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1. INTRODUCTION

The combinatorial properties of free monoids play a role
in several lemmas which are used in the theory of free groups
(or free Lie algebras), formal languages, automata, variable
length codes, and elsewhere. .

The purpose of the present article is to determine a pro-
perty of this type (Theorem 5 below).

2. SUMMARY OF PREVIOUS WORK

2.1. Freedom ; Primitiveness

We take a set X = {z,y,...}, which generates the free
monoid X* whose elements are called words. The length of
a word f is designated by !f|, the word of length zero by e.
Fvery subset 4 of X* generates a sub-monoid, written A%,
for which it forms a system of generators.

i This work has been supported by contract AF61(052)945 with the United
States Air Force.
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Example. Let X = {xz, y} and let

A, = {zyx, 2},

A, = {zy, yz, x},

A, = {x,y, 2y} .
It is seen that AF, AF < X* (strict inplusion),
whereas A* = X*,

Definition 1. B c X* 1s called a base of A (or a code) if there
exists a set X' and a surjection ¢ of X' on B which can be
extended to a monomorphism of X'* in X*.

More intuitively, this is equivalent to saying that B is
a base iff every word of A* has a unique factorization in
terms of the words of B. ’

Example. A, is a base for AF. A, is not a base for A¥ since
xyx is capable of two factorizations, namely, (zy)xr and z(yzx).
A, is not a base for A ; but {xz, y} is.

Definition 2. -The submonoid A*, generated by the system of
generators A, 1s called free if it has a base.

Example. A¥ is free and has the base A, Af is free and
has the base X. A¥ is not free: in effect, if it had a base
the latter would contain x, but not y, and would therefore
necessarily contain xy and yz.

Remark. We have A¥ c X*, and card (X) < card (4,); note
that this can be generalized. In what follows, whenever A*

is a free submonoid, A will always be its base.

Theorem 1. A mnecessary and suffictent condition for A* to be
free and of base A is the following (condition L):

(LY: For all heX* - A*, hA* N A* N A*h = ¢
Proof. We will prove the equivalent proposition

(A is not a base) &= (L) .
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We have

(I): MheX*\ A* such that RhA* N A*N A*h # ¢.

(A is not a base)—)(f,).

Since A is not a base, A* contains a set of words which
are capable of at least two distinct factorizations, and in that
set there is a subset consisting of minimal length words. Let

(1) m=a a;, =a;...q

e @y ip

be such a word. The minimality of m implies that a, # a;,.
We can then take |a;| <|a,|; whence

(2) a; = ah, heX*, |h] # 0.
Then |
(3) a,...0; =ha,...a;.
But
(2)=A*NA*h #+ ¢,
(3)=hA*N A* % ¢,
whereas

minimality and (3)= h e X* N A*;
whence follows (L).

(L) = (A is not a base)

(D) —> T he X*\ A* and g, m,g €A* such that
hg =m = ¢g'h.

By virtue of its belonging to X*\ A*, h is not empty, and so
neither is m. By simplifying on the left in A (if necessary)
we can arrange for m and ¢’ not to have the same initial let-
ter in A*.

The double equality g’hg = mg = ¢’m (or the one which is
left after simplifying) proves that A is not a base.
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Definition 3. If A* is a free submonoid of base A, we define
the set n(A*) of A-primitive elements by the equivalence:

fen(A¥)&= feA* and f +#g° for any
geA* and any p+#0,1.

Instead of X-primitive we shall simply say primitive.

Remark. It is clear that A-imprimitiveness implies imprimitive-
ness, but the converse is not true. For instance:

A=layx,y}. f=ayvy, fenr(4¥), [fen(X*).

Every element of a submonoid A* having the base A can
be represented unmiquely as the power of an A-primitive ele-
ment. '

Proof. Clearly, there exists such a representation. Suppose
then that we have

feA*; f=¢g=h"; pg>1; g hen(d¥).

