On an Enumeration Problem*

M. P. SCHÜTZENBERGER

University of Paris and Department of Electrical Engineering, University of California, Berkeley, California

Communicated by Gian-Carlo Rota

ABSTRACT

We present an answer to a question raised by J. Riordan on the relationship between two families of maps of finite sets.

The following problem has been kindly communicated to me by Dr. J. Riordan.

Let $[n] = \{1, 2, ..., n\}$ and define B_n as the set of all maps $\beta : [n] \rightarrow [n]$ such that there exists a permutation β^* of [n] satisfying the condition:

For $j = 1, 2,..., n, \beta^*j$ is the least integer $\geqslant \beta j$ not already contained in $\{\beta^*1, \beta^*2,..., \beta^*(j-1)\}$.

For instance B_2 consists of the three maps $(\beta 1 = \beta 2 = 1)$, $(\beta 1 = 1; \beta 2 = 2)$, $(\beta 1 = 2; \beta 2 = 1)$, the associated β^* being the identity map for the first two and the inversion $(\beta^*1 = 2, \beta^*2 = 1)$ for the last one. More generally one finds that

Card
$$B_n = (n+1)^{n-1}$$
.

As it is well known $(n+1)^{n-1}$ is also the cardinality of the set A_n of all acyclic maps α : $[n] \to [n]$ (i.e., of the α : $[n] \to [n]$ such that $\alpha^{n-1} = \alpha^n$), and it is asked to exhibit a 1-1 correspondence $\beta \to \overline{\beta}$ between B_n and A_n . This we do by induction on n, starting with n=2, where we associate, respectively, the three members of B_2 listed above with the following three maps of A_2 :

$$(\alpha 1 = \alpha 2 = 1),$$
 $(\alpha 1 = \alpha 2 = 2),$ $(\alpha 1 = 1; \alpha 2 = 2)$

^{*} This research was jointly sponsored under Air Force Office Scientific Research, Office of Aerospace Research, United States Air Force, AFOSR Grants AF-AFOSR-639-65 and AF-61(052)965.

For n > 2 we distinguish cases depending upon $\beta^* n = n, = 1$, or = any other member of [n].

CASE 1:

$$\beta * n = n$$
.

Assuming $\beta \in B_n$, the value of β^*n is the only remaining member of [n] once β^*j has been constructed for $j \in 1, 2, ..., n-1$. Thus $\beta^*n = n$ implies $\beta j < n$ for every $j \in [n-1]$. Reciprocally, if this condition is met by some map $\beta : [n] \to [n]$ we can always define the permutation β^* and we shall have $\beta^*n = n$ whatever the value of βn . Thus our hypothesis amounts to the single requirement that the restriction β_1 of β to [n-1] is a member of B_{n-1} and by the induction hypothesis we have a well-defined $\overline{\beta}_1 \in A_{n-1}$ associated with β_1 .

SUBCASE 1.1:

$$\beta n = n$$
.

We set

$$\overline{\beta}n = n;$$
 $\overline{\beta}j = n \quad \text{if} \quad j \in [n-1] \quad \text{and} \quad \overline{\beta}_1^{n-2}j = \overline{\beta}_1^{n-1}j;$
 $\overline{\beta}j = \overline{\beta}_1 j \quad \text{otherwise.}$

SUBCASE 1.2:

$$\beta n = m < n$$
.

We set

$$ar{eta}n=m;$$
 $ar{eta}j=n \quad \text{if} \quad j\in[n-1] \quad \text{and} \quad ar{eta}_1^{n-2}j=ar{eta}_1^{n-1}j
eq ar{eta}_1^{n-1}m;$
 $ar{eta}j=ar{eta}_1j \quad \text{otherwise.}$

It is clear that $\overline{\beta} \in A_n$ because, for every $j \in [n]$, $\overline{\beta}^{n-1}j = \overline{\beta}^n j = n$ in Subcase 1.1 and $\overline{\beta}^{n-1}j = \overline{\beta}^n j = \overline{\beta}^n m$ in Subcase 1.2.

