INFORMATION AND CONTROL 11, 396-401 (1967)

On Synchronizing Prefix Codes

MARCEL PAUL SCHUTZENBERGER

Faculté de Sciences, Paris

A study is made of the possible distribution of the word lengths in a synchronizing prefix code.

INTRODUCTION

Let X^* be the free monoid generated by a fixed finite alphabet X of k > 1 elements. A non-empty subset A of XX^* is a *prefix code* iff every word of X^* has at most one left factor in A, i.e. iff $A \cap AXX^* = \emptyset$. It is *synchronizing* iff $X^*\bar{a} \subset A^*$ for some $\bar{a} \in A^*$ where A^* denotes the submonoid generated by A. (See references).

Consider the enumerating sequence $\alpha = (\alpha_n = \textbf{Card} \ (A \cap X^n))_{n \in \mathbb{N}}$ of a prefix code A and set $\sigma_n = k^n - \sum_{0 < m \le n} \alpha_m k^{n-m} = \sigma_{n-1} k - \alpha_n$. We have $\alpha_0 = 0$ and $\sigma_0 = 1$ because of $A \subset XX^*$. Further, X^n is the disjoint union of the sets $S \cap X^n$ and $(A \cap X^m)X^{n-m} (m = 1, 2, \dots, n)$ where $S = X^* \setminus AX^*$. It follows that $\textbf{Card} \ (S \cap X^n) = \textbf{Card} \ (X^n) - \sum_{0 < m \le n} \textbf{Card} \ (A \cap X^m)$. $\textbf{Card} \ (X^{n-m}) = \sigma_n$ showing

$$\sigma_n \ge 0 \text{ for all } n \in \mathbb{N}.$$
 (1)

Assume that A is synchronizing and $\bar{a} \in X^p$. S contains the left factors of its members and no word having \bar{a} as a right factor. Thus $S \cap X^{n+p}$ is a subset of $(S \cap X^n)(X^p \setminus \{a\})$ and

$$\sigma_{n+p} \leq \sigma_n$$
. $(k^p - 1)$ for some fixed positive p and all $n \in \mathbb{N}$. (2)

Finally, let d be the greatest common divisor of the elements of $N_{\alpha} = \{n \in \mathbb{N} : \alpha_n \neq 0\}$, i.e., let $A \subset (X^d)^*$. Since $A^* \subset (X^d)^*$, $f\bar{a} \subset A^*(f \in X^*)$ is possible only if $f \in (X^d)^*$. Thus

1 is the g.c.d. of the elements of
$$N_{\alpha}$$
. (3)

We intend to verify the following converse property.

PROPERTY. Let $\alpha = (\alpha_n)_{n \in \mathbb{N}}$ be a sequence of non-negative integers that

satisfies $\alpha_0 = 0$, (1), (2) and (3). It is the enumerating sequence of at least one synchronizing prefix code.

It may be observed that when A is finite, i.e. when $\alpha_n = 0$ for all n larger than some finite value \bar{n} , Condition (2) is equivalent to $\sigma_{\bar{n}} = 0$. Indeed, from $\alpha_n = 0$, $(n > \bar{n})$, and $\sigma_{n+1} = \sigma_n k - \alpha_{n+1}$ we deduce $\sigma_{\bar{n}+p} = k^p \sigma_{\bar{n}}$. This implies $\sigma_{\bar{n}} = 0$ in view of $\sigma_{\bar{n}+p} \leq \sigma_{\bar{n}}$. $(k^p - 1)$. Reciprocally, if $\sigma_{\bar{n}} = 0$, the hypothesis $0 \leq \sigma_{n+1} = \sigma_n k - \alpha_{n+1}$ shows that $\alpha_n = \sigma_n = 0$ for all $n > \bar{n}$ and one has $\sigma_{n+\bar{n}} \leq \sigma_n$. $(k^{\bar{n}} - 1)$ identically.

We also recall the known fact that $\alpha_0=0$ and Condition (1) suffice to insure that a sequence α of non-negative integers is the enumerating sequence of at least one prefix code A. Indeed, let $A_0=\emptyset$ and, inductively, let A_n be the union of A_{n-1} with an arbitrary set of $\alpha_n'=Min\{\alpha_n$, $Card(X^n\backslash A_{n-1}X^*)\}$ words from $X^n\backslash A_{n-1}X^*$. Each A_n and $A=\bigcup_{0\leq n}A_n$ is a prefix code. Suppose $\alpha_m'=\alpha_m$ and $\alpha_m=Card(X^m\backslash A_mX^*)$ is already verified for m< n. We have $X^n\backslash A_{n-1}X^*=(X^{n-1}\backslash A_{n-1}X^*)X$ since $A_{n-1}\cap X^n=\emptyset$ and $\alpha_n\leq \sigma_{n-1}k=Card((X^{n-1}\backslash A_{n-1}X)X)$ since $0\leq \sigma_n=\sigma_{n-1}k-\alpha_n$. Thus $\alpha_n'=\alpha_n$ and $\sigma_n=Card(X^n\backslash A_nX^*)$ and the observation is proved.

