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1. Introiuction.

The family éo of counter free language has been
introduced long ago by Yc Naugnton in connection with problens
in Logic. It is the least family of subsets of the free rnionoid
X* that is cloced under boolecan operations and (set) product
and that contains X? and every subset of the alphabet X .

In equivalent fashion it is the family of all subsets of X%

such that their syntactic monoid is finite and has no non trivial
groups. lany further results can be found in the recent book of
Me Naughton and Pappert entitled "Counter free Automata". Some

of the findings of these authors suggest generalizations and we
propose here to examine onre possible extension.

In what follows II will be a fixed non empty set of
positive integers that contains any divisor of its members and
that is closed under the least common multiple (l.c.m.) operation.
In equivalent manner 11 can be defined by a partial function W
into I of the set of all primes. Then it contains every positive
integer n such trhat for each prime p in the domain of 11 ,
the highest power of p dividing n is at most pm .

7e shall dennte by Eﬁ the fanily of all finite moncids
such that the order of the cyclic group in them belongs to 1 .
Since zny group of a guotient monoid is itself a quotient of a
group in the original monoid, yﬁ contains any cuotient monoid

of its member. Finally Aq will denote the family of all sets
i



*
in X whose syntactic monoid is in gﬂ . One might may be

call A. a 'periodic family" (with "period set" I ) but it

is probably premature to give a name to a notion whose interest
remains to be demonstrated.

Let us consider some examples. If @ = {1}, (i.e.
if pv = 0 for every prime p ) we have simply Mc Naughton's
fanily éo . At the other extreme, if Il contains every positive
integers, (i.e. if the domain of the function ™ 1is empty),
éﬁ is simply Eilenberg's family Rec of all recognisable sets,
i.e. of all sets whose syntactic mornoid is finite. Families yﬂ
where I is cleosed under multiplication haves been the object
of deep investigations by B. Tilson within the famework of
J. Rhodes' complexity theory. However the rotions we shall be
using here are unable to characterise these especially interest-
ing types of sets Il . Further, the families Eﬁ vhich we shall
consider will fail in general to be closed under wreath product.

Anticipating upon Section 2, we give two other alter-

native definitions.

1.1, A recognizable set A Dbelongs to gﬁ iff in
equivalent fashion :
* *
(i) For any wvords f,g,h € X such that AN fh g
e e ms Py or\*
is infinite, one has fh'(h" ) g © A for somme p € N and r €1,
kS
(i1) For any words f,g,h € X and positive integer t

t\* Pr.S * .
such that f£(k') g & A, one has fh'(h7) g © A for some p €N

and divisor ¢ € I of t .



¥e return to our main argument., It is dear that
each family yﬁ is closed under direct product. Therefore
éﬁ is closed under boolean operations and since {1} €l
for any Il , it contains éo . Since for any recognisable set
A,BC Xf cach group in Synt(AB) is a subdirect product of
groups in Synt(A) and Synt(B) , we have also that each family
éﬂ is closed under product.

To proceed we need two more notions. First for each
I, we define the family P of the submonoids P of i*
which satisfy the condition

(£, he€xt ,n"NP#p=2n €P Ffor at least one
r €I , wvhere X' = X% = X \1 , ht = hh' = b \1 denotes the
semigroups generated by X and by h .

This condition is vacuous iff Il . contains every
positive integer. When Il = {1} one says at times in group
theory that a subgroup which satisfies it is pure.

Second, along a different iine, we recali that a
subzt A of X* is a basis iff every word in Xf has at most
one factorisation as a product ¢f words from A . This require-
ment is satisfied when A is prefix, i.e. when 1 ¢ & and
AX+ VA = ¢ .

¥With this terminology explained we can now state our

"Main Property'.



