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1. INTRODUCTION

A quasi-permutation on a set I is a relation on I that is contained

in a bijective relation, Formally Q c I x1 is a quasi-permutation if and only if
(L)), (jHe@ = (,j) =(i",j) or i+ i and j # s

For Q finite the weight A(Q) of Q is the number of elements
(i,j)eQ and for any relation RcIx1 we shall denote Qi (R) the set of the
quasi-permutations of weight k contained in R. Then assuming R finite, the

rook polynomial @(R) of R is the generating function

1+ 2 t* card @ (R).
O<k e
We refer the reader to the last two chapters of Riordan’s book on
combinatorial analysis (4] for the general theory of rook polynomials and
their applications. Riordan gives several theorems stating conditions for two

relations to have the same rook polynomial or, as we shall say, to be rook-
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equivalent, Our theorem 3 belongs to this type. It generalizes the obvious fact

that any relation is rook-equivalent with its transpose.

The case when R is a Ferrers relation plays a role in the
applications since it relates to the Laguerre polynomials, the Eulerian
polynomials, the Shanks polynomials, the Poussin polynomials and more
generally to the so-called "Newcomb’s problem for arbitrary specification”,
Our main result (theorem 11) states that a cross-section ('minimal set of
representatives") of the Ferrers relations with respect to the rook-equivalence
is provided by those relations which are strictly decreasing, i.e. which

correspond to partitions into unequal parts.

In the last section we effectively compute the rook-equivalent
decreasing Ferrers relations for those relations which are total preorders
deprived for an arbitrary subset of its equivalence classes (theorem 19). Since
this family is closed under complementation, one might apply Riordan’ s theory
of "complementary boards" to deduce non-trivial identities by using the rather

explicit expressions for the rook polynomial that are given in our property S.

2. A GENERAL PROPERTY OF ROOK EQUIVALENCE

We use the standard notation [n] for the ordered set
{1,2,..,nY ([0] = ¢). Thus we can say in short that « isa (m,n)-
injection if and only if it is 2 map sending each pair (i,j) € [m]x[m] onto the
pair (oy(i), x¢jD €.[n] x [n] where %, and &, are two injections of [m]

into [n). We write then o = otgxoty, Aj=oti([m]) (i=1,2).
Definition 1.

The (m,n)-injection o : [m]x [m] — [n]x [n] is compatible
with the relation R c [n] x [n] if and only if there exist subsets
Z-Lc [nI\A; (i=1,2) suchthat RN(A,x [n]) = RN(A;xA,) U (AyxAy)
and symmetrically RN([n] xAz) = RA(AxA) U(A xA,).
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Definition 2,
With the same notations, the x-transpose of R is the relation
R’ = R\ (Asx Ap) Ua(S) c [n] x [n]
where § is the ordinary transpose
3 ={G.jde [mI«[m]: (j,i)eS} c [m]x [m] of the inverse image
S = &« (RN(AA) € [m]x[m] -
THEOREM 3.

If the injection « is compatible with the relation R, then R and its

«-transpose R’ are rook-equivalent,
Proof,.

Note that reciprocally R is the «-transpose of R’. Accordingly,

if suffices to construct an injective map of Q(R) into Q(R").

Consider any given quasi-permutation @ contained in R. The
inverse image P =ou"'(Qn (A xA ») is a quasi-permutation contained in
S = o' (RA(AxAL) € [m]x [m] .

Let B, and B, be the least subsets of [m] that satisfy Pc B,xB,.

Since P is a quasi-permutation, we have A(P) = Card B; = Card B, .

We define a (m,m)-injection 6 = G,x &, by the following two

conditions where i,i =4,2 and '+ i.

(1) The restriction of 5; to [m]\B; is the unique order-

preserving bijection of this set onto [m]\ B;, ;
(2) For each (k,k)eP we set 6,(k) = k’ and 6,k = k.

Clearly o(P) is a quasi-permutation contained in the transpose s

of S.

We now extend ¢ to a (n,n)-injection T = T,xT, by letting
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T;(j) = j for any je[J\A;

7,(j) = x;(s; (i) forany jeA;.

Because of the compatibility condition R\(A;xA,) is invariant
under ©. Thus Q = t(Q) is a quasi-permutation contained in R’. Finally

Q — Q' is injective because in view of our canonical choice of &, this

injection, hence Q itself, are determined by Q’ without ambiguity.

