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ABSTRACT. Two negative results concerning the so-called acceptable sets of numbers are
extended to the case of arbitrary context-free languages with the help of conventional analytic
techniques.
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Introduction

In what follows, X* denotes the free monoid with neutral element e that is generated
by a fixed finite nonempty set X, N denotes the nonnegative integers, and L is the
family of all context-free languages on X [4, 7). We consider a fixed crossed homo-
morphism p of X into the ring Z of rational integers; p is defined by its restriction
to X and by the identity

off' = of-of' + of", S f € X% (1)

where « is a homomorphism of X* into the multiplicative structure of Z. Thus
pe = 0 by definition. We make the assumption that | ez | > 1 for all z € X. This
condition is satisfied when X = {0,1}, o0 = al = 2, p0 = 0,and pl = 1, in
which case pf is the number whose binary expansion is f.

The problem of showing that certain remarkable subsets of Z cannot have the
form pL = {pf:f € L} for L € L, or for L in some given subfamily of L, was first
attacked by Elgot [6] using metamathematical methods. Recently, Minsky and
Papert [8] have considerably generalized these results by a delicate analysis of the
asymptotic properties of the function Card {f € L:| of | < n} of the nonnegative
integer n. Being concerned with the subfamily of the so-called “regular sets,” they
indicated the possibility of extending their method to arbitrary languages L € L.
(See also [2, 5, 10].) We show here two applications of the techniques of classical
analysis to examples already discussed by other authors.

We rely on the following result [1]:

TueoreM [Bar-Hillel, Shamir, and Perles]. Let L € L. Except for the members
of a finite subset Lo of L, every word f € L admats at least one factorization f = g"h'g’hg
such that b’ # e and that H = {h, = ¢"W"¢’h"g:n € N} is contained in L.
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Without loss of generality we always assume g = ¢ when h = e. A straightforward
computation gives

ph, = b” + b (ah)™ + b(ahh')" 2
where, setting 8f = pf (1 — of)”" when f 5 e, and Be = 0, we have
b = pg + Bh-ag;

b = Bh'-ag’g + pg’'-ag — Bh-ayg;
b= pg”-ag’'g — Bh-ag'g.

In particular, b” = 0 when h = e. Further, pH is finite if and only if it reduces to
"7

{oho} = {pg"g'g}.

First Example

Let L € Land k € N be such that no member of pL. has more than k different prime
divisors. Then the set Prma(pL) of all prime divisors of the members of pL 1s a finite
set contained in Prm(pL, U oX).

Let f € L\Lo and assume that Prm(of’) C Prm(pLe U aX) is already verified
for every f’ € L strictly shorter than f. Since f ¢ Ly, we can writef = hy = ¢"h’g’hg
as indicated in the Introduction; and the result is still true for f if pH is finite since
then we know that of = pho where hy = ¢”¢'g is strictly shorter than f. Thus we
can assume that pH is infinite. According to (2), ph, is the coefficient of ¢" in the
Taylor series expansion of the rational function

r@) = (L — &)t + b (L — t-ah)™ + b-(l — t-ahh’)

of the variable ¢. Noting that r(f) has a zero for { = «, a well-known theorem of
Polya [9, p. 14, Satz I1] indicates that Prm(pH) is infinite unless »(¢) has the form
E Citi' (]. - Citm)_l
0<i<m
for some finite m. Now this condition is satisfied only if ” = b6 = 0, and then pH
has the form

(b (ah)*in € N} or {b:(ahh’)™:n € N}.

Furthermore, phy = b’ or b; and since « is a homomorphism, Prm(ah) and
Prm(ahh’) are contained in Prm(aX). Thus Prm(aH) is contained in Prm(pho) U
Prm(aX) and the verification is concluded.

Second Example

Let L € L and the polynomial = be such that Card pL. = » and pL. C 7 (= {x2:2 €
7)) C Z. Then « is o trinomial, ie., ot = c(t + 8)* + ¢/t + 8)¥ + ¢” for some
constant s.

