On a Family of Sets Related to McNaughton's L-Language

M. P. SCHÜTZENBERGER

Institut Blaise Pascal Paris, France

I. Introduction

Let F be the free monoid generated by a fixed set X containing at least two elements and let Q_1 be the least family Q of subsets of F that satisfies the conditions (K1) and (K2) below where, as always in this paper, e denotes the neutral element of F.

(K1). $F \in Q$; $\{e\} \in Q$; $X' \in Q$ for any subset X' of X.

(K2). If Q contains A_1 and A_2 , it also contains $A_1 \cup A_2$ $A_1 \setminus A_2$ $(=\{f \in F: f \in A_1, f \in A_2\})$ and $A_1 \cdot A_2 (=\{ff' \in F: f \in A_1, f' \in A_2\})$.

The study of Q_1 is motivated by the fact (discussed in [5]) that Q_1 is closely related to the family of the subsets of F that can be described within the "L-language" of McNaughton ([3)]. The object of the present paper is to verify the main property below, which gives for certain subsets of F the possibility of deciding if they belong to Q_1 . Finally, as a direct application of Eggan's theory ([1]), we show that for suitable X, Q_1 contains sets of arbitrarily large "star height."

For each positive natural number n, let $M_1(n)$ denote the family of all monoids having at most n elements and admitting only trivial subgroups ([4]); that is, let the monoid M belong to $M_1(n)$ if and only if it has $n' \le n$ elements and if $m^n = m^{n+1}$ for each $m \in M$. Further, for $A \subseteq F$, let $A \subseteq Q_1'$ if and only if there exist a monoid $M \in \bigcup M_1(n)$, a subset M' of M and a homomorphism γ of F into M that satisfy $A = \{f \in F : \gamma f \in M'\}$. We have

MAIN PROPERTY

The families Q_1 and Q'_1 of subsets of F are identical.

As an illustration, let us consider two disjoint subsets A_1 and A_2 of F and assume that we know three elements f, f', and f'' of F for which both $A_1 \cap \{f'f^nf'': n \in N\}$ and $A_2 \cap \{f'f^nf'': n \in N\}$ are infinite sets. Using the

relation $Q_1 \subseteq Q_1'$, we can conclude that it is impossible to find a set $B \in Q_1$ satisfying $A_1 \subseteq B$ and $A_2 \subseteq F \setminus B$. Indeed, according to the definition of $Q_1', B \in Q_1'$ would imply the existence of a finite integer n such that the set $\{f'f'' \mid f'' : n' \in N, n' > n\}$ is entirely contained in B or in $F \setminus B$.

II. Verification of $Q_1 \subset Q_1'$

Since Q_1 is defined as the least family which satisfies (K1) and (K2), $Q_1 \subseteq Q_1'$ follows instantly from the following two remarks from ([5]), which are reproduced here for the sake of completeness.

Remark 1. Q'_1 satisfies condition (K1).

Verification. Let the monoid $M = \{e', x', 0\} \in M_1(3)$ and the map $\gamma: F \to M$ be defined as follows:

$$\gamma e = e' = e'^2 \begin{cases} \text{for each } x \in X', \gamma x = x' = e' x' = x' e' \\ \text{for each } f \in F \setminus (\{e\} \cup X'), \gamma f = 0 = e' 0 = 0e' = x'^2 = x' 0 \\ = 0x' = 0^2. \end{cases}$$

Thus $F = \gamma^{-1}M$, $X' = \gamma^{-1}x'$, $\{e\} = \gamma^{-1}e'$. It is clear that γ is a homomorphism and Remark 1 is verified.

Remark 2. Q'_1 satisfies condition (K2).

Verification. Let for j=1,2 the homomorphism $\gamma_j: F \to M_j$, the monoid M_j , and the subset M'_j of M_j satisfy $M_j \in M_1(n_j)$ and $A_j = \{f \in F; \gamma_j f \in M'_j\}$. We consider the family R of all sets of pairs $(m_1, m_2) \in M_1 \times M_2$ and for $m_1 \in M_1$, $m_2 \in M_2$, $r = \{(m_{1,i}, m_{2,i}) : i \in I_r\} \in R$, we let

$$m_1 r = \{(m_1 m_{1,i}, m_{2,i}) : i \in I_r\}$$
 $rm_2 = \{(m_{1,i}, m_{2,i} m_2) : i \in I_r\}$

Further, denoting by \overline{M} the direct product (of sets) $M_1 \times R \times M_2$, we define the product for any two elements (m_1, r, m_2) and (m'_1, r', m'_2) of \overline{M} by the formula

$$(m_1, r, m_2)(m'_1, r', m'_2) = (m_1 m'_1, m_1 r' \cup r m'_2, m_2 m'_2) \in \overline{M}$$

Finally for $f \in F$, we let

$$\gamma f = (\gamma_1 f, \{(\gamma_1 f', \gamma_2 f''): f', f'' \in F; f = f'f''\}, \gamma_2 f) \in \overline{M}$$

The verification that we have defined an associative product and a homomorphism γ of F onto a finite monoid $M \subseteq \overline{M}$ is straightforward and

it is omitted. The same applies to the verification that $A_1 \cup A_2$, $A_1 \setminus A_2$, and $A_1 \cdot A_2$ are images by γ^{-1} of suitable subsets of M. Thus the remark will follow from the fact that any subgroup $G = \{(m_{1,i}, r_i, m_{2,i}) : i \in I_G\}$ of M is isomorphic to a direct product $G_1 \times G_2$, where G_j is a subgroup of M_j (j = 1, 2).