3. APPLICATION TO FERRERS RELATIONS

Let P = N\{0} denote the set of all positive integers. A Ferrers
relation is a relation F(9)cPxP that is defined by a non-increasing map

¢:P—N such that the sum Zcp(i,) is finite and the condition
N
Flo) = {¢i, ) ePxP: j< @id}.

Its transpose '}:-"(..p) is another Ferrers relation F(§) where
§: P— N is defined by

Py = Max{jeP: @(pp2i} if i@

= 0 otherwise

We shall say shortly that ¢ is decreasing if and only if it is so
on the non-trivial part of its domain, i.e. if and only if @(i)> 0 implies
@) > @(i+1), Then F(y) will be called a decreasing Ferrers relation,

In the next two lemmas we consider a fixed decreasing map ¢ and

for convenience we set

p = U (=Max{ieP: ¢)>0}

x; = @i Cielp]);
ro = 13

= (x:. —k+]j (keip;
" o 1ejek 4 +j) ipi)
re, = 0 for P>0

- 416 -



P
where (Z‘ indicates a summation over the set [p](k) of the (k) strictly
«

increasing sequences (i, < i,<-..< i, ) of length k with elements in [pl.

Lemma 4. The rook polynomial of F(y) is
o(F( = 5 thr, .
0<k<p
Proof. For any relation Rc [p]xP the set Q,(R)of the
quasi-permutations of weight k contained in R is empty for k>p; and for

](k)

k<p it is the disjoint union over all sequences (of length k) 1c [p of

the sets @, (RAD)xP) .

Further, when R = F(p), eachrestriction F(g) n(IxP)
is rook-equivalent with a decreasing Ferrers relation F(y’) where

PG = @ (L= Cigrigrens by and  §U) = k.

Thus it suffices to consider the special case of k = p. Then
p = (44=p+1(xy-p+2) ... (xy_4-Nx, and the equality of this quantity with
Card @ p(F“P)) is trivial since this last number is the number of injections
n: [p] — P suchthat n() € @Ci) identically.
Q.E.D.

PROPERTY 5. For each ke [p] one has the identity

M =o§£ijs(p_j,p-k) (0£k<p)

where the S(i, )’ s are Stirling numbers of the second kind* and where
aj (0<j<p) arethe symmetric functions a,=1 and

a; = <21:) Yiy Yi, o Y (jelp]d)  inthe variables y; = x;-p+i Cie[p]D.

Proof. Let p’' = p-1; x’;' =x+1 (ie[p]) and denote by

B e — -
‘We make the usual convention that $(0,0) =1 and S(i,j) = O if exactly one of i
and j is zero.

- 417 -



primed letters the quantities defined with respect to p’ and the &’;’s in the
same manner as the corresponding quantities (r,y or a) were defined with

respect to p and the &;’s.
Thus, by definition
Fe = (%q- k+1)r’k_1+ r-’k = (y,+p-k) r’k_1+r;‘

and

Yipg = ¥ipq-PH+i+d = v -pei=y,  Cielph.
Using induction on p, the first relation gives
Ne = (Y + p—k)z?_o,’jS’(p’—j, p-k+4) +2o,’55’(p’_:) » P -k) =

J

=Zgidj5(p’-j,p’-k+1)+Za.’j((p-k)S(p’—j, p-k+D+S(p-j, p’-k))
J J

that is

rk = 12(91a:j_4+0.,j)5(p-37p—k>

because of the classical identity
S(p-j.p-k) = (p-k)S(p-j-1, p-kI+S(p-j-4,p-k-1)

and the result follows since the second relation implies the identity

. ) )
Qj=yjajq+o.
Q.E.D.

Corollary 6. The Ferrers relations F(¢) and F(¢’) defined
by two decreasing maps ¢ and ¢’ are rook-equivalent only if ¢ =¢’.
Proof. Let @’(1) =p2 $’(1) =p. I p+p, tP has a positive
coefficient in q(F(\p)) and a zero coefficient in Q(F(¢")) . Thus we can assume
7

P=p-

Because of the strictly decreasing character of the sequence
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¥ = (xy, Xg,-->%Xp), the sequence g = (91,g2,..., gp) is non-increasing,

JLP>0.