Further, the correspondence $\beta \to \overline{\beta}$ is a 1-1 application of the maps $\beta \in B_n$ satisfying $\beta^* n = n$ onto the maps $\overline{\beta} \in A_n$ having a single fixed point.

CASE 2:

$$\beta * n = 1.$$

This implies $\beta n = 1$ and $\beta j > 1$ for every $j \in [n-1]$. In fact a map β : $[n] \to [n]$ belongs to B_n and satisfies $\beta^* n = 1$ iff $\beta 1 = 1$ and there exists a map $\beta_2 \in B_{n-1}$ such that $\beta(j+1) = 1 + \beta_2 j$ for every $j \in [n-1]$. Then clearly $\beta^*(j+1) = 1 + \beta_2^* j$.

As above, we derive $\overline{\beta}$ from $\overline{\beta}_2$ by setting simply $\overline{\beta}n = n$ and $\overline{\beta}j = \overline{\beta}_2j$ for $j \in [n-1]$. Thus $\overline{\beta} \in A_n$ because the restrictions of $\overline{\beta}$ to [n-1] and to $\{n\}$ are two acyclic maps of these sets onto themselves and the correspondence $\beta \to \overline{\beta}$ is a 1-1 application of the maps $\beta \in B_n$ satisfying $\beta^*1 = n$ onto the maps $\overline{\beta} \in A_n$ such that $\overline{\beta}^{-1}n = \{n\}$.

CASE 3:

$$1 < \beta * n = m < n.$$

We define:

$$I_1 = \{ j \in [n-1] : \beta^* j < m \},$$

$$I_2 = \{ j \in [n-1] : \beta^* j > m \}.$$

By hypothesis the restriction of β^* to $I_1 \cup I_2 = [n-1]$ is a bijection onto $[n] \setminus \{m\}$ and it implies $\beta j < m$ (resp. > m) for every $j \in I_1$ (resp. I_2). More accurately the present hypothesis is equivalent to the existence of th feollowing objects:

- (i) a map $\beta_1 \in B_{m-1}$ and a non-decreasing surjection $\lambda_1 : [m-1] \to I_1$ such that $\beta_1 j = \beta \lambda_1 j$ for each $j \in [m-1]$ (then $\beta_1^* j = \beta^* \lambda_1 j$).
- (ii) a map $\beta_2 \in B_p(p=n-m)$ and a non-decreasing surjection $\lambda_2 : [p] \to I_2$ such that $m + \beta_2 j = \beta \lambda_2 j$ for each $j \in [p]$ (then $m + \beta_2^* j = \beta^* \lambda_2 j$).

Reciprocally, if this is the case, we have $\beta \in B_n$ (with $\beta * n = m$, automatically) iff $\beta n \in [m]$.

Thus letting $I_1' = I_1 \cup \{n\}$, $\lambda_1' j = \lambda_1 j$ or = m depending upon $j \in [m-1]$ or = m and $\beta_1' j = \beta_1 j$ or $= \beta m$ depending on the same condition, we have $\beta_1' \in B_m$ satisfying $\beta_1' * m = m$ and we can combine the two constructions already introduced in the definition of $\overline{\beta} \in A_n$:

$$ar{eta}\lambda_1'j=\lambda_1'ar{eta}_1'j \qquad ext{for each} \quad j\in[m];$$
 $ar{eta}\lambda_2j=\lambda_2ar{eta}_2j \qquad ext{for each} \quad j\in[p].$

By construction the restriction of $\bar{\beta}$ to I_1' (resp. I_2) is a map of this set into itself and this map is acyclic by the induction hypothesis. Further by the discussion of Case 1, we know that this restriction has a single fixed point, hence that I_1' can be retrieved from $\bar{\beta}$ as being the set of all $j \in [n]$ for which $\bar{\beta}^n j = \bar{\beta}^n n$. This shows the 1-1 character of our application $\beta \to \bar{\beta}$ and it ends the verification of the validity of the construction.