Yair Property.
For each Il and any subset A of X* one has :
€ ¥ € *
=
(1) A€A , A P A €A

and, reciprocally,

* *
(2) A , a/basis, A €A = A CP .

g
Therefore, when A € A, 1is prefix one has A* € Al
iff A* € Eﬁ . This will be verified in Section 3. In Section 4,
we shall give for the sake of completeness a proof of a (weakened
form of a) Theorem of Eilenberg which we state now in the manner
most suitable for our present goal. Here M is an arbitrary
family of finite monoids containing the quotient of its members
and A is the corresponding family of sets in Xf wvhose syn-
tactic moroid is in M . We recall that a product AB (4,B € X*)
is unambiguous iff each word in Xf has at rnost one factorisation

ab with a €A, bE€B.

Theorem (Eilenberg) : Assume {1} € A and that A is closed
under boolean operations and product. Then A is equal to the
least family B of subset of i* that satisfies the two condi-
tions :

(i) B contains every subset of X and it is closed under
disjoint union and unambiguous product.

(i1) B contains everysabmonoié A“ suck that A € B, A is

*
prefix and A € A .



It is clear that any of our families éﬂ satisfies
these conditions. Therefore, replacing in the theorem A by
A, and substituting in (ii), A* €A by s.* € B, which is
allowed by the "Main Property", we get as a torollary an unam-
biguous expression of the members of ém .

The next section is devoted to recalling some known
facts concerning cyclic groups in finite moroids and to a formal
verification of 1.1 above. It will appear tkat some of the re-
sults do not depend upon the finiteness of Synt(A) or of its

groups but only upon the finiteness of the orders of the one

generators submonoids.

2. Alternative definitions,
In this section we consider a fixed recognisable set
A in i* « Its syntactic monoid will be denoted by S and we
shall let o : X? = S be its syntactic morphism. We recall
that for any h,ht' € k* one has ho¢ = h o' iff for each
£,g € Xf the pair {fhg,fh'g} is contained in A or in ﬁ*\A .
Therefore « is as well the syntactic morphism of
Xf\A and all what will be said below could be dualised in this
fashion. Since 8§ is finite by hypothesis, the subsemigroup

v:
(hd)+ is finite for each h € X ., It contains a cyclic group

H whose order vwill be written w(h) , or, vhen needed, ®(h,A) .



For the same reason of finiteness, there is a number p = € N

Py

such that ha is in its cyclic group for all n 2 p , irrespective
*

of the element h € X .

WYe now recall some known trivia. In what follows h

*
is a fixed word in X .

*
2.1. For each pair f,g € X , there is a divisor s = w(h,f,g)
of the order w(h) such that for any t2 1 and n € N , the
% *
relation fhn(ht) g € & implies fh"(h®) g where m is the

least integer = Py which is congruent to n modulo w(h) .

Proof : For each positive multiple r' of (h) = r that

- e e

is larger than Py o hr‘d is the idempotent of the group H .
Therefore for all m = p, one has hma = hm+ra .

Let X be the subset of the elerents a € H such
that fo.a.g0 is in Ax ., There is a largest subgroup G such
that XG = K . Letting s = (Card H)(Card G)”' be the index

of G in H , we see that s is a divisor of t and of

w(h) and the result follows. Q.E.D.

Ve have proved the statement (ii)} in the alternative
definition 1.1, since the hypothesis A € §ﬂ is equivalent with
w(A) € I vhere ®w(A) 1is the l.c.m. of the numbers w(h) , we
have also proved (i). Indeed, we have shown that for each F£,g,h
the set of 2l1 n € ﬂ cuch that fhng € A is a union of a finite

set and of arithmetic progressions of ratio w(A) . Because of



*
of the duality between A and X AV it is matural to set

*
w(h,f,g) when fh g N A is finite.

2.2, The order ®(h) is the l.c.m. r of the numbers

*
w(h,f,g) overall pairs f,g € X .