Since the correspondence X —y is injective for each given p, it
~Mn

Its members are positive because gp

follows that X — $ YrYgo e gp} is also injective. Now the set
{91,92, R gp} is unequivocally determined by the symmetric functions a,
and the result follows from lemma 5.
Q.E.D.
Observation 7. Because of the well-known orthogonality
relations between the Stirling numbers of the first Kind s(¢,j) and those of

the second kind S(i,j), the formula of lemma 5 is equivalent with
ak = Z rJ' S(p—j, P—k) ¢
J

As a side remark we may note that the formula of Property 6 does
not depend upon the fact that the x;’s form a decreasing sequence of positive
integers. By taking all the y;’s equal to O (resp. to 1) and by using a straight-

forward computation this formula gives directly the known identities

Sip,p-k)

[}

f“_‘"_)g(cz-n v Gimk+1)

S(p+i,p+i-k) = 2 (f) S(p-j,p-k) -
0<j%k

We now return to our main argument, To simplify notations, each
Ferrers relation F(y) is considered as a relation in [n] x [n] where
n= Z (P( ).
v

Definition 8.

Let ¢: P— N be non-increasing. The element (k,k’) e PxP

is admissible if and only if the following inequalities hold
(1) 0=@Ck)-K€ PCkD-k<@(k-4)-Kk’

where by convention ‘?(k-ﬂ—k’: + oo for k=1.
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Definition 8 bis,

If (k,k’) is admissible, the (k,k')-transform of ¢ is the map
9’ = OCk,k5¢) defined by (i) = kK-k+J(k'-k+i) if ki <Pk
and @'(i) = ¢(i) otherwise.

k1) F(g) Fep)

\\\QX&XXX

pk)

k’ Kk -

- -

7///2{ //////é

1 | STV W S B S n | SRS W W W S|
k 1Y) k
Fig. 1.

As can be seen from figure 1, where (k,k’) is admissible, the
relation F(y") is obtained from F(y) by transposing the set F(¢)N B where
B={i,)ePxP: iz2k, j2k'} and leave F(¢)\ B invariant, As
shown in lemma 5 below, the admissibility conditions will insure that the
relation F(¢’) obtained from F(y¢) is still a Ferrers relation having the
same rook polynomial as F(y).

Lemma 9,

Let ¢, (k,k) and ¢'=@(k,k’; ¢) as above and assume J_ @(i)<n.
Then o’ is a non-increasing map such that the Ferrers relations F(g) and

F(¢) are rook-equivalent,
Proof,

Using inequalities (1) and the fact that ¢ is non-increasing, we
have k’< (i) < @(k) for each i suchthat k<i< $(k'). Accordingly the
set F(e)NB = {Ci,j)e F(g): izk, j2Kk'} is entirely contained in
Tk, BN x T, 0 (kD]
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Let m = $(k’)-k+{ and consider the (m,n)-injection « such

that o(i,j) = (k-1+i,K-1+j) identically,
Keeping the same notations as in section 2 we have
Ay=o ([m]) = [k, §kY] and A,y = o, ([m]) = [, K-4em] .

Again using inequalities (1) we get K-1+m = $(K) + K-k 2 @(k) 2K
Hence F(p)N B is a subset of AyxA,. Therefore o(-1(F(L?) N(AxAL)
is the Ferrers relation F(y)c [m]x [m] where y(i) = @(k-1+i) - K'+4

for each te [m] .

For the same reason F(¢)\ (Ayx A,) is the Ferrers relation
F(g) where §(i)=K-1 or =¢(i) dependingupon k<i<k-1+m= P k)
or not. It follows that F(9) N (A x [n]) = Ay x [i’-1] .

Because of inequalities (1) we have
F(@ n([n]x Ay) =[k-1]xA,  since either [k-4] = ¢ or
@lk=1) 2 Pk + K-k = K-1+m.

Thus the compatibility condition is satisfied and F(y) is rook-
equivalent with its x-transpose F’= F(9) U x(F(¥)).

Now since §(i) =k'-4 for k<i< k-4+m we have
Fl={Ci,j): j= @) + v} where y(i)= Yli-keD)if k<ick-4+m;
= O otherwise.

Direct computation shows that @+ V¥’ is in fact the (k,k’) -
transform ¢’ of ¢ .

