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I. Introduction

Let Fbe the free monoid generated by a fixed set X containing at least two
elements and let Q; be the least family Q of subsets of F that satisfies the
conditions (K1) and (K2) below where, as always in this paper, e denotes the
neutral element of F.

(K1). Fe Q;{e} € Q; X' € Q for any subset X’ of X.

(K2). If Q contains 4; and A,, it also contains A; UA, A;\4,
(={feF:feAyfeA})and Ay A, (={ff’ € F:f € A1,f" € 4;}).

The study of Q, is motivated by the fact (discussed in [5]) that Q; is
closely related to the family of the subsets of F that can be described within
the ““ L-language” of McNaughton ([3)]. The object of the present paper is to
verify the main property below, which gives for certain subsets of F the
possibility of deciding if they belong to Q,. Finally, as a direct application
of Eggan’s theory ([1]), we show that for suitable X, Q; contains sets of
arbitrarily large “star height.”

For each positive natural number n, let M,(n) denote the family of all
monoids having at most »n elements and admitting only trivial subgroups
([4]); that is, let the monoid M belong to M;(n) if and only if it has n’ <n
elements and if m” = m"*! for each m € M. Further, for A< F, let A< Q]
if and only if there exist a monoid M € U M,(n), a subset M’ of M and a
homomorphism y of Finto M that satisfy 4 ={f € F:yf € M'}. We have

MAIN PROPERTY

The families Q; and Q] of subsets of F are identical.

As an illustration, let us consider two disjoint subsets 4; and 4, of F
and assume that we know three elements f, f’, and f” of F for which both
A 0{f'f"f":n e N} and A, N{f'f"f":n € N} are infinite sets. Using the
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relation Q; < Qj, we can conclude that it is impossible to find a set B € 0,
satisfying A; < B and 4, < F\B. Indeed, according to the definition of
01, B € Q1 would imply the existence of a finite integer » such that the set
{f'f"f":n’ € N,n’ > n}is entirely contained in B or in F\ B.

II. Verification of Q, < Q;

Since Q; is defined as the least family which satisfies (K1) and (K2),
0, < Q) follows instantly from the following two remarks from ([5]),
which are reproduced here for the sake of completeness.

Remark 1. Q1 satisfies condition (K1).
Verification. Let the monoid M ={e’,x’,0} € M (3)andthemapy:F —~ M
be defined as follows:

e = foreachxe X', yx=x"=e'x'=x"¢
ve=e= for each fe F\({e} UX"),yf=0=¢'0=0¢'=x2=x'0
=0x"=02

Thus F=y~'M, X' =y~ X', {e} =y~ !¢ It is clear that y is a homo-
morphism and Remark 1 is verified.

Remark 2. Q; satisfies condition (K2).
Verification. Let for j = 1,2 the homomorphism y;: F — M;, the monoid
M;, and the subset M’; of M; satisfy M; € My(n;)and A;={f € F;y,f € M}}.
We consider the family R of all sets of pairs (m,m,) € M; x M, and for
my € My, my € My, r={(m, ;,my;):i €1} € R, welet
myr={(mym ;,my;):i €L}  rmy={(my;,my;my):i€el}

Further, denoting by M the direct product (of sets) M; x R x M,, we
define the product for any two elements (m,,r,m,) and (my,r’,mj3) of M by
the formula

(mlv r, m2) (m;, rl, mé) = (ml m;’ml r Urmé9 m2m£) € M
Finally for f € F, we let
W=SS v f VS €F f=f v f) eM

The verification that we have defined an associative product and a
homomorphism y of F onto a finite monoid M < M is straightforward and
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it is omitted. The same applies to the verification that A; U A4, A;\ 4,, and
A+ A, are images by y~! of suitable subsets of M. Thus the remark will
follow from the fact that any subgroup G ={(m ;,r;,m, ;):i € I} of M is
isomorphic to a direct product G; x G,, where G; is a subgroup of M;
(j=12).

Indeed, by construction, {m; ;:i € I} = M;is a homomorphic image of G,
hence a group G;. Let e; be its neutral element and let N be the intersection
of G with the subset {(e;, 7, €;):r € R} of M ; N is a normal subgroup of G and
G/N is isomorphic to a submonoid of G; x G,.

Therefore, for verifying M €|, Mi(n), it suffices to show that N
reduces to the neutral element e'(=(ej,r,e;)) of G. To see this, let
g(=(ey,s,ey)) and g( = (ey,5,e,)) be inverse elements of N. The equation
e’ =e'? gives r=e;r Ure, and the equation e’ =gg gives r = e, 5 Use,.
Therefore, e;r = e, § U e; se, and, since e; r < r, we have e; se, < r. However,
the equation g = e’ ge’ gives s = e, r Ue;se, Ure,; that is, s = r Ue; se, and
therefore, s = r. This shows that ¢’ = g, hence that N ={e}’, and the verifi-
cation is concluded.