Indeed, by construction, $\{m_{j,i}: i \in I_G\} \subset M_j$ is a homomorphic image of G, hence a group G_j . Let e_j be its neutral element and let N be the intersection of G with the subset $\{(e_1, r, e_2): r \in R\}$ of \overline{M} ; N is a normal subgroup of G and G/N is isomorphic to a submonoid of $G_1 \times G_2$.

Therefore, for verifying $M \in \bigcup_{n>0} M_1(n)$, it suffices to show that N reduces to the neutral element $e'(=(e_1,r,e_2))$ of G. To see this, let $g(=(e_1,s,e_2))$ and $g(=(e_1,\bar{s},e_2))$ be inverse elements of N. The equation $e'=e'^2$ gives $r=e_1r\cup re_2$ and the equation $e'=g\bar{g}$ gives $r=e_1\bar{s}\cup se_2$. Therefore, $e_1r=e_1\bar{s}\cup e_1se_2$ and, since $e_1r\subseteq r$, we have $e_1se_2\subseteq r$. However, the equation g=e'ge' gives $s=e_1r\cup e_1se_2\cup re_2$; that is, $s=r\cup e_1se_2$ and therefore, s=r. This shows that e'=g, hence that $N=\{e\}'$, and the verification is concluded.

III. Verification of $Q_1 \subset Q_1$

For each positive natural number n let $Q_1(n)$ denote the least family of subsets of F that satisfies the conditions (K1) and (K2) and that contains every set of the form $\gamma^{-1}M'$ if $M' \subset \gamma F$ and if $\gamma: F \to \gamma F$ is a homomorphism of F onto a member of $M_1(n)$. Thus $Q_1(1) = Q_1$, since for $M' \subset \gamma F$ and $\gamma F \in M_1(1)$, we have either $\gamma^{-1}M' = \phi$ or $\gamma^{-1}M' = F$. Thus the relation $Q_1' \subset Q_1$ will follow instantly from Remarks 3, 5, and 6, which show that for each n > 0 one has $Q_1(n+1) \subset Q_1(n)$ and, therefore, that $Q_1' = \bigcup_{n>0} Q_1$ (n) is a subfamily of Q_1 . The cores of the arguments below are elementary special cases of well-known theorems of Green ([2]) and of Miller and Clifford ([4]) concerning the \mathcal{D} -classes and the \mathcal{H} -classes of monoids.

To simplify notations, we assume henceforth that $M = \gamma F \in M_1(n+1)$.

Remark 3. To show $\gamma^{-1}M' \in Q_1(n)$ for all subsets M' of M, it suffices to verify the same property for M' = MmM, M' = Mm, and M' = mM, where m is an arbitrary element of M.

Verification. Consider $a_1, a_2, a_3, a_4, b, b' \in M$ and assume that $b = a_1 b' a_2$, $b' = a_3 b$. This implies $b' = a_3 a_1 b' a_2 = (a_3 a_1)^n b' a_2^n$ for all positive n. Since M has only trivial subgroups we can take n so large that $a_2^n = a_2^{n+1}$. Then

 $b' = (a_3 a_1)^n b' a_2^n = (a_3 a_1)^n b' a_2^{n+1} = b' a_2$. From this we conclude that $b = a_1 b' a_2 = a_1 b'$. Assume further that $b' = b a_4$. By a symmetric argument we obtain $b' = a_1 b'$ (and $b = b' a_2$), showing that b = b' under this supplementary condition.

For any $m \in M$, let $W_m = \{m' \in M : m \in M \setminus Mm'M\}$ and $H_m = (mM \setminus W_m) \cap (Mm \setminus W_m)$. It is clear that W_m is a finite union of sets having the form Mm''M and that $\gamma^{-1}H_m \in Q_1(n)$ if the same is true for Mm, mM, and W_m . We show that in fact $H_m = \{m\}$. Indeed, let $m' \in H_m$. We must have $m = a_1m'a_2$ (since $m' \notin W_m$), $m' = a_3m$, and $m' = ma_4$ for some elements $a_i \in M$. The computations made above show that m = m', and Remark 3 is verified.

Remark 4. If $m \in M$ is such that W_m has two elements or more, then $A = \gamma^{-1}m$ belongs to $Q_1(n)$.