Further, inequalities (1) imply @’'(k-4)2 @'(k) if k>1.
Since both ¢ and y’ (for (2k) are non-increasing, this establishes that 9’
is also non-increasing, and that, accordingly, F’= F(y') is a Ferrers
relation,

Q.E.D.
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Remark 10,

Consider any non-increasing map ¢. It follows from definition 4

that the pair (4, ¢(1) is always admissible (with respect to ) since

inequalities (1) reduce to
0= @U) - ¢ < Plp)) 1.

Let m = $(p(1) . The ({,9(1)) -transform ¢’ of ¢ satisfies

YY) = @MU + m-1
gi) = @iy -4 for 1si<m;
Py = @b otherwise .

In particular @ = ¢’ if and only if m =4, thatis, if and only if
@) > ¢(2) since m =$(‘9(1)) is characterized by Q) = @(2) = ..
o= @9m) > P(m+{) .

We shall say that ¢ is a transform of the non-increasing map ¢
if and only if ¢ can be obtained by a succession of (k,k’) -transformations

(in which, of course, the admissibility conditions are satisfied).
We now come to our main theorem,
THEOREM 11,

Each Ferrers relation is rook-equivalent with exactly one

decreasing Ferrers relation.

Proof. In view of Corollary 6, it suffices to show that any

Ferrers relation has a transform which is decreasing.
Consider a Ferrers relation F(y) which is not decreasing and let
j be the least value such that @(j) = ¢(j+{). Setting k’= @(j) and
i’ = $k) = Max{ieln]: @Ci) = ¢(j>} wehave j<j’, hence
0= @(j)-k<j-j=9&H-j.
proving that k = Min{ie[n]: @(i)-k'< $(kH-i} is positive,
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Because of the minimal character of k, the pair (k,k’) is
admissible, Thus ¢ admits a (k,k’) -transform ¢’ = @(k,k’; ¢) .
Further ¢’ precedes ¢ in the sense that the sequence (¢'(),@(2), ..., @’(n)
precedes the sequence (@(4), ¢(2),..., (n)) in lexicographic order

because by construction
@iy =¢Ci) for i<k and

Py = FUN + K-k > @iy .

Using induction on this order, it concludes the proof.
Q.E.D.
The subsequent results require some further definitions.

For a>0 and bz0 we shall denote 7 a,p the non-increasing
map such that n, (i) = b or 0 depending upon t<a ornot, Let ¢ bea
non-increasing map. The transpose of $ + 14 p Will be called the (a,b) -

translate of ¢ and denoted A(a,b; ¢).

From the geometrical point of view the graph of A(a,b;¢) is
obtained from F(y) by first considering F(y) as a subset of Px [a] and then

making a b -length translation of F(y) to the right,

In particular if a2 ¢(4), the (a-b)-translate of ¢ is the non-

increasing map ¢’ such that
q)’(i) = Q for t<b and
¢'ti) = ¢li-b) for i>b.

From the proof of Theorem 11 it follows that the unique decreasing
map ¢ in which the Ferrers relations F(g) and F($) are rook-equivalent is a

transform of ¢; we shall then say that § is the decreasing transform of ¢.

The foliowing lemma is a special case of a theorem in Riordan

(i4] p. 181, theorem 3).
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Lemma 12, Let ¢ (resp. ¢’) be a transform of ¢ (resp. ¢’)
Then

(i) §+mn,, isatransform of ¢+mn, , if we have az $u);

(ii) A(a,b; P> is a transform of Aca,b;¢) if the inequality a= o)
holds;

(iii) A(a,b; §)+ §’ is a transform of ACa,b;@) + ¢’ if the
inequalities a 2¢@() and b= $(4) both hold.

Proof.

For proving (i) and (ii), is suffices to consider the case when

9 = @Ck,k’; ¢). Direct verification shows that

(i) if a=z @), the pair (k,k’+b) is admissible for 9= P*+Nap
and then we have §, = @(k,k’+b; ¢);

(i) if a2 @), the pair (k+b,k’) is admissible for ¢, = Aa,b;¢)
and we get f@z = O(k+b,k’; 9,) .

Now let y = ACa,b;¢)+¢’ and y = ACa,b; §) + @’
We aiready know from part (ii) that ¢, =)a,b;9) is a transform of
¢, = Ala,b; ¢). Note alsothat ¢ (i) =a for i<b and @1(0 =0 for
i >a; this implies

\‘i\l'(f.) = ({}"(i~a) for i1>a.