According to the hypothesis, f, g, and h each have a unique
factorization. Proceeding by identification, one shows that g¢
= h, whence p = gq.

The following theorem, as well as its corollaries, are re-
lated to the concept of primitiveness (cf. [1]).

Theorem 2. A necessary and sufficient condition for two words
a, be X* to be two powers of the same word (which one can
always suppose to be primitive) is that a power a® of a and
a power b® of b contain a common left (right) factor of length

la| + 18 — (aln b)),
where |a| N |b| stands for the greatest common divisor.

Proof. Set la| =a, |bl = 8. We first treat the case where «
NAg=1. Leta=u=z...2,and b =y,...y,; wecan take § < a.

Sufficiency. We have the relations:
Lizy=w,
2 (X = y2 ’
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a+pf—1:z,=y,.

Let us scan this set of relations in the following way :

i) If possible, add 3 to the number of the line one has
just read ;

i) otherwise add — a + 8.
This scan is possible, for it is equivalent to uniting the vertices
of a polygon in steps of 8. Since 8 and a are relative primes,
we exhaust the vertices. We have therefore a = xf, b = zf.

Necessity. We have above a system of « + 8 — 1 homogeneous
equations in (a + B) unknowns. Let us add the relation :

S Ax + E 1Y = k

where k& %= 0 and the coefficients are not all zero. The system
is then determined.

It is easily seen that one can form a determined system
of the same rank by replacing the last relation with

x,;:k[, yl,:kg.

The words @ and b can be written with two types of letters,
and since «a N 3 = 1, they are not powers of a same third word.

For an 3 =4, we take sections of length § and apply the
previous result.

Corollary 1. A mnecessary and sufficient condition for a, be X*
to be powers of the same word is that ab and ba contain a com-
mon left factor of length

lal £ 1b] — (lal N b)) .

Proof. (same notations). The theorem is trivially true for «
= 3. Let us suppose 3 < «. The hypothesis implies that ab
is a left factor a* ba a word of the form b',, hence a left
factor of »**'. We apply the theorem.

Corollary 2. A necessary and sufficient conditon for a, be X*
to be powers of the same word 1s that there exist in {a, b}* two
distinct elements having no common factor in {a, b}* and hav-
ng in X* a common left factor of degree la| + [b] — (la| N |b]).
The proof is by case, in a way analagous to the preceding
proof. ‘
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Corollary 3. a, b is a base of {a,b}*, and {a, b}* is free iff
a and b are mot powers of the same word.

In later applications, we shall frequently use the following
corollary.

Corollary 4. For f, gen(X*), he X*, p,q > 1, the hypothesis
7 = g°h implies that either g = f and h = f?79, or else (g — 1)

Jgl < IS
To state the last corollary, we must give finally the de-
finition of a fundamental concept.

Definition. We shall call sesquipower on X* a word f of the
Jorm :

f=wv)yu, k>0, bqun(X*), v¥Ee.

A sesquipower such that k > 2 will be called a strong sesqui-
power.

Corollary 5. For k > 2, a strong sesquipower (uv)'u has a unique
representation as a strong sesquipower.

Proof. Let (uv)u = (w2z)’w; then (uv)**!' and (wz)’*' are two
powers of primitive words and have a common left factor of
length kluv| + lul = 7lwzl + lw|. If we subtract from the
length of this common factor the sum of the lengths, we ob-
tain :

lluwl + ] — v} — |wel = (k — 1)uw] + Ju| — Eleel +1ul
J+90
0<n<«lt.
This difference has the sign of :
[k — DG + 0 — kluv| + (5 + 0 — Dul.
The coefficient of |uw! is:

kG+0-1)—(G+0.

For k = 2 it becomes 5 — 2 + #, which is positive. Theorem 2
is now applicable.
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2.1. Conjugacy

Definition. If A* is a free submonoid of base A, we define
the relation of A-conjugacy by the equivalence

f A-conj. g&=>HAh, ' ¢ A* such that
f=hh and g="H~h.