Finally, to simplify our later discussion, we establish the following remark in which x is any fixed letter of X.

Remark 1. Let α satisfy $\alpha_0 = 0$, (1) and (2). It is the enumerating sequence of a prefix code A such that $S x^{2p} \cap S = \emptyset$. Thus the Property is true when, further, $\alpha_1 \ge 1$.

Proof. Let \overline{m} be any fixed integer and, for $n \geq \overline{m}$, let the α_n words of $A_n \backslash A_{n-1}$ be successively chosen so that $fx^r \in A_n \backslash A_{n-1}$, $(f \in X^{n-r})$ only if every word of $X^n \backslash A_{n-1} X^*$ of the form $f'x^r$, $(f' \in X^{n-r})$, f' > r is already taken in A_n . Then to prove $sx^{2p} \notin S$ for each $s \in S \cap X^n$ it suffices to verify that Condition (2) implies $\sigma_n < \sum_{0 < m \leq 2p} \alpha_{n+m}$. Now, by definition

$$0 \le \sigma_{n+p} = \sigma_n k^p - \sum_{0 < m \le p} \alpha_{n+m} k^{p-m}$$
 (4)

Hence, by (2),

$$\sigma_n \leq \sum_{0 < m \leq p} \alpha_{n+m} k^{p-m}. \tag{5}$$

Replacing n by n + p in (5) and using (4) we get

$$\sigma_n k^p - \sum_{0 < m \le p} \alpha_{n+m} k^{p-m} = \sigma_{n+p} \le \sum_{0 < m \le p} \alpha_{n+p+m} k^{p-m}$$

that is,

$$\sigma_n \leq \sum_{0 < m \leq p} \alpha_{n+m} k^{-m} + \sum_{0 < m \leq p} \alpha_{n+p+m} k^{-m} \leq \sum_{0 < m \leq 2p} \alpha_{n+m}$$

and the first part of the Remark is proved. When $\alpha_1 = 1$, we can take $\bar{m} = 0$ and then, $x \in A$. Letting $\bar{a} = x^{2p}$ we have $S\bar{a} \subset A^*$. Hence $X^*\bar{a} \subset A^*$ because A is a prefix code and therefore every word of X^* has one and only one factorisation in the form as $(a \in A^*, s \in S)$, i.e. because $X^* = A^*S$.

CONSTRUCTION OF THE PREFIX CODE A

We consider a fixed sequence α satisfying $\alpha_0 = \alpha_1 = 0$, (1), (2), (3) and we let x and y be two distinct letters of X. We set the following:

 \bar{q} = the least member of N_{α} such that 1 is the g.c.d. of the elements of N_{α} , less or equal to $\bar{q}(2 < \bar{q} < \infty)$.

 \bar{n} = the supremum of the elements of $N_{\alpha}(\bar{q} \leq \bar{n} \text{ and } \bar{n} = \infty \text{ iff } \sigma_n > 0 \text{ for all } n \in \mathbb{N}).$

Define inductively a sequence $(\tau_n)_{n\in\mathbb{N}}$ by $\tau_0=0$ and $\tau_n=\mathbf{\textit{Max}}\{0,1+\tau_{n-1}-\alpha_n\}$. We have $\sigma_n>\tau_n$ for all $n<\bar{n}$. Indeed, this is true for n=0; for $n<\bar{n}$ it follows from $\sigma_n>0$ and the induction hypothesis since $\sigma_n-\tau_n$ is equal to σ_n or to $\sigma_{n-1}k-1-\tau_{n-1}=(\sigma_{n-1}-\tau_{n-1})+\sigma_{n-1}(k-1)-1$, depending upon $\tau_n=0$ or $\sigma_n=1+\tau_n=1-\sigma_n$.

Remark 2. Let $1 + \tau_{n-1} - \alpha_n \ge 0$ for all $n \ge \bar{q}$. The Property is true for α .