Proof : We have already seen that w(h) is a multiple of

e e o

every w(h,f,g) . It remains to check that is is exactly equal

' . m n+r
to r , i.e. that ho =h o for all large enough m . However
this is trivial because of the definition of @ as the syntactic

n+s

morphism of A since we have already fhng €A iff fn "Tg €A

for all large enough n , for each f,g and

n

= w(h,f,g) .
Q.E.D.
Another definition of gﬂ is suggested by Eilenberg's

definition of éo .

2.3. Let A be a recognisable set. It belongs to A iff
*
there is 2 r € Il such that for any f,g,h € X the set

r¥ ‘ . . . . . *
£(h") g has a finite intersection with A or with X \. .

Proof : If A€A , wecan take r = w(A) . Conversely if
the condition is satisfied we have that ®(4) = r because ®(A)
is the l.c.m. of the numbers w(h,f,¢) over all triples

*.
f,g,h € X . Q.E.D.

I cubmitt another similar definition. Let § denote

L

the family of all infinite sequences § = { s, ' n € N} of

—

*
vords S, € X such that s, = 1 for an infinity of n €N .



b  ipso s
For such a sequence let S~ denote the infinite sequence

{tn : n € N} wvhere t =5, - t =t for all n €N .

o] n+1 nsn+1tn
2.4, A recognisable set A Dbelongs to én iff there

*
isa r €Il such that for any two words f,g € X and infinite

sequence S € 8 , the set M= {n €N f(tn)rg € A} or its

s

complement N\M is finite where {tn}

Proof : Assume first A € A, . Consider an infinite sequence
S and the associated sequence §P . The seguence of subsets
tna.s.tna = Qn (n € g) of the syntactic momoid S = Xfa
satisfies identically On+1 CiQn . Since S8 1is finite, there
is a set Q # ¢ such that Q, = Q for all large enough n €N .
Further any tna belongs to the minimal generating set Q' of
the biideal Q . The hypothesis that S, = 1 for an infinity
of n € E implies that tn+1 = tntn for the same values of n .
Therefore Q'Q' N Q' # ¢$ . By a standard argument from the theory
of finite monoids, it shows that in fact Q' is a group in S .
It now suffices to take r = w(A) €1 .,

Reciprocally, consider any set A and group G in
Synt (A) . Take any g € G . Since o 1is a surjective morphism

we can choose an infinite sequence S € S such that 1,

Son <
!
Soput = 9 " yhere n' =1 for n=0 and = 6n-5 for n

positive.



. . 2n+1
Instant computation shows taat tand =g n+ ;

4n+2 . .

= . T M v Y
tons1 = 9 herefore, {tna n € N} contains g itself
infinitely often. Thus in order to satisfy the required condi-
tion over all triple of words we must take for r a multiple

of w(a) . Q.E.D.

Remark.
This could be applied to other questions. For instance,
all the groups in the syntactic monoid of a recognisable set A
are commutative iff for each infinite sequence S € S there is
N =

a m €N such that for all £, € X , n=m the set

*
g} is contained in A or in X \A .

{ft_t ft
n

n+1g ' n+1tn

3. Verifying the "Main Property".

Let A C X* and h € Xf arbitrary. The set of all
n € N such that n" € A* is a submonoid of the additive monoid
N . As such it has a finite minimum generating set M S N and
wve can denote it by M* .

Further, letting d be the greatest common divisor
of the numbers in M , one knows that dg\ﬁ* is finite. Clearly,

h* NA={1} iff M= {d} =9 .

*
3.1. Assume A € éﬁ and A a basis. Then A satisfies
the conditicn
* s * r *
(') . h€X ,s21 h>€A = h €A

for some factor r €Il of s .
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o
Therefore A € gﬂ .

*
Proof : Assume h° € A for some positive s . Conditions
(') and (B ) are equivalent respectively with M C 1 and
Mnn#o¢.
* *

Because of A € A_ we have w(h,A ) = p € Il , hence
Ny, p\¥ * .
h (h") « € Aa for some n € N where o is the syntactic mor-

*
phism of A . Therefore p € dN , hence d €1l .