Verification. Let $\beta\colon M\to \overline{M}$ be a surjection of M onto a set \overline{M} that has the following properties: for each $m'\in W_m$, $\beta m'$ is a distinguished element 0, of \overline{M} ; the restriction of β to $M\setminus W_m$ is a bijection of this set onto $\overline{M}\setminus\{0\}$. Since $M.W_m.M=W_m$, we can define a structure of monoid on \overline{M} by letting $(\beta m')(\beta m'')=\beta(m'm'')$ if $m'm''\in M\setminus W_m$ and =0 if $m'm''\in W_m$. It is clear that \overline{M} has only trivial subgroups and $\overline{M}\in M_1(n)$ follows from the hypothesis that W_m has two elements or more. Since $A=\{f\in F:\beta\gamma f=\beta m\}$ the remark is verified.

Remark 5. If $m \in M$, M' = MmM, and $A = \gamma^{-1}M'$, then $A \in Q_1(n)$.

Verification. Since $\gamma e \in M'$ implies M' = M and A = F, we can assume $\gamma e \notin M'$. Let $X' = X \cap \gamma^{-1}m$. We have $F. X'. F \subset A$ and $F. X'. F \in Q_1(1)$. Thus, either $\gamma^{-1}m \subset F. X'. F$ and the result is already proved, or there exists at least one $f \subset \gamma^{-1}m \setminus F. X. F.$ We consider this last case. The element f admits at least one minimal factor f'' such that $M. \gamma f''. M = MmM$, that is, f = gxf'x'g' $(g,f',g' \in F; x,x' \in X; f'' = xf'x')$, where letting $m_1 = x$, m' = f', $m_2 = x'$, we have $Mm_1m'm_2M = MmM$, $MmM \neq Mm_1m'M$, $MmM \neq Mm'm_2M$. Thus A contains $F. X_1. A'. X_2. F$, where $X_1 = X \cap \gamma^{-1}m_1$, $A' = \gamma^{-1}m'$, $X_2 = X \cap \gamma^{-1}m_2$, and, since M is finite, it is clear that $A \setminus F. X'. F$ is a finite union of such sets. Therefore, using Remark 4, the result will follow from the verification that W_m contains at least two distinct elements.

To see this, assume for the sake of contradiction that m_1m' does not belong to $W_{m'}$, that is, assume that $m' = a_1m_1m'a_2$ for some $a_1, a_2 \in M$. According to the computations made at the beginning of the verification of

Remark 3, this implies $m' = a_1 m_1 m'$, hence $Mm'm_2 = Ma_1 m_1 m' m_2 M \subset Mm_1 m' m_2 M = MmM$. Since by construction $Mm_1 m' m_2 M \subset Mm' m_2 M$, this relation is excluded by the hypothesis $MmM \neq Mm'm_2 M$. Thus $m_1 m' \subset W_{m'}$, and by a symmetric argument, $m'm_2 \subset W_{m'}$, are proved. This implies $m_1 m' m_2 \subset w_{m'}$. Since it is clear that $m_1 m' m_2 = m_1 m' = m' m_2$ is impossible, the verification is concluded.

Remark 6. If $m \in M$, M' = Mm or = mM and $A = \gamma^{-1}M'$, then $A \subseteq Q_1(n)$. Verification. It suffices to consider the case of M' = Mm. Moreover, because of Remark 5, we can assume $Mm \neq MmM$, that is $Mm \neq F$ and $m_0 \subseteq MmM \setminus Mm$ for at least one $m_0 \in M$.

Let $f \in \gamma^{-1}m$. As above, f has a minimal right factor $f'' = xf' \in A$ ($x \in X$, $f' \in F$), that is, letting $m_1 = \gamma x$, $m' = \gamma f'$, $Mm = Mm_1m'$ and $Mm \neq Mm'$. We have $F.(X \cap \gamma^{-1}m_1) \cdot \gamma^{-1}m' \subseteq A$ and A is a finite union of such sets. As above, we have only to show that W_m contains at least two elements. That $m \in W_{m'}$ follows from the argument developed in the verification of the last remark, and if $m_0 \in W_m$ we conclude that $W_{m'}$ contains m and m_0 . If $m_0 \notin W_m$, we have $m \in Mm_0M$, hence $MmM = Mm_0M$ (since $m_0 \in MmM$) and therefore also $m_0 \in W_{m'}$. This concludes the verification.

REFERENCES

- 1. L. C. Eggan, Transition graphs and the star-height of regular events, *Mich. Math. J.* 10, 385–397 (1963).
- 2. J. A. Green, On the structure of semigroups, Ann. Math. 54, 163-172 (1951).
- 3. R. McNaughton, Symbolic logic and automata, Wright Air Development Div. Tech. Rept. 60-244, Cincinnati, Ohio, 1960.
- D. D. Miller and A. H. Clifford, Regular D-classes in semigroups, Trans. Am. Math. Soc. 82, 270-280 (1956).
- L. Petrone and M. P. Schützenberger, Sur un problème de McNaughton (submitted for publication).
- M. Teissier, Sur les équivalences régulières dans les demi-groupes, Comp. Rend. 232, 1987–1989 (1951).