Instead of X-conjugacy we shall simply speak of conjugacy.

Remark. It is clear that A-conjugacy implies conjugacy, but
the converse is not true. For instance:
A = {2y, yx}: then xy and yx are conjugate, but not A-
conjugate. It follows immediately from this definition that
1. f A-conjugate g=> f,gec A*.
2. 1)  A-conjugacy is reflexive (take e = h').
il)  A-conjugacy is symmetric (evident),
iiil) A-conjugacy is transitive.
Take

f =hh', g="h'h; g = kk', m=Fkk.
Then we have in A*
g="nh=Fkk.

Utilizing the uniqueness of the factorization in A* (where A*
is free), we obtain. for example,

==k, h =kk',
where k = kk,: whence
f = ]Cl(k’kl) ’ m = (k’kl)kz 4

The relation of A-conjugacy is an equivalence.
3. A-conjugacy is compatible with the power mapping :

f—=r
In effect,

f:hh” g:h’hv
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fP =R, g =[(R'RPRTh.

These different results can be synthesized in the following
theorem :

Theorem 3. For f, ge AA*, set
Cuf,9) ={heA*: fh = hg}.

Then f A-conjugate g &= C(f,q9) + ¢ . Furthermore, for two
different A-conjugate words there exists a umique positive in-
teger p and a unique ordered pair u,v € A* such that:

vFEe; uv, vu € n{ A*); I = (uv)’; g = (vu)®.

Cuf,9) =ulwvw)*;  Culg, f) = v(wv)*

Proof. Necessity.

f A-conjugate g == f = hh', g="Hhh; h,h' € A*

fh=hg="h0k'h; heC,f, 0);
Calfr9)+ 6.

Sufficiency. Let us suppose that C,(f, g) contains at least one
word h; then we have

fh=hg,
fhg = hgg,
frh = hgg.

More generally, for all m > 1,
f"™h = hg™.
However, there exists a unique integer n such that
nlfI<h <(n+Df].
We have then:
f=nf, k=115
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S o= e
fifi=g9.

It can be immediately verified that this solution, obtained from
necessary conditions, verifies

fh =hg

Representation. We know that every word of A* is a power
of an A-primitive word, so that we have

f=nrh=r: p>21;
Hi=w, fi=@@yu, fi=vuvy
t+J5+1=p,
and this uniguely. 1t follows that
f=ffi= @) wven(A¥),
g = fzfl = (vu)?; vu € n(A%) .

For f # g, we have uv # vu; hence v # e. The rest of the
conclusion 1s evident.

Corollary 1. For every f ¢ AA*, the following properties are
equivalent :
(1) f 1s A-primitive;
(2) The class of A-conjugates of f containts an A-primi-
tive word ;
(3) C.(f,[f)= f* and any relation

fIfrf" = f© dmplies that f', f"e f*.

(4) If f e A* the class of A-conjugates of A contains ex-
actly k words.
The proof presents no difficulties.
Finally, Theorem 2 yields the following theorem immedi-
ately by a “shift”:

Theorem 4. A necessary and sufficient condition for the words
f and g to be conjugate is that two powers f* and g° of these
words contain a common factor of length |f| + gl — (f1N|gh.



A Combinatorial Problem in the Theory of Free Monoids 137
2.3 Relation to other theories

To begin with, it is clear that, for A = X, the concepts
of primitiveness and conjugacy originate, by restriction to the
monoid X*, in analogous concepts relative to the free group
generated by X. They can be extended immediately to a base
A with the help of the monoid X'* and the monomorphism
which were defined at the beginning. Furthermore, some con-
cepts and results can be extended to other monoids. In order
to better visualize these extensions, we give first a “ geometri-
cal ” interpretation.

To each f ¢ X, let us associate the mapping F of the seg-
ment [1, |/} in X which sends ¢ onto the tth letter of f
Then w1th the product h = fg (m the monoid) there is associ-

ated the mapping h = f_q = J‘

(f(i). for iefl,...,If;

h(z) =
l h(i =1, for ceflfl....1f1+1gl}.