We recall the fact, which does not need being reproved
once more, that iff A is a basis, one has the relation :

* * * * *

FEX ,fA NAENA #¢ = £€A .

Suppose A a basis, m,m' € ¥ and m' = miq (q €N) .

[ * ® x
"9 - ™ €A where K" €A hence h¥ € a .

We have nIn™ = n
Since ¥ is a minimal generating set it implies q =0, i.e.

that M is the singleton {d} €1 .

This establishes the second assertion in the "Main
Property". Instead of checking the first one by the fastest
method, we indulge into a longer discussion. In what follows,
A,B,C are recognisable sets in x* , f,g and h # 1 are words
in X* . We use the notations introduced in Section 2, except
that we indicate explicetely by notations such as w(h,A) or
w(h,A,£,g9) which syntactic monoid Synt (A) is involved.

In particular Py is the least number m such that the m-t"

powver of any word has its syntactic image in a group in Synt (A) .
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Also q denctes here a fixed positive integer.

3.2. Let A=20c%, g€ A , and assume that the length
la'i\ of the longest word a'j € A in some factorisation
fhlg = a'ja'y «..oa'y (a'1,a'2,...,a'k € A) satisfies

lats1 = aClegl + lnlpg) -

*
Then w(h,A ,f,g) divides w(h,C) .

Proof : Because of A = c4 , the word fhng is a product of

o o

q words c'i € C and because of our choice of ‘a'j‘ y One

of the factors c'i of a‘j has at least m = P, factors in

h , i.e., there are words ¢ = c'j €c, C41Cy € C* , f£',g' € X%
n * m *
such that fh g = ¢, e, €A ; c=f'hg'e€c ; c1f‘ € fh
g'c, © h*g .
2

Therefore for any t € N we shall have

* *
™% = e pn™Tgre, and ™ g € (CP)T © A where ™ € ¢

Because of our choice of m = Po o this last relation
is satisfied wvhen t is a multiple of (h,C,f',g') , hence when
o X *
it is a multiple of s = w(h,C) . Therefore fh"(h°) g € c,Ccy C A,

*
proving that ®(h,A ,f,g) is a divisor of ®(h,C) . Q.E.D

* * *
3.3. Let A € C wvhere C € EH and further, either

A=¢% or c€c

* * *
, ctna #¢ = cTen . Assume fhng € AkA
, *
vhere "k 2 |fhg| . Then w(h,A ,f,g) divides q. for some

r €l .
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Proof : There is at least one factorisation fhng = a

_____ 1aa2 '

*
where the words a,],a,a2 €A are such that for some factori-

*
sation h = h,h, (h,',h2 € X ) one has

* *
* _ -+
2, € fh hy, , a, € h,hg and a € hh*h, = (h2h1) .

Therefore for all t € N

n+t t
fh g = a1a(h2h1) a, -
* * *
Because of A < C and C € P ; the relations
* *
a€A , a E(h2h1)+ inply (h2h1)r =c€C for some r €1 .

q . q * * *
If A =C*" we have instantly c* €A . If A CC , the same
. + * + +
conclusion follows because of a C A and a N ¢ # o .
Therefore in both cases

* * *
" (h"Y) g = a1a(cq) a, €A . Q.E.D.

Let us derive some conclusions, letting [II' denote
the least set containing every divisor of all numbers of the

form rq with r €11,

3.4. Assume A = cd where

* *®
C € A, ., C €P . Then A € én' .

=1
Proof : Ii' contains the least common multiple of any two
* *
of its member. Therefore, to prove A € ALy oy d.e. w(h,a ) € T
*
for all h € X , it suffices to check that one has identical-
% *

iy o(h,A ,f,g) € A .

In the situation of 3.2, this follows from I &< IIt
and the hypothesis C € éﬂ . If the hypothesis of 3.2 are not

met, we are in the situatjon of 3.3 and the result is already

stated.
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Taking q = 1 in 3.4 gives the first assertion in

the "Main Property".