To prove (iii) it suffices to consider the case when
§ = 8Ck,k';¢"). Since bz $’(4), we necessarily have k<b and then
¢,(k) = a. It then follows that

Yk - (K+a) = @,(k) + (k) - (K+a)
= @k -k’

We also have
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Jlkra) -k = @) - k and
Ylk-1) -(k'+a) = @'(k-1)-k.

These last three equations show that the pair (k,k'+a) is
admissible for y and then we have § = @(k,k'+a; y) .

Q.E.D.

We consider now a very special case needed in the study of

Newcomb’ s problem.
Definition 13,

Let d

= (di,dz,...,dr) be a sequence of r~» 0 positive
integers and set as = dy+dy+-+vd; (U=ss<r).

The special map of type d , denoted by Spec d , is the mapping
¢ from P into N that is defined by the following conditions:

gy = 0 for i>d

.
Pdp) = 1 and

Q) = PUi+1)+2  or = @Ui+d) +1 depending upon

ie{&,,az,---,ar~1§ or not for 1si<d,.

The definition implies that any special map is decreasing. One

computes easily that the value at 1 of Spec d = ¢ is ar+ r-4 and that
AmAnn
PO =d, -

For a =(a,) the Ferrers relation F(Spec (d)) isa "triangular
poard" in Riordan’s terminology (see (4] p. 213). Then its rook poiynomial
is given by Riordan’s formula ({4] p. 214) which involves the Stirling numbers
SCi,j) as it could be shown directly from our property 5, since it corresponds

to the case when y, = 1 identically.
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We now give two results which show that "translation” preserves

the "special” character of a Ferrers relation,

Lemma 14, Let y = Spec (d,»d;,-..,d,) and q<r. The
special map ¥ = Spec (dy+1,d,+1, ..., dq+i s dq+4 »eeendp) is
the decreasing transform of A(d,q;y) where d = 4+vy{{).

Proof.

Let ¢ =A(d,q;y);we have @(i)=d for 1<i <q and
Pi) = y(i-q) for q<i 5ar"‘l' On the other hand (i) = y(i-aq) for
aq+qsisc-lr+q_.

Consequently, if q =1, it is readily verified that A(d,4;y) =V

and the lemma is proved in this case,

If q>1, weconstructthe (1,p(1)) -transform ¢’ of ¢. We have
@) = g +q-1 (=d), Qi) = UI-1 = yU) for dci=q
and @) = @iy for i>q.

We now distinguish two cases:

(i) suppose d,>1, andlet y’ = Spec (dy—1,dy,---rd.);
one can verify that ap' is obtained by the followinﬂg.;wwo transformations., We
first let y" = AGy(1),a;y"); then we have ¢’ = A(d’,{;y"). On the other
hand let  y’ = Spec (dy-f+4,dy+d, ...y dgrd,dgys -, dp);
aswehave d’ = 1+y' N+ q =1+Y'U), weget y = 48(d,1;¥").

By induction on d,+d,+...+d,. the special map ¥’ is a transform
of y" and by lemma 12 § =A(d’,4;y) is a transform of ¢’= A(d’,4; y").
This concludes the proof in this case.

(ii) suppose d, =1 and construct the (2,¢’(2)) -transform ¢" of
¢’. Using the same device as above, let y’ = Spec (dy,d3,.--5d.);
we successively form y” = AU +y’(4),q-1;y") and y" = A(d-4, 45 y")
where d’ = y({)+q. Then we obtain "= A(d’,1;y"). On the other hand,
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let ' = Spec (d,z+1,d,3+1,.--,dq+1.d Hd s we obtain

q+12""
¥ = A(d’4;x) where x = A(d-4,1; y’).

Again by induction and using lemma 12 as above, we verify that §

is a transform of ¢”, hence of ¢.

Q.E.D.
Lemma 1S.
Let be y as above, q2r20, d=yU)+q-r+i and
¢ = A(d,q; y). Then the decreasing transform of ¢ is y = %(d;,d’z,._,,d‘q)
where d} =1 for i<q-r and d;=1+d; ., for i>q-r.
Proof.