III. Verification of Q] < Q,

For each positive natural number n let Q,(n) denote the least family of
subsets of F that satisfies the conditions (K1) and (K2) and that contains
everysetoftheformy—! M'if M’ < yFandify:F > yFisahomomorphism
of F onto a member of M,(n). Thus Q,(1) = Q,, since for M’ < yF and
yF € M (1), we have either y~'M’' = ¢ or y~! M’ = F. Thus the relation
Q1< 0, will follow instantly from Remarks 3, 5, and 6, which show that
for each n > 0 one has Q,(n + 1) = Q,(n) and, therefore, that Q] = | 001
(n) is a subfamily of Q. The cores of the arguments below are elementary
special cases of well-known theorems of Green ([2]) and of Miller and
Clifford ([4]) concerning the &-classes and the 5 -classes of monoids.

To simplify notations, we assume henceforth that M = yF e M (n+ 1).

Remark 3. To show y~! M’ € Qy(n) for all subsets M’ of M, it suffices to
verify the same property for M' = MmM, M' = Mm, and M' =mM,
where m is an arbitrary element of M.

Verification. Consider ay,a,,as,a4,b,b’ € M and assume that b = a;b’a,,
b’ = a;3b. This implies b’ = asa, b’ a, = (aza,)"b’' a; for all positive n. Since
M has only trivial subgroups we can take n so large that a§ = a3*!. Then
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b =(aya))"b'a} = (a3a,)"b’a*' =b'a,. From this we conclude that
b=a;b’ a,=a,b’. Assume further that b’ = ba,. By a symmetric argument
we obtain b’ = a, b’ (and b = b’ a,), showing that b = b’ under this supple-
mentary condition.

For any meM, let W,={m e M:me M\Mm'M} and H,=
(mM\W,) N(Mm\ W,). It is clear that W,,, is a finite union of sets having
the form Mm” M and that y ~! H,, € Q,(n) if the same is true for Mm, mM,
and W,,. We show that in fact H,, ={m}. Indeed, let m’ € H,,. We must have
m=a;m’a, (since m' ¢ W,,), m" = aym, and m’ = ma, for some elements
a; € M. The computations made above show that m = m’, and Remark 3 is
verified.

Remark 4. If m € M is such that W,, has two elements or more, then
A =y~ 'mbelongs to Q,(n).

Verification. Let B: M — M be a surjection of M onto a set M that has
the following properties: for each m’ € W,,, Bm’ is a distinguished element
0, of M the restriction of B to M\ W,,, is a bijection of this set onto M \{0}.
Since M.W,,.M = W,,, we can define a structure of monoid on A by
letting (Bm')(Bm") = B(m'm") if m'm" € M\ W, and =0 if m'm" € W,
It is clear that A7 has only trivial subgroups and M € M;(n) follows from the
hypothesis that W,, has two elements or more. Since 4 ={f € F:Byf = Pm}
the remark is verified.

Remark 5. If m €e M, M' = MmM, and A=y~ ' M’, then 4 € Q,(n).

Verification. Since ye € M’ implies M’ = M and A = F, we can assume
ye¢ M'.Let X'= XNy 'm. Wehave F.X'.F< Aand F.X'.F € Q,(1).
Thus, either y~!mc F. X' .F and the result is already proved, or there
exists at least one f< y~!m\ F. X. F. We consider this last case. The element
fadmits at least one minimal factor f” such that M.yf". M = MmM, that is,
f=gxf'x'g" (g.f.8 €F;x,x" € X;f"=xf'x"), where letting m =x,
m =f', my=x', we have Mm;m'myM = MmM, MmM # Mm m' M,
MmM # Mm'myM. Thus A contains F. X;.A4’. X,.F, where X; = XNy~!
my, A =y~ 'm’, X,= XNy~ 'm,, and, since M is finite, it is clear that
A\F .X'.Fis a finite union of such sets. Therefore, using Remark 4, the
result will follow from the verification that W, contains at least two distinct
elements.

To see this, assume for the sake of contradiction that m;m’ does not
belong to W,,, that is, assume that m' = a;m;m’ a, for some a,,a, € M.
According to the computations made at the beginning of the verification of
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Remark 3, this implies m' = aymm’, hence Mm'm, = Maymym'm,M <
Mmym'myM = MmM. Since by construction Mm;m'm, M = Mm’'m, M,
this relation is excluded by the hypothesis MmM # Mm'm, M. Thus
mym’' < W,,, and by a symmetric argument, m’m, < W,,., are proved. This
implies mym'm, < w,,. Since it is clear that mym' my =mym’' =m'm, is
impossible, the verification is concluded.

Remark 6. If m € M, M’ = Mmor =mM and A=y~ M’, then 4 < Q(n).

Verification. 1t suffices to consider the case of M’'= Mm. Moreover,
because of Remark 5, we can assume Mm # MmM, that is Mm # F and
my < MmM\ Mm for at least one my € M.

Let f € y~'m. As above, f has a minimal right factor f” = xf’ € 4 (x € X,
f' € F), that is, letting m; = yx, m' = yf', Mm = Mm;m' and Mm # Mm'.
We have F.(XNy~'m,) .y 'm’ < 4 and A4 is a finite union of such sets.
As above, we have only to show that W, contains at least two elements.
That m € W, follows from the argument developed in the verification of
the last remark, and if m, € W,,, we conclude that W, contains m and m,.
Ifmy ¢ W,,, wehavem € Mmy M, hence MmM = Mmy M (since mqe MmM)
and therefore also my € W,,.. This concludes the verification.
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