In this construction, f and ¢ are conjugate iff g can be de-
duced from f by a cyclic shift. In other words, there exists
a fixed 7 such that:

(e, for dte[l.....|gl—y];
fao=1 . S
gt + 5 —1gl), for tellgl—J5+1,...,1gl.

In the same way, f is the pth power of ¢ iff

|f| = plg| .and  f(i + klg) = (i) for
1efl,..., lgll and kef0,1,...,p—1].

Thus, the primitiveness of a word is equivalent to the aperio-
dicity of the associated mapping onto its interval of definition.

Fine and Wilf have shown that most of these resulis can
be extended to more general monoids consisting of continuous
mappings in a topological set X of intervals of the real line,
when these mappings are compounded by the product “.”
This is true in particular of Theorem 4: its extension shows
that two periodic mappings are equal on the necessary and
sufficient condition that they coincide on an interval whose
length is equal to the sum of the lengths of their respective
periods.
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3. MAIN RESULTS

3.1. Statement

Theorem 5. Let A = {o,b} be a base such that each word of
a*ho N ab* 1s primitive; then each A-primitive word of A* 1is
primitive.

Actually, as we shall see, it suffices that each word of a*b
N ab* of length less than 3jab| be primitive in order to guaran-
tee the conclusion of the property. Also, at most one word
of a*ab N abb* can be imprimitive.

3.2. Terminology

We consider A = {a,b} © X*, a #b. In view of the hy-
potheses, we have that a and b, elements of a*b U ab* are
primitive. For the sake of definiteness, we take |b| < |al.

We introduce the following terminology :

For d=dd,...d. e A" (le. d,d,, ..., d € 4),

we call an A-factor of d any product dd,,,...d, 1 <1< j<
k) occurring in d. Furthermore, we say that d' = d/d;...d.
€ A¥ is a principal segment of d iff there exists f, f'e X*
such that fd' f' =d with | f| <|d}|; 1.f'] <|d,l.

Further we say that ¢ is disjoint from d iff

f.f"#e and for all 7,75, fd,...d,#d....d;.

Thus, if d’ is a principal disjoint segment of d, any A-factor
of d' (or of d, with the exception of d,,d, ...,d, or dd,...
d._,) 1s again a principal disjoint segment of a well defined A-
factor of d (or of d').

3.3. Preliminary results

(1) Let ¢, de A* be conjugate but not A-conjugate. Any
A-factor of c¢'(n < 1) 18 a principal disjoint factor of an A-
factor of d". ' )
Proof. We have he = dh; hence for all positive integers mn,

he' = d"h with h e X*N A*. The hypothesis that an A-factor
of ¢" is not disjoint from d would imply that

et = ci6y, d" =dd,; Gy, dy, dy € A* he, =d,;
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Cy = dgh .

Thus we would have
hC,CQ — dlcg = dldgh With CICZv d102, dldz € A* ’

hence h A*N A* hN A* = 0 in contradiction to h¢ A* and,
according to Theorem 1, the hypothesis that A* is free.

(2) For p >0 and q > 2, ¢ = a® cannot be a disjoint prin-
cipal segment of d = ab’a.

Proof. Let ab’a = fa’f’ where |f}, |f’| <la]. Since ¢ > 2, at
least one A-factor a of a' is a principal disjoint segment of

b”, hence p > 2.
Now either b” and a’ have a common segment of length
> la| + |b] or they do not. In the first case, by Theorem 3,

a and b are conjugate; then we have
a = uv, b=wvu; wv(vu)rur = f{uv)'f’,

where the segments uv of (vu)” and of (uv)® must coincide be-
cause p > 2 and, by the hypothesis, a, b e =(X*). Thus

v = fuv; (vu)? = (vu)* %, wur = uvf’ .

The first (or the third) relation shows that vu = wv, ie., a =
b in contradiction to the hypothesis a # b.