Lemmas 14 and 15 coincide for g =r. Suppose gq>r, and take
the (4,9()) -transform ¢’ of ¢. As in the proof of lemma 14, we verify
that ¢’ is obtained from y by the two successive transformations. First let
V"' = Aly(r+q-r, q-4; y); then ¢ = A(y(1),41; ¢"). By induction on q a
transform of " = ACQy(4) +(g-1) - r+1,q-4;vy) is given by
Q“:%(d‘;,d‘?’_,...,da_p where d."i=1 for i <q-1i-r and
a?

=1i+a.- for i>q-1-r. Therefore it foilows from lemma 12 that

i-q+1+r

¥ = AGGU),1; ") is a transform of ¢’ = A(y(1),1;y") (hence of ¢).
Q.E.D.

It is to be noted that for r=0, i.e. for ¢ one has simply

=‘Y‘I y
9.9
¢y =2.(4,4,...,1). This is a special case of Riordan’ s formula (34)

(41 p. 211).

4. APPLICATION TO NEWCOMB’S PROBLEM

Let y: in] — [p] be an order-preserving surjection and J
a subset of [p]. Then the relation R(y,J)c [n] x [n] is defined by the
conditions (i,j)e R(y,¥) ifandonlyif y(i)<y(j) or ycid) = y(jdeJ.

Thus for T={p] the relation R(y,J) is simply the total preorder
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induced by y, and R(y,J) is the complement of a total preorder when J = ¢ .

Both extreme cases occur naturally in Newcomb’s problem that involves the
determination of the rook polynomial of R(y,[pl) or R(y,¢). In the
generalization of this problem studied by one of us ([1] & [2]) it appears just
as natural to consider the rook polynomial of R(y,J) for any subset J of [p].

This is the purpose of this last section.

Keeping the same notations we let ¥ : [p] — P be the map
defined by

n(j) = card[i(j) CGelph

and prove the following property (Cf. Riordan [4], Ex. 4, p. 185).

Property 16, For any permutation s of [p], the relations

R(y,7) and R(oy,cJ) are rook-equivalent,
Proof.

It suffices to verify the property in the special case where ¢ is the

transposition exchanging two consecutive values q and q+1 of [p].

Set m = gt(q)+5ch_+1)§
@ = Minfie[n]: y¢i) =q};
a = Max{ie[n]: yCi> =q+1};

and define the (m,n) -injection « by «(i,j) = (a+1-i, o.’+j-1) .

The verification of the compatibility condition is trivial and one

sees that R(c'y,5J) is the x-transpose of R(y,J). Q.E.D

Observe now that the relation
R(3,3) = {¢i,))e [mix[n]: (i,n+1-j) e R(y. I}

is obviously a Ferrers relation which is rook-equivalent to ﬁ(x ,3). We let

¢ = ¢(y,7) denote the non-increasing map such that R(y,J) is the Ferrers
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relation F(y). According to property 16 we can assume that J is the interval

[p’] with 0=p’<p and that the two restrictions of ¥ respectively to [p’]
and [p] \ [p’] are non-increasing.

Throughout this section ¢ will designate the non-increasing map
9 =§Cg,3) with y: [n]—[p] and J=[p] (0<p’sp).

We first consider the case when J = [p], that is when R(y, [p])
is the total preorder induced by y. With our conventions the map ®: [p] — P
is then non-increasing and we can define the non-increasing map ® its

transpose, as defined in the beginning of section 3.
Lemma 17,

The decreasing transform of the defining map vy = ¢y, [p]) of
the Ferrers relation R(y, [p]) is the special map

y = Spec(®(Q), X(q-14),--, T
where q = ®(1).

Proof,

For p=1, we have on the one hand
KA =n=q, X)) =K(2)=-..=F(n) =4, R(n+1)=0.
On the other hand, ¢=v  since R(y,[p]> =[n] x [n]. Thus

the result is covered by Lemma 15 and we can use inductionon p22.

Define «’: [p-1] — P by letting %'(i) =®Ci+1{) for each
ie{p-1]. Thusliet r=x"({) (=m(2); we have

(1) r<q.
Moreover, let

d’1 = %(r), d'2= (r=-4), -.vy d.’r= %)

and v’ = Spec (d'); then, by the induction nypothesis, y’ is the decreasing

L et

transform of ¢’ = ¢(y’, [p-11) where y' is the unique order-preserving
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surjection of [n’] (nW=n-=xd1)) onto [p-4] that satisfies
Ty = card g"{(j) (je [p-111) identically.
As we know, the value of ¢’ at 1is

Vi = dyrdyr v d b rot < Z R DA,
On the other hand

2R = AN = Z_mi+ ) = n-T{) = n-q ;
hence
(2} n=yieg-r+d.

