an abelian group there exists an a.s. synchronizing
code B and an epimorphism ¢: B' — @ such that 4 < B* N £ 7.

Proor: Let L” = U {L;:j € J”} and consider an element b € ¢B
where B = {f € F:L"¢f N L” # ¢}. In equivalent manner, consider an
element b € ¢T such that (ub); = u € G for at least one pairj, j/ € J”.

For any otherj” € J” let j” € J and v € G be defined by (ub) j»,jr/» =
v. Now, the (7, 1) and the (j”, 1) entries of ubey; are respectively equal
to w and v since pe; 1 has all its non zero entries equal to e (and located
in its first column). On the other hand, if #” is defined by be;; € R,
these two entries are equal respectively to T';;w and T ,w for some
w € G.8ince j, j” € J”, and since the hypothesis that G is abelian implies
@ = le! (because of 4.3), and consequently T';; = eforj € J”, 1€ I,
we have T';; = T, ; = e. Consequently u = v = w. We set £p b = u.

Consider now an arbitrary ¢ € I and define ¢ € I by b e;1 € Ry .
The same argument shows that the (j, 1) entry, and the (5”7, 1) entry
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of ub e; are respectively equal on the one hand to uT'; ; and v, ; and
on the other hand to I'; ;- w’ and T;.,,» w’ for some w’ € G.

Again, T';; = T'j,; = I'y,» = e and, using v = v shows that I';.,, ; =
e. Since this is true for all 7 € I, we conclude from 4.5 that j” € J”.
Thus, we have proved that B = {f € F:L”-of C L”}.

1t is classical (Dubreil, 1953) that this relation implies B = B' where
B is a prefix code. Indeed, if b, b’, bb” € ¢B, we have L” -bb’ = (L”b)b’
L”b c L” (showingbb’ € B, hence pBpB C ¢B) and L”b” D (L"b)b” =
L” bb” C L” (showing b” € B, hence that B satisfies U, ).

To complete the verification, we observe that ¢F-e;; C ¢B. Thus
B is a.s. synchronizing.

Since L”-oB C L” and since u is a representation of ¥, we have
&b = tb-£b for any b, b’ € B. Finally, A < B N £ "¢ follows from 4.3,
G = {¢,and J < J".

Let now A € J. In order to be able to apply Property 2 and Remark 2,
we need to show that oF satisfies (917;) and that G is abelian.

Recalling the notations introduced at the beginning of Section 2, we
define a homomorphism ¢’ of F by the condition that, for any f, /' € F,
of = of iff rtf = 7tf foreach ¢ € T. Clearly, ¢ is compatible with A*
and, consequently, oF is a homomorphic image of ¢ F. Further, since
Card 7Tf < Card +Tf forany f € F and f € FfF and since Card +Ta <
deg a for any a € A, the ideal ¢’ FAF of ¢'F contains no infinite strictly
decreasing sequence of one sided ideals. It follows immediately that
oF satisfies (9;) and that any group in ¢FAF is the homomorphic
image of at least one group in ¢'F.

We show that any group H' in ¢'F is a finite cyclic group. Of course,
this is equivalent to Remark 1 but it can also be verified directly as
follows.

Let H = ¢ 'H'. The hypothesis that H' is a group is equivalent to
the existence of a subset 7" C T such that rTh = T'h = T’ for any
h€H.

Let o'h’ (b’ € F) be the neutral element of H'. We have t = th’ for
every t € T'. Thus b’ € FAF and, by 9;, T’ is a set of r < o right
factors of h'. Further +T"h = T’ for h € H, implies that » = Card =1"f
foreachf € K = {f € F:E'F N | # 4}. Thus, forf € K, we can index
the r elements of T” and 71"f by increasing degree and define a permuta-
tion v'f:5 —> 4’ of [1, 7] by the identical relation rt.f = t;, , (t., € 7T'f).
Clearly, ¥'ff' = v'fv'f when ff' € H and H’ is isomorphic to v'H. Since
T’ is a set of right factors of A, a straightforward application of 9t,,
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shows that v'f is a eyclic permutation when f € X NK and the verifica-
tion is concluded.

RECEIVED: June 7, 1963
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