Proof. We first show that the hypothesis entails k=2 and $\sigma_n=\alpha_n=1$ for all $n\geq \bar{q}$, hence $\bar{n}=\infty$. Indeed for $n\geq \bar{q}$ we have

$$\sigma_{n} - \tau_{n} - 1 = \sigma_{n-1}k - \alpha_{n} - 1 - \tau_{n-1} + \alpha_{n} - 1$$

$$= (\sigma_{n-1} - \tau_{n-1} - 1)k + \tau_{n-1}(k-1) + k - 2.$$
(6)

It follows that $\sigma_n - \tau_n - 1$ is identically zero because, otherwise, we would have for every $m \ge 0$ the inequality $\sigma_{n+mp} - \tau_{n+mp} - 1 \ge k^{mp}$ in contradiction with Condition (2) which imposes $\sigma_{n+mq} \le \sigma_n (k^q - 1)^m$. Thus, for $n \ge \bar{q}$, we must have successively k = 2, $\tau_{n-1} = 0$, $\sigma_{n-1} = 1$ and $\sigma_n = 1$ which follow from $1 = \sigma_n = \sigma_{n-1}k - \sigma_n = 2 - \sigma_n$.

Using the construction described in Remark 1, we choose the words of the sets $A_n \setminus A_{n-1}$ in such a way that for $n \ge \bar{q}$, $A_n \setminus A_{n-1} = \{x^{n-1}y\}$. Then S consists of words of lengths $<\bar{q}$ and of x^* . Let $\bar{a} = x^r y$ where $r \ge 2\bar{q}$. If $s \in S$ has the form x^r , we have $s\bar{a} = x^{r'+r}y \in A$; if not, s

has length $\langle \bar{q}, sa \text{ does not belong to } S \text{ and, accordingly, } sa = a'x'y$ where $a' \in A$ and $x''y \in A$. The Remark is verified.

Thus we can now define

q =the least integer $\geq \tilde{q}$ such that $1 + \tau_{q-1} - \alpha_q < 0$.

Remark 3. Let α satisfy $\alpha_0 = \alpha_1 = 0$, (1), (2), (3) and $q < \infty$. It is the enumerating sequence of a prefix code A such that:

$$x^q \in A, \tag{7}$$

$$B = A \cap x^*yx^* \text{ consists of } q \text{ words } b_i = x^iyx^{\lambda_i - i - 1}$$
 (8)

 $(i = 0, 1, \dots, q - 1)$ where $\lambda_i \ge i - 1$;

$$\lambda_i \leq q$$
 identically with equality for $i \geq q - \tau_{q-1} - 1$; (8.1)

1 is the g.c.d. of
$$\{\lambda_0, \lambda_1, \dots, \lambda_{q-1}\};$$
 (8.2)

$$Sx^{rq} \cap S = \emptyset \text{ where } rq \ge 2p.$$
 (9)

Proof. We again use the construction of Remark 1. We can take $x^q \in A_q \backslash A_{q-1}$ since $\alpha_q \neq 0$ and $\sigma_n > 0$ for n < q because $q \in N_\alpha$.

Let (for
$$n \leq q$$
)
$$Y_n = \{x^i y x^{n-1-i}, \quad i = 0, 1, \dots, n-1\},$$

$$B_0 = B_1 = \emptyset \text{ and, inductively,}$$

 B_n = the union of B_{n-1} with the β_n = $Min \{ \alpha_n , Card (Y_n \setminus B_{n-1}x^*) \}$ words $b_i = x^i y x^{n-1-i}$ of $Y_n \setminus B_{n-1}x^*$ for which i has its least

Setting $T_n = Y_n \backslash B_n x^* = (\{x^{n-1}y\} \cup T_{n-1}x) \backslash (B_n \backslash B_{n-1})$ and $\tau_n' = Card T_n$, we have $\beta_n = Min \{\alpha_n, 1 + \tau_{n-1}\}$ and $\tau_n' = Max \{0, 1 + \tau_{n-1}\}$ $\tau'_{n-1} - \beta_n$ = $Max \{0, 1 + \tau'_{n-1} - \alpha_n\}$. Thus, by induction, $\tau'_n = \tau_n$ and $\tau_q = 0$ follows from our choice of q. This proves (8.1), and (8.2) follows from $q \geq \bar{q}$ and the fact that by construction $\beta_n > 0$ for each $n \in N_\alpha$ less or equal to q.

Finally, (9) results from the same reasons as in Remark 1.