We can assume #t = ZOS i<d ¢it*? where the degree d of = is at least 3, since
otherwise 7 is automatically a trinomial. Since pL is infinite, L must contain a
subset H of the type described in the introduction for which pH is infinite. We set
o = ah, a = ohh'.
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The hypothesis pL. € #Z implies the existence of a map, denoted by ¢, , of N
into Z such that x{, = phna = ba™ + b’ (a’)™ + b” identically.
Let {,’ satisfy cofn’ = phaa — b” = ba™ + b'a’™. We have

g‘nl — an (TO + Zri(a/dn/adn)l)
0<i
where ro = (bcy )% Thus letting ¢ = ¢’ (1 + &’), it follows from ¢» = phag that
A+ a)' + T P70+ ) 7o = 1+
i<

showing that ¢, = r’g'l,fl + & {L” where ' is a constan{ and ¢,” has bounded
modulus. Accordingly, if | a’® < ™t | we can write {, = ra" + 7’ + ¢, where
| e | tends to zero at least as fast asmax { |[a™ |, | " a "™ |}. If | 0| > | a* |
there exists a finite integer k& such that | a**/a"*™" | > 1 > | ***/d**** |, and
then we can write {» = 700" + X cick 70" @ " 4 ¢ + e where | e, |
tends to zero at least as fast as | a’**t?" g~ *¢tIntn |

In the first case, we have {,11 — afn = (@ — 1) 4+ (eny1 — ae,). Since the
left member of this relation is an integer and since | €41 — ae, | tends to zero for
n — o we have in fact that, for all large enough n € N, e,11 — ae, is equal to
some fixed r” € Z. Thus, for all large enough n, ¢, satisfies a linear recurrence
relation {pu1 — afn = (@ — 1) + 7”; hence {, = sa” 4+ s’ where s and s are
constant rational numbers. Bringing this expression into the relation x{, = phna
and identifying terms, we see instantly that = must have the form c¢(t + s”)* +
¢'(t + 8”)¥ + ¢”, and further that o’ and d’ must be such that a’* = a¢. This
concludes the verification in this case.

If {a%/e®|>12>|d%/a™"| (ie.,if k = 1), we have
tn=roa" + 1" a4 + o

Thus ¢ tnye — (@° + a’)tny + aa’ ¢, is equal to a constant, plus a term whose
modulus tends to zero when n — «. As above we conclude that ¢, satisfies a linear
recurrence for all large enough 7 and, in fact, that ¢, = sa” + s'a’®"a™ """ + ¢”.
More generally, for arbitrary k > 1, we replace the polynomial o, = ¢*f* —
(@® + a’*)t + aa’ used above by the polynomial w;, of degree k + 1 whose roots
are {a, a’’a"*", o’ a" "™, ..., a0} and whose coefficient of ¢*** is the product
" ... o*7". Substituting {,4: for £ in w, we obtain an expression which is
equal to a constant plus a term whose modulus tends to zero for n — «, and we

conclude that in all cases ¢, can be expressed as a finite sum
soan _|_ E s (a/id/aid—l)n + sk+1 .
0<i<k
We now show that this is incompatible with the hypothesis x{, = ph.a. Indeed,
bringing the expression of {, which has been obtained into the equation #{, = phaqe,
we can identify terms. Noting that ba™ + da’™ is equal to the sum of the first
two terms in the expansion of ¢of,°, we find that all the other nonconstant terms of

w{» must cancel between themselves. Let j be the largest index less than d such
that ¢; 0, and let ¢ be the largest index less than k + 1 such that s; # 0. The
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term (a’“/a™™*)" siti (or the term (a’**/a™ )™ if s, = 0) in {,’ cannot cancel
with any other term. Thus the equation x{, = ph.q¢ with integral ¢, is impossible
when k > 1, and the verification is concluded.
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