In the second case |b”] <la|+ |b]. Because |a]>|b] this
implies ¢ = 3 and we can write ‘

a=fg=gh=nrg=4gf",
so that
a’ = ghah'y’; b = hah'/ with |h|+ R/ <b.

Thus at least one of h or &' (say h) has length < [b|/2; hence
1 < lal/2. By Theorem 3, the relation a = fg = gh implies-

f — ’LL'?)’; h o= v , a = (u'v)"u',
where 7' > 2 since |h| < 1/2|al.

Thus a is a strong sesquipower and by Corollary 5, we
can write in a unique manner
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h = (vu)*; a = (uv) u (>0, r=17)
with  vu e x(X*).
Then
b = (vu)y (o) u(uo)y'g’s  (w)'g"=h"; gl <|uwr].

Again since vu € n(X*), any segment of b” equal to vu or to
wv is in fact a {u, v}-factor. The inequality |k| < |b|/2 shows
that (vu)uv is a left factor of b. However, b” has no other
segment vuuv except at its end, where it occurs in wwv(uv)'g’.
Now this last word is strictly shorter than b and the hypothe-
sis @ # b implies that vu # wv. Thus there is a contradiction
because p > 2 (as has been shown above).

(3) For p>1 the word aba cannot be a principal dis-
Jjoint segment of b'a’d’. For p =1, it 1s so only if a® is im-
primitive.

Proof. The hypothesis implies

br = b1b2 : bs - bgb.; ; abp& = b2a2b3 With bgbz = bP .
Thus we have abb,a = b.aad,, showing that ab’a, hence a7, is
imprimitive. For p =1, the proposition is proved. For p >
1, the proposition will be proved by showing that a*%” = ¢*, ¢
> 1, is incompatible with the hypothesis that ¢ and b are not

powers of the same word (Theorem 2).

According to Corollary 4 of Theorem 2, the conclusion is
established for

la| = fc| or (p—1)b>c.

Let us suppose that |a| < el and (p — DIbf <le|. Then, in
view of the equality

2lal + plbl = gle|,
these inequalities require that
24+ P _>q;
p—1

hence, ¢ =2 or 3. Let ¢q=2. For even p, the conclusion
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follows at once. For odd p, |b| is necessarily even. We have
b = bb, with [b] = |b], which allows us to segment the equa-
tion and arrive at the conclusion. For ¢ = 3, the calculation
offers no difficulties in principle, but it is very long. For
brevity we shall not give it here.

(4) For p> 0. ab’a canmot be a principal disjoint seg-
ment of aad', nor of d'aa (d' € A¥), or of ab”a or b”.

Proof. Suppose fabfaf' = aad’. The hypothesis of disjoint-
ness implies that a is a principal disjoint segment of aa ; hence
by Corollary 1, a ¢ =(X*), which is a contradiction. The same
applies to d'aa. ‘

In the two other cases, the same argument applies for b
and bb.

(5) Let ¢ =aba (p>0) be a principal disjoint segment
of de A* and suppose that d has mo A-factor ab”a with p' <
p. Then either d has an A-factor of the form bab’ (r + s =
p) which 1s a principal disjoint segment of c or else p =1 and
d = ba’b.

Proof. Assume d +# ba’h. The case of d € b*a’ab* is excluded
by (2) and (3) above.

For d = b"'ab” the hypothesis of disjointness implies 7', s’
> 1: we must have '

|6 ~'ab” ) < |abral < |b7ab*'|;

hence » +s >p+ 1, and r —1+8 —12=p: The result is
verified. .

If d ¢ b*aa*b*, the case of d¢b* is excluded by (4) and d
must have an A-factor of the form ab”a where p’ > p by hypoth-
esis. Again by (4). d # ab”a so that either d.= ab”ad’ or d =
d'ab”a with d’ # e. The result is verified by taking b’a or ab”.