It only remains to verify that A is synchronizing. In view of (7) and (9) and of $X^* = A^*S$ it suffices to show that the submonoid of A^* generated by $C = \{x^q\} \cup B$ contains at least one word \bar{c} such that $x^m \bar{c} \in A^*$ for every m in the interval $I = \{0, 1, \dots, q-1\}$. To do this we first verify the following Remark in which, for any $z \in \mathbf{Z}$, $[z]_{q'}$ denotes the least non-negative integer congruent of z modulo q' and for $d \in \mathbf{N}, I_d = \{q-1-d, q-d, q+1-d, \cdots, q-1\}.$

Remark 4. Let t be a positive integer less than q and define two maps u and v of I into itself by letting for each $i \in I$

i.u =
$$[i + 1]_q$$
 and i.v = $[i - \lambda_i + 1]_q$

where, identically, $1+i \leq \lambda_i \leq q$ and $\lambda_i = q$ iff $i \in I_t$. If the g.c.d. of the numbers $\{\lambda_0, \lambda_1, \dots, \lambda_{q-1}\}$ is 1, the monoid M generated by u and v contains an element sending I onto 0.

Proof. For $d \in \mathbb{N}$, let M_d denote the subsemigroup of M consisting of all $m \in M$ such that i.m $\in I_d$ for $i \in I$ and i.m = i for $i \in I_d$. By definition $i.vu^{q-1} = q - (\lambda_i - i) =$ an element strictly greater than itself if $i \in I \setminus I_t$ and = an element of I_t if $i \in I_t$. Thus some large enough power of vu^{q-1} belongs to M_t .

Let $d = Min \{d': M_{d'} \neq \emptyset\}$. If d = 1 and $m \in M_1$ the proof is complete because mu sends I onto 0. Thus from now on we can assume d > 1 and we verify the following statement: M_d consists of a single map m sending each $q - i \in I$ onto $q - [i]_d$.

Indeed, by the definition of M_d we have $(q-i)\cdot m=q-[i]_d$ for every $m\in M_d$ and $i\in I_d$. For the sake of contradiction, let j>d be the least value for which $(q-j)\cdot m\neq q-[j]_d$, $(m\in M_d)$. Consider the map $u^{j-d-1}m$. It sends I onto I_d and its restriction to I_d is a permutation. Thus one of its positive powers, say m', belongs to M_d and $(q-d-1)\cdot m'=q-d'\neq q-1$ because of $(q-j)\cdot m\neq q-[j]_d$. It follows that we can assume m=m', that is j=d+1.

Under this supplementary hypothesis mu^{q-1} has the following properties:

- (a) sends I onto the interval $\{q-1-d, q-d, q+1-d, \cdots, q-2\}$,
- (b) reduces to a permutation on $J' = \{q 1 d, q d, \dots, q 1 d'\}$,
- (c) sends every $i \in I_d$, onto i 1.

Thus one of its positive powers, say m'', sends I onto J' and reduces to the identity on J'. Multiplying m'' on the left and on the right by suitable powers of u, we obtain a map which belongs to $M_{d+1-d'}$ where d+1-d' < d by construction. Since this contradicts the minimal character of d, the statement is verified.

Consider now $vu^{q-1}m$ where $\{m\} \in M_d$. Since vu^{q-1} reduces to the identity on I_t and $t \ge d$, this map also belongs to M_d . However, $m = vu^{q-1}m$ is possible only if for each $i \in I$ one has $i \cdot vu^{q-1} = [i]_d$, that is, according to the definition of u and of v, only if all the numbers λ_i are

congruent to 0 modulo d. This shows d = 1 when the g.c.d. of the λ_i is 1 and it establishes the Remark.

To conclude, the proof to each $m \in M$ of the form $m = z_1 z_2 \cdots z_r$, where $z_i = u$ or v, we associate the word μm obtained by replacing in m every $z_i = u$ by x and every $z_i = v$ by yx^q , $(i = 1, 2, \cdots, r)$. By $x^i y x^{\lambda_i - i - 1} \in A$, $x^q \in A$ and our definition of the maps u and v, we have identically $i \cdot m = i'$ iff $x^i \mu m = ax^{i'}$ where $a \in A^*$. Thus $x^* \mu(mu) \subset A^*$ where $\{m\} = M_1 \neq \emptyset$ and the Property is entirely proved.

RECEIVED: JULY 25, 1967

REFERENCES

GILBERT, E. N. AND MOORE, E. F. (1959), Variable length binary encodings. Bell System Tech. J. 38, 933-968.

GOLOMB, S. W. AND GORDON, B. (1965), Codes with bounded synchronization delay. *Inform. Control.* 8, 355-372.

MANDELBROT, B. (1954), On recurrent noise limiting coding. Proc. Symp. Inform. Networks. pp. 146-148, New York, N. Y.

NEUMANN, P. G. (1962), Efficient error limiting variable length codes. IRE Trans. IT-8, 292-304.

WINOGRAD, S. (1964), Input error limiting automata. Commun. Comp. Mach. 11, 338-351.