*
c B4 .
3.5. Assume A C B* |, A € A, and B € P, where

*
B is a basis. Then A € A,

*
Proof : Taking q = 1 shows ®(h,A ,f,g) € I' vhen in the

s o et

situation of 3.3. Let us shown that we are in the situation of

3.4 (with C=28B ) when these hypothesis are not satisfied. Sup-

pose indeed Db € B* and, say b’ € A* . We have b = b'1b'2...b'k

(kx € N) where all the words b'. are in B . Therefore

b’ = b'.b', ... LN LU LT b'kEA* . Because of the

hypothesis that B is a basis, this factorisation is unique.
Therefore rk = qk' for some k'€ N since

A« BY » and all the k' successive products of q consecu-

*
tive words bi are in A . Since bY is itself a product

*
of these last products, we have shown b% € 4 ., Q.E.D

The next remarks fave na velevance tqa the precent

pgradiem,

*
3.6. Assume A C B whene B satisfies the condition

* * % * * *
£FEX , BPFfB NB #¢ = £ €B . Then for any h € X ,

® *
w(h,A ) divides the l.c.m. of w(h,A) and o(h,B ) .

*
Proof : Our condition on B implies in particular that

. o

* * *
BfNB #¢ only if £ € B . Therefore B is prefix, hence
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a basis. It follows that we can go directly to the case when

th"g = a,aa, and a = (h,hi d e (h,h,)* in the notations and
1 21 271

1772
with the hypothesis of 3.3.

Let s = w(h,B ,f,g) . We have fh h g € B iff

* *
t € sN . Since fhnhdg = ajaaa, €A CB , it follows that

x
4 €N . Let b= (hh)® . We have fh'h%g = a,aba, € B

1

* * *®
where a a,a, € A ©€B ., Therefore b € B by our condition

1
x x
on B , implying as in 3.5 that b € A , hence that
* *
n"(h®) g €4 .
x *
This shows that w(h,A ,f,g) divides s = w(h,B ,f,g) .

* *
In 2act both numbers are equal since A © B , Q.E.D

3.7. Let the recognisable set A be such that

R + * *
c€X , ¢ NA #¢ = c €A . Then for all h € X ,

*
w(h,A ) divides w(h,A) .

Proof : Take q = 1, hence C = A in 3.2. Under the hypo-
thesis of this statement we have that w(h,A*,f,g) divides
w(h,A) . If they are not satisfied, take in 3.3, C=X ; q =1
and the second alternative in the hypothesis. Then we are in .

*
the same situation as in the present case. Since X € éo y We

K
can take II = {1} and the conclusion gives w®(h,A ,f,g) = 1. 0.E.D

In order to show some "raison d'@tre" to the last two

assertions we werify the following final remark.
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3.8, Let o : Xf =+ S8 and B : Xf - T be two surjective
morphisms onto finite monoids and assume that for each h € X*
the order ®(h,S) is a divisor of ®(h,T) . Then every group G
in 8 is a homomorphic image of a group in T .

1

- *
Proof : Llet K = Go . It is a subsemigroup of X . Since

Kf is finite, there exists an idempotent u and a group H
in T such that u.kKB.u = H .

Let p denote the application from H into the
subsets of G that sends every b € H onto bp = (bB"1 N o .
Since Xo = G it is surjective and since B is a morphism
one has identically bp # ¢ and bp.b'p C (bb')p for any
b,b* € H . Take in particular b' to be the inverse of b in H .
We have ®(h,T) = 1 , hence ®(h,S) = 1 by hypothesis, for any
h € (bb')B"1 N X . Therefore (bb')p is the idempotent of G ,
hence a singleton. Since b p and bp' are non empty subsets

of G, it shows that each of them is a singleton, i.e. that

0 is a morphism from H to G . Q.E.D
*
The example of the submonoid {x,xy,yx} (x,y € X)
*

of X which belongs to éo shows that the condition of 3.7 does

*
not imply that A be a free submonoid.
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4. Verifying the Corollary.