We also note that the sequence (%(g),%¢q-1),..., K1) is the
sequence obtained when putting g-r elements equal to 1 in front of 9,: and

increasing by 1 each term of d’. In other words

y = Spec (4,1, 1+d.‘1 ) ey 1+d“.'}

where the 1°’s are repeated (q~r) times in the sequence,

Furthermore ¢ is seen to be the (n,q)-translate of ¢’, i.e.

3} 9 = bin,q;97).

As p2 '), the conditions of lemma 12 are fulfilled and we
conclude that ¢ is a transform of ¢ = A(n,q;y').

In view of (i), {2) and (3) we can apply lemma 15 by taking v’
instead of ¥y, d = n and § in place of ¢ and we deduce that y is a transform
of §, hence of ¢.

Q.E.D.

We now study the case of complements of total preorders. With the
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same notations as above, the set J is assumed to be empty. In the following
lemma we characterize the decreasing Ferrers relation that is rook-equivalent
to R(y,$). We can assume p>1, since otherwise R(y,¢) = R(y,¢) = ¢.
We set b = (1) -®(2) and r=%(2). Since T is non-increasing, we can
consider the transpose ® of ®. We then have r = Max §{i: ®(ir>1}.
Lemma 18,
The decreasing transform of the defining map ¢ = ¢ (¥, @)
of R(y,¢) is Y+, , Wwhere m=n-%x(1) and wherey is the special map
Spec (R =14, ®(2)=4 ;e (PRI =4,

NA~A~N

Proof.

Instead of ¢(y,$) and R(y, @) we will also write ¢(x) and

R(x). Since the lemma is trivial for n<2 , we can use induction on nz3,
We distinguish two cases,
Case 1t b = mt()-=(2)>0.

Let n’= n-b and define %’: [p] — P by letting
M) = w()-b=%(2); %)= x(i) otherwise. By construction we have

P =x’1)-x(2) =0 and then

™) = €LY for Adsi<r;

=0 for t>r.

Thus since b’ = 0, the induction hypothesis implies that the special
map y defined in the theorem is a transform of the defining map \?’ = ¢x”)
ot the Ferrers relation R(%’). Now from the definition of R(%) and R(%)
we have that
P = 9 M p
where m =n-m(4). As m=n-%U) = n-b-r =2 {A(i)-1: 1gi=r} = §U),
the conditions of lemma 12 are satisfied and v+ Nm,b 1S indeed a transform

of ¢.
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Case 22 b =7()-=(2)=0.

By hypothesis we have ®(4) = ®(2)=...=%(s) = r  where 522
and either s=p or s<p and %(s) > w(s+1). Define maps &’ and x” of{p)
into P by letting  ®’(s) = W(s) -1; X'Ci) = WL for %5

") = ®M) -1 T = ;WD for {#1.

Thus 2_'(i) = 2ZZ*™i) = n-1. The map =’ is non-increasing
and ®'Cr) = r-1, W) = %) for i<r (=%x() = ') . Hence by the
induction hypothesis ¢’ = (') has for transform
ARE m(ﬁ(nq , BCD) =4, o, Tlr=1)=1, R(r)-2)

where eventually ®(r)-2 = 0.

Now by property 16, R(%’) and R(x”) thatis F(¢") and F(e")
(where Q" = q) (x»)) are rook-equivalent, Further Q= $(x) is equal to
"+ "m,i+ Lhus observing that §’(1) = m-1, we can again conclude from
lemma 12 that the special map y defined in the lemma is a transform of ¢
since it is equalto '+ Ny 4 -
Q.E.D.

We now come to the general case when J is not necessarily equal

to ['p] or empty.
Theorem 19,

Let ¢ = ¢(y,3) be the defining map of the Ferrers relation
R(y,J) where y: [(n] — [p] is an order-preserving surjection and

J=1[p] with 0<p'sp.
Moreover let

T

card x"‘ D) for L e [p’]

=0 for (>p,

%) = card y~Tep’+id)  for  ielp-pT]
=0 for (>p-p'.
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Then the decreasing transform of ¢ is

\V"")m,b

where m=n-x"(1), b=2x"(1) -%x"(2) and
Y = Spec (F(q) )b X1, BV =1, .y, T(r)=4)
with q = ®°(4) and r = %"(2).