3.4. Conclusion of the proof

We consider g,g € A%, conjugate but not A-conjugate,
such that rg" = ¢""r, r¢ A*, for all n. Such a situation neces-
"sarily obtains when ge A* is A-primitive without being primi-
tive; g = f" (fe X*N A% m > 1) since "' = fg=g9gf. Ac-
cording to (1), every A-factor of ¢g"(g™) is a principal disjoint
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segment of some A-factor of ¢(g"). Since a and b are primi-
tive, we cannot have either g, ¢ €a* or g,9 €b*. If gea* (g
€ b*), (5) shows that the only remaining possibility is ¢’ € b*
(¢’ € a*). Thus we can assume now g, ¢’ ¢ a* U b*, and suppose
that ¢* has an A-factor ab’a with p positive such that ¢ has
no A-factor ab”a with p' < p.

We shall show that under these conditions at least one
word of a*ab U abb*® is imprimitive.

By (5) the principal disjoint segment d of ¢ that covers
ab’a has an A-segment ab” or b’a (unless p = 1 and d = bab in
which case we know already by (3) that a’ is imprimitive). .
Then ab? (or b’a) is a proper principal segment of ab’a ; hence
of ab’ab? (b*ab”ez). Thus it is imprimitive.

3.5. Additions

From our proof it now follows that if the set {a, b, a®h} U
abb* consists only of primitive words, the only word pairs (if
there are any) which are conjugate without being A-conjugates
are of the form (a”, b"). We can establish the following more
accurate result: if a and b are conjugate, a*b U ab* < z(X*);
otherwise a*b U ab* contains at most one imprimitive word.

For the first part of this result, one is led to examine

(ur)vu) = ¢, A=1; n=2.

The case where 42 = 1, n = 2 evidently contradicts the hypothe-
sis of primitiveness. For (2 — 1)|uv| > |e|, the hypothesis of
primitiveness is contradicted by Corollary 4 of Theorem 2.
There remains the case (1 — 1)Juwvl < |¢|]. From the equality
(2 + 1)|uv| = pe, one obtains 2 > (. — 1)(2 — 1) and the conclu-
sion follows easily.

We give an outline of the proof of the second part of the
result.

(1) The following lemma is useful (We have already
proven particular cases of it; cf. [2] and [3]):

The condition a™b” = c¢". m, n,q = 2 implies that a,b and
¢ are imprimitive and powers of the same word.

By Theorem 2, we have only to consider the case where:

(m — Do <57 —(eNy), (m =<y —(BNY),

with @« = |al, 3 = |bl, ¥ = |el. From the equality
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ma + nf = qr,

we obtain the condition

1 1 m alry n BNy
2 + - — ,
+m~1 n—1 m-—1 7 n—1 5 >4

which characterizes the cases to be studied. We treat them

directly.

(ii1) We have seen that for {a| > |b], the only imprimitive
word of a*a® is a’h. By Corollary 4, a = f™ implies that |a|
> |1fl; hence m = 2. Solving a’b = f? gives a = (uv)**'u, b =
vuuv, and the technique of (2) above applies.

(iii) The lemma in (i).is applicable to the case ab™ = f7,
ab™ =g (p,gq=2; m' >m >1). We have only to consider

m' =m + 1; then f# = g".
We have the equalities

lal + mb| = plf1: lal + (m + DIb| = qlgl;
and the inequalities
(m — DI <|fl; mlb] <lgl;
and by CoroHary 4
(» — DIfI <lgl.

This system of equalities and inequalities has only the fol-
lowing solutions :

or
m arbitary, p=q=2.

The first two solutions contradict the hypothesis |a| > |b].
There remain the following cases to consider :

ab = f7; ab® =¢* and ab™ = f*; ab™! = g*
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The first case can be treated in the same way as the case a%
= f* above. In the second case we can assume m > 1. Set
f =cb, g =db, giving .
ab™ ! = cbe ab™ = dbd .
The relation
cbeb = dbd

cuts b into two words of equal length which we can show to
be equal, and this contradicts the hypothesis of primitiveness.
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