Ve establish the theorem mentionned in the Introduction.
What we give here is far from being optimal and we refer the
reader to Eilenberg's theorem for deeper and more precise results.
Let us recall a minimum of automatic machinery.

An automaton will be a triple T = (Q,q1,Q+) where
Q is a finite set, gq, € Q is an initial state and Q <@
a terminal set. The set Q is provided with a morphism of i*
into the monoid of all partial applications of Q into itself.
A modification of T will be ancther automaton T' = (Q,q'1,Q'+)
on the same set of states Q and it will be described in terms
of T by indicating the initial and terminal elements q‘1 and
Q', and the value of the state gqx for the pairs (q,x) € QxX
such that gqx 1is not the same in the morphisms of X* into
the monoids of action on states associated with T and with
T'o. The number of pairs q,q' € Q such that q' € ¢X will be
denoted by |T| . We shall write q-1Q‘ (¢ € ,Q' © Q) to
denote the set q_1Q' = {f € X* : qf € Q'} . In particular, T
recognises the set q;“Q+ .

Any recognisable set A 1is recognised by at least

one automaton. Among the automata who do this job there is a

minimal one, say the syntactic automaton T, = (Q,q,,Q, ) of A .
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It has the following further properties :
(i) For any q € Q, Q' < Q the set B= q-1Q' satisfies
Brd = B where « is the syntactic morphisn of A .
(ii) !TAl < ‘T‘ for any other automaton T recognising A .

Let us now refer the reader to the families A and
B described at the end of the Introduction. We make the obser-
vation that X* € A because x*a-& = Xf for any morphism o .
Further, by hypothesis {1} € A , where A is closed under boo-
lean operations. Therefore X' = X*\{1} €A and ANX €A
for any A € A . Also A is closed under product. Therefore
ABE€A = ABX €4.

We shall use repeatédly the fact that if A € A
and Bo ¢ € B (where o is the syntactic morphism of A ) ,
one has B € A . This immediately follows from the fact that by
the very definition of Synt , Bo & = B implies that Synt (B)
is a quotient monoid of Synt (A) and from the hypothesis that
M contains the quotient monoids of its members.

Ve are ready to prove that B contains any given
nember A of A . This will be done by induction on ‘TA‘
where T, = (Q,q1,o+) is the syntactic automaton of A .

First the initialscase. Suppose ‘TA\ = 0 ., We have
either A=¢ or A= {1} . The empty set is a subset of X ,

therefore it is in B Dby the condition (i) stated in the Intro-

* ]
duction. Also ¢ 1is a prefix set and since {¢} = {1} € A
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we have {1} € B by condition (ii). Ve can henceforth assume

|T positive.

R
Set P

n

qﬂq1 and assume first P # 1 . It belongs

Poio | . Let Q' be the set of all states
1

to 4 Dbecause P

]

q € Q such that the set Xq = q q; N X 1isnot empty. Modify

the automaton TA into a new automaton T' by letting
qu = ¢ for every q € Q' . If we take successively each q € Q'
as a final state we obtain a set Bq c Xf and the union of
Bqu over all q € Q' is a prefix set B such that B = P .
Therefore by our induction hypothesis and Bqa_& = Bq , we
have P € B .

Now we have the unambigous product A = PA' vwhere
A* is the set accepted by T' when restoring Q+ as the set
of final states. Therefore to conclude the argument we have only
to show A' € B . This is already done by the induction hypothe-

sis unless T' = T, , i.e. unless P = {1}, and also A' # 1 .

A

Take any state 9, such that q;1q2 = X' # ¢ and modify
T = T, to T" Dby letting q1X' = ¢ , keeping the same final

set of states.

We have that A' 1is the disjoint union of q:1Q+
1

and of X'q; Q, ; Both sets are in B Dy the induction hypo-

thesis, Q.E.D
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