Proof.

The case J =[p] or J=¢ has been considered in lemmas 17 and

18. We shall then assume 1< p'< p , and will also use the following notations:

”» 2 » bl

n=xU)+...+x'(p"), p"=p-p’, n"=n-n,

g'(i) =y() for (e [n] and (i) = y(n'+i) for ie[n"].
Let us define the two maps ¢’ and ¢” as follows:

Qi) = ¢y = n" for ie[n’]

)

=0 for i>n

@) = @Ci+n’) for i(eP.

By construction we have
¢ = An", 0" @M+ ¢
Moreover we clearly have ¢’ = ¢(y', [p’] and ¢"=$Cy", )

if p">4 and ¢"=0 if p”’=1. According to lemma 17 the decreasing

transform of ¢’ is then the special map
§’ = Spec (R(Q), BCq-1),..-» 1IN

where q = n’(1) . Inthe same manner lemma 18 asserts that if p”>1, the
decreasing transform of ¢” is ¢”= y"+m ., Where m"= n"-x"(1) and
V" = Spec (K U) -4, T"(2)=1,..., B°(r)-1) with r = x”(2).

If pP=1, welet 9"= ¢"=0.
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Now since n"> ¢"(1) and n' = $’(1), the conditions of

lemma 12 are fulfilled and we can conclude that
¢ = Aln"n' @ e
is a transform of ¢ = A(n% n’; ") + ¢’. As one has
= KUY+ e TP) = UG+ D, the value of @, at n’

is equal to 1, On the other hand the value of ¢* at 1is equalto 0if p”= 1
and if p®>1, we have

Q') = b+ 2 (E"D-1)+ r-A
e
= n“—1»

Accordingly we have $(n") = n"+{ and J(n'¢4) =n*-{ if
p">4 and @in+1)=0 if p’=41. As ¢’ and y® are special, this
shows, in the case when p"> 1, that¢ isequalto n, ,+Vy where

m=n+m=n-2"(1), b = ") - " ()

and  y = Spec (®'(q), ..., BU), BV -4, .-, BVUA-1)
With r=1‘cn(2)- If p“= 1, one has '? = T\r‘l’,h”“"i” Whﬂre
\y’ = Spec (ﬁ?’{q) , s X240, Infact, in this last case we can also write
§ = Mo+ W sincethen r = %°(2) =0 and y is reduced to
y = Spec (X'(q),..., TUN,
Q.E.D,
Remark 20,
The sequence (&’(q),-., XU, X7 CY-1, ., &7 (r) - 4)

just defined is unimodal, namely it is the juxtaposition of a non-decreasing
sequence (of length q) and a non-increasing sequence {of iength r ). Thus the
decreasing transform of a map ¢ = $(y,J) is apart from the functior 7, b
a special map v = Spec(a,,..,d.) whose defining sequence (d,,..,d,)
is upimodal. Conversg;jlet 9’... = {dysm d,g) be an unimodal sequence of
positive integers and b be a non-negarive integer, Then form the decreasing
map y =7+ Spec (d). It is readily verified that y is the decreasing
ransform of {at le;;z;one non-increasing map ¢ of the form @(y,0p'i3.
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A Ferrers reiation R(y. [p’j) in fact depends on four parameters
n, p,y and p'. Letus write R(n,p,y.p') instead of R(y,p"). Thusitis
easily proved that F(y) is rook-equivalent to exactly one Ferrers relation
R{n,p,%,p'} suchthat pz2p'.

Example 21,

Let n=14, p=6, pP=3; XU =4, x(2)=3,
x(3) = 2, X(4) =2, W5y =2, =w(&) = 1. The sequence of positive
vaiues of P = ${y.(3}) where y is determined by the map = just defined',
18 (14,14,14,14,10,10, 10,7, 7, 3,3,1,1} . The decreasing transform of ¢ is
P = %.Efﬁ (i .2,3,3.2,1)-1-111210 and the sequence of positive values of  is

then (17,15,14,12,11,10, 8,9, 6,